1
|
Mahjoubi M, Rashedi R, Samieefar N, Abdollahimajd F, Rezaei N. Dermatologic presentations of hyper IgE syndrome in pediatric patients. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2025; 21:20. [PMID: 40317072 PMCID: PMC12049024 DOI: 10.1186/s13223-025-00963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Hyper-IgE Syndrome, also known as Job's syndrome, is a rare primary immunodeficiency disorder characterized by recurrent infections and elevated levels of immunoglobulin E. While respiratory and systemic manifestations have been more emphasized, dermatological manifestations in Hyper-IgE Syndrome also play a significant role in disease presentation. METHODS This narrative review explores the dermatologic presentations of Hyper-IgE Syndrome in pediatric populations, including descriptions, associated symptoms/findings, and available treatment options. RESULTS AND CONCLUSION Neonatal rash, mucocutaneous candidiasis, noma neonatorum, psoriasis, cold staphylococcal abscesses, and candida onychomycosis are among the dermatological manifestations of Hyper-IgE Syndrome. Each manifestation has unique characteristics and treatment considerations, necessitating accurate recognition and diagnosis for effective management. Optimal treatment strategies involve a combination of supportive care, topical/systemic therapies, antifungal medications, and surgical interventions when necessary. Further research is needed to enhance our understanding of these manifestations and evaluate treatment modalities for individuals affected by Hyper-IgE Syndrome.
Collapse
Affiliation(s)
- Mohammad Mahjoubi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ronak Rashedi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Pediatric Chronic Kidney Disease Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Center of Artificial Intelligence in Health, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, , Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Salehi M, Neshati Z, Ahanchian H, Tafrishi R, Pasdar A, Safi M, Karimiani EG. Hyper IgE Syndromes: Understanding, Management, and Future Perspectives: A Narrative Review. Health Sci Rep 2025; 8:e70497. [PMID: 40114756 PMCID: PMC11922810 DOI: 10.1002/hsr2.70497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/09/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Background and Aim Hyper IgE syndromes (HIES) are rare primary immunodeficiency characterized by susceptibility to specific infections, eczema, and elevated IgE levels. Pathogenic mutations in STAT3, IL6R, IL6ST, ERBB2IP, PGM3, ZNF431, SPINK5, TGFBR1/2, and CARD11 have been identified as genetic factors contributing to phenotypes of HIES lead to hindered differentiation and activity, aberrant signaling cascades and disrupting immune regulation. HIES present a diverse clinical symptoms, challenging diagnosis and management; understanding its pathophysiology, genetics, and immunological abnormalities offer hope for improved outcomes. In this review we aim to provide a comprehensive understanding of the condition and also discuss latest updates on pathological features, clinical spectrum and its variability, immunological abnormalities, inheritance patterns, new candidate genes, challenges, management strategies, epidemiology and future directions of HIES. Methods This review conducted an extensive search of information from multiple databases, including PubMed, Scopus, WHO, and ClinVar to ensure comprehensive coverage. Preference was given to articles published recently to capture the latest research and developments. Endnote was employed as a reference manager. The relevant literature was meticulously reviewed to address the objectives of the study. Results Missense, nonsense, and frameshift variants are commonly observed in HIES. Understanding these genetic mutations is key to diagnosing and managing conditions such as Hyper-IgE recurrent infection syndromes (linked to IL6R, STAT3, and ZNF341 mutations), Atopy associated with ERBIN mutations which links STAT3 and TGF-β pathway, Immunodeficiency 23 (caused by PGM3 mutations), Netherton syndrome (resulting from SPINK5 mutations), and Loeys-Dietz syndrome (related to TGFBR mutations). Each year, new genes and variants responsible for this type of immune deficiency are added to the list. Conclusion Although rare, HIES significantly impacts patients due to its complex medical manifestations and need for lifelong management. Identifying casual variants is essential for effective clinical management of these complex conditions.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Ahanchian
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Rana Tafrishi
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Faculty of Medicine, Medical Genetics Research Centre Mashhad University of Medical Sciences Mashhad Iran
| | - Mojtaba Safi
- Department of Genetics Next Generation Genetic Polyclinic Mashhad Iran
| | | |
Collapse
|
3
|
Li SY, Cao W, Ge Y, Lvy W, Liu YP, Qin L. Whole-exome sequencing assists in the diagnosis of hyperimmunoglobulin E syndrome: Insights into dual genetic abnormalities. Heliyon 2025; 11:e42408. [PMID: 40028518 PMCID: PMC11870154 DOI: 10.1016/j.heliyon.2025.e42408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hyperimmunoglobulin E syndrome (HIES) is a rare primary immunodeficiency disorder characterized by recurrent infections, severe eczema, and elevated serum immunoglobulin E (IgE) levels. Genetic testing traditionally focuses on known genes such as STAT3 and DOCK8, responsible for the majority of autosomal-dominant (AD-HIES) and autosomal-recessive (AR-HIES) cases, respectively. However, a significant subset of patients with HIES-like symptoms remain genetically unexplained. Whole-exome sequencing (WES) has emerged as a transformative diagnostic tool, enabling the identification of both novel and incidental genetic mutations. This report highlights the role of WES in diagnosis of AD-HIES, showcasing its utility in detecting a STAT3 mutation while revealing a concurrent BRCA2 pathogenic variant. While the STAT3 mutation confirmed the diagnosis of AD-HIES, the incidental BRCA2 finding underscores the importance of genetic counseling and long-term surveillance.
Collapse
Affiliation(s)
- Si-yuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ge
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lvy
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-ping Liu
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Adhikari P, Regmi R, Yadav PS, Kafle S. Challenges in diagnosing and managing hyper-IgE syndrome in a resource-limited setting: a case report. Ann Med Surg (Lond) 2024; 86:5582-5585. [PMID: 39238996 PMCID: PMC11374209 DOI: 10.1097/ms9.0000000000002407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction and importance Hyper-IgE syndrome (HIES), also known as Job syndrome, is a rare immunodeficiency disorder characterized by elevated immunoglobulin E levels and recurrent infections. Diagnosing and managing HIES in resource-limited settings is challenging due to the lack of advanced diagnostic tools. This report highlights the necessity of clinical evaluation and basic laboratory investigations for diagnosing HIES. Case presentation A 3-year-old male presented with fever, cough, and widespread pustular lesions. He had a history of recurrent respiratory infections and otitis media. Physical examination revealed characteristic facial features, skin findings, and laboratory investigations showed elevated immunoglobulin E levels (>3000 IU/ml) and leukocytosis. A clinical diagnosis of HIES was made, and the patient responded well to antibiotics, antihistamines, and topical steroids. Clinical discussion HIES is caused by genetic mutations affecting immune function, primarily involving STAT3 and DOCK8 genes. Diagnosis in resource-limited settings relies on clinical features and basic investigations. Challenges include the unavailability of genetic testing. Management includes antibiotics and symptomatic relief adapted to available resources. Conclusion Diagnosing and managing HIES in resource-limited settings requires adaptation of clinical approaches to available resources. This case underscores the importance of clinical vigilance and basic diagnostic tools in diagnosing rare immunodeficiencies.
Collapse
Affiliation(s)
| | - Rabin Regmi
- Patan Academy of Health Sciences, Lalitpur, Nepal
| | | | - Sujan Kafle
- B.P. Koirala Institute of Health Sciences, Dharan
| |
Collapse
|
5
|
Finkelshtain S, Cohen-Engler A, Rosman Y, Sity-Harel S, Hornik-Lurie T, Garty BZ, Confino-Cohen R, Lachover-Roth I. Identifying potentially undiagnosed individuals with hyper-IgE syndrome using a scoring system. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00485-X. [PMID: 39103119 DOI: 10.1016/j.anai.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Hyper-IgE syndrome (HIES) constitutes a group of rare primary immunodeficiency disorders. The diagnosis relies on the National Institutes of Health (NIH) scoring system, incorporating clinical and laboratory data. Scores greater than or equal to 15 raise a strong suspicion of the disease. In an isolated Israeli population, Zinc Finger 341 deficiency, a subtype of HIES, has a carrier incidence of 1:20, but the prevalence of the clinical syndrome within this community remains unknown. OBJECTIVE To estimate the prevalence of potentially undiagnosed HIES cases within this population by using the NIH scoring criteria. METHODS This retrospective cohort study obtained requisite clinical and laboratory data for NIH score computation from the electronic medical records of Clalit Health Services for the isolated village under scrutiny in comparison to a neighboring village. Subsequently, clinical scores were assigned to each subject, enabling comparative analysis of suspected diagnosis rates between the 2 populations. RESULTS Among the 29,390 studied subjects, 12 had a documented diagnosis of HIES. All were in the study village, and none were from the control village (0.08% vs 0%, P < .01). Within the study village, 235 individuals (1.62%) had an NIH score greater than or equal to 15 and were suspected with having HIES almost doubled compared with the control group at 130 individuals (0.87%) (P < .001). CONCLUSION This is the first time the NIH clinical score system has been used for population screening. The significant disparity in the prevalence of suspected, undiagnosed cases between the study village and the control village strongly suggests the potential utility of this tool for preliminary screening.
Collapse
Affiliation(s)
| | - Anat Cohen-Engler
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Yossi Rosman
- School of Medicine, Tel Aviv University, Tel Aviv, Israel; Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Saray Sity-Harel
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | | | - Ben-Zion Garty
- School of Medicine, Tel Aviv University, Tel Aviv, Israel; Allergy and Clinical Immunolgy Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Ronit Confino-Cohen
- School of Medicine, Tel Aviv University, Tel Aviv, Israel; Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Idit Lachover-Roth
- School of Medicine, Tel Aviv University, Tel Aviv, Israel; Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel.
| |
Collapse
|
6
|
De Donato DP, Effner R, Nordengrün M, Lechner A, Darisipudi MN, Volz T, Hagl B, Bröker BM, Renner ED. Staphylococcus aureus Serine protease-like protein A (SplA) induces IL-8 by keratinocytes and synergizes with IL-17A. Cytokine 2024; 180:156634. [PMID: 38810500 DOI: 10.1016/j.cyto.2024.156634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Serine protease-like (Spl) proteins produced by Staphylococcus (S.) aureus have been associated with allergic inflammation. However, effects of Spls on the epidermal immune response have not been investigated. OBJECTIVES To assess the epidermal immune response to SplA, SplD and SplE dependent on differentiation of keratinocytes and a Th2 or Th17 cytokine milieu. METHODS Human keratinocytes of healthy controls and a STAT3-hyper-IgE syndrome (STAT3-HIES) patient were cultured in different calcium concentrations in the presence of Spls and Th2 or Th17 cytokines. Keratinocyte-specific IL-8 production and concomitant migration of neutrophils were assessed. RESULTS SplE and more significantly SplA, induced IL-8 in keratinocytes. Suprabasal-like keratinocytes showed a higher Spl-mediated IL-8 production and neutrophil migration compared to basal-like keratinocytes. Th17 cytokines amplified Spl-mediated IL-8 production, which correlated with neutrophil recruitment. Neutrophil recruitment by keratinocytes of the STAT3-HIES patient was similar to healthy control cells. CONCLUSION S. aureus-specific Spl proteases synergized with IL-17A on human keratinocytes with respect to IL-8 release and neutrophil migration, highlighting the importance of keratinocytes and Th17 immunity in barrier function.
Collapse
Affiliation(s)
- D P De Donato
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Vascular Surgery, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - R Effner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M Nordengrün
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - A Lechner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M N Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - T Volz
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - B Hagl
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - E D Renner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany; Department of Pediatrics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
8
|
Fasshauer M, Dinges S, Staudacher O, Völler M, Stittrich A, von Bernuth H, Wahn V, Krüger R. Monogenic Inborn Errors of Immunity with impaired IgG response to polysaccharide antigens but normal IgG levels and normal IgG response to protein antigens. Front Pediatr 2024; 12:1386959. [PMID: 38933494 PMCID: PMC11203071 DOI: 10.3389/fped.2024.1386959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with severe and recurrent infections, minimal diagnostic workup to test for Inborn Errors of Immunity (IEI) includes a full blood count, IgG, IgA and IgM. Vaccine antibodies against tetanus toxoid are also frequently measured, whereas testing for anti-polysaccharide IgG antibodies and IgG subclasses is not routinely performed by primary care physicians. This basic approach may cause a significant delay in diagnosing monogenic IEI that can present with an impaired IgG response to polysaccharide antigens with or without IgG subclass deficiency at an early stage. Our article reviews genetically defined IEI, that may initially present with an impaired IgG response to polysaccharide antigens, but normal or only slightly decreased IgG levels and normal responses to protein or conjugate vaccine antigens. We summarize clinical, genetic, and immunological findings characteristic for these IEI. This review may help clinicians to identify patients that require extended immunologic and genetic evaluations despite unremarkable basic immunologic findings. We recommend the inclusion of anti-polysaccharide IgG antibodies as part of the initial routine work-up for possible IEI.
Collapse
Affiliation(s)
- Maria Fasshauer
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Department of Immunology, Labor Berlin - Charité VivantesGmbH, Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
9
|
Linganagouda S, Jadhav RS, Verma S, Bharaswadkar RS. Autosomal Recessive Hyper-IgE Syndrome in a Child With Beta Thalassemia Trait: A Case Report. Cureus 2024; 16:e61864. [PMID: 38978914 PMCID: PMC11228417 DOI: 10.7759/cureus.61864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Autoimmune diseases are multifaceted disorders, and their coexistence with other conditions can present unique challenges in diagnosis and management. Here, we report a rare case of autosomal recessive hyper-IgE syndrome (AR-HIES) in a child with beta thalassemia trait. AR-HIES is a distinct immunodeficiency disorder characterized by severe eczema and recurrent bacterial and viral infections, particularly affecting the sinopulmonary system. This case highlights the importance of recognizing and managing the co-occurrence of rare genetic conditions, as it can impact treatment strategies and familial counseling. This unique case of AR-HIES in a child with beta thalassemia trait underscores the complexity of autoimmune disorders and the need for comprehensive evaluation in patients presenting with multiple clinical manifestations.
Collapse
Affiliation(s)
- Suresha Linganagouda
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Renuka S Jadhav
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Sarita Verma
- Pediatric Oncology, King Edward Memorial Hospital, Pune, IND
| | - Rasika S Bharaswadkar
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
10
|
Guo M, Ma Y, Cai K, Liu X, Liu W, Wang F, Qu N, Liu S. A novel hemizygous CD40L mutation of X-linked hyper IgM syndromes and compound heterozygous DOCK8 mutations of hyper IgE syndromes in two Chinese families. Immunogenetics 2024; 76:165-173. [PMID: 38587548 DOI: 10.1007/s00251-024-01340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
X-linked hyper-immunoglobulin M (X-HIGM) syndrome and autosomal recessive hyper-immunoglobulin E syndrome (HIES) are rare inborn errors of immunity characterized by recurrent infections due to immune system impairment. In this study, we identified a novel hemizygous CD40 ligand (CD40L) mutation and compound heterozygous dedicator of cytokinesis-8 (DOCK8) mutations in two Han Chinese families with X-HIGM and HIES, respectively. We aimed to investigate the association between their genotypes and phenotypes. Genomic DNA was extracted from peripheral blood samples obtained from the families. Whole exome sequencing and Sanger sequencing were performed to identify and verify pathogenic variants in the two families. Clinical analyses of the probands were also performed. A novel hemizygous mutation of CD40L in exon 2 (c.257delA) was identified in the first proband, resulting in the substitution of glycine with glutamic acid at codon 86 of the protein. This leads to premature termination of translation at downstream codon 9 (p.E86Gfs*9). Sanger sequencing confirmed that the variant was inherited from the mother. The second proband carried two novel compound heterozygous mutations in DOCK8: one at exon 14 (c.1546C > G) inherited from the father, and the other at intron 41 (c.5355 + 6C > T; splicing) inherited from the mother. This study enhances our understanding of the pathogenetic mutation spectrum of CD40L and DOCK8 genes, facilitating the prenatal diagnosis of X-HIGM and HIES and enabling timely treatment of patients.
Collapse
Affiliation(s)
- Mingzhen Guo
- Department of Laboratory, Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, 266034, Shandong, China
| | - Yuanxuan Ma
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Kangxi Cai
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiuxiang Liu
- Neonatal Intensive Care Unit, Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, 266034, Shandong, China
| | - Wenmiao Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Fengqi Wang
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Niyan Qu
- Pediatric Intensive Care Unit, Women and Children's Hospital, Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, 266034, Shandong, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
11
|
Tkak H, Benhachem M, Ghanam A, Elouali A, Babakhouya A, Rkain M. Exploring the Link Between Profuse Warts and Hyper-Immunoglobulin E (IgE) Syndrome: A Pediatric Case Report. Cureus 2024; 16:e61986. [PMID: 38983983 PMCID: PMC11233125 DOI: 10.7759/cureus.61986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
The relationship between warts and hyper-immunoglobulin E (IgE) syndrome lies in the fact that patients with this syndrome may have recurrent or persistent skin warts because of their immune dysfunction. Therefore, it is important to consider this possibility when evaluating a patient with skin warts, especially if they are associated with other symptoms such as recurrent infections or pulmonary issues. Warts can thus be an important clinical sign indicating the presence of this syndrome. We report the case of a young girl presenting with numerous warts accompanied by pulmonary involvement and weight delay, in whom the diagnosis of hyper IgE syndrome was established.
Collapse
Affiliation(s)
- Hassnae Tkak
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Madiha Benhachem
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Ayad Ghanam
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Aziza Elouali
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Abdeladim Babakhouya
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Maria Rkain
- Department of Pediatrics, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| |
Collapse
|
12
|
Basu S, Goel S, Rawat A, Vignesh P, Saikia B. An Indian Family with Autosomal Dominant Hyper-IgE Syndrome Due to IL6ST Defect. J Clin Immunol 2024; 44:90. [PMID: 38578568 DOI: 10.1007/s10875-024-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Suprit Basu
- Allergy Immunology Unit, Department of Pediatrics, World Health Organization Collaborating Centre for Education, Research, and Training in Pediatric Immunology (2022-2026), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shubham Goel
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, World Health Organization Collaborating Centre for Education, Research, and Training in Pediatric Immunology (2022-2026), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, World Health Organization Collaborating Centre for Education, Research, and Training in Pediatric Immunology (2022-2026), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
13
|
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunol Rev 2024; 322:311-328. [PMID: 38306168 DOI: 10.1111/imr.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.
Collapse
Affiliation(s)
- Natalia S Chaimowitz
- Department of Immunology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Madison R Smith
- UT Health Sciences Center McGovern Medical School, Houston, Texas, USA
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, Texas, USA
- William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| |
Collapse
|
14
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
15
|
Dave T, Tashrifwala FAA, Rangwala US, Hameed R. Hyper-IgE syndrome: a case report. Ann Med Surg (Lond) 2024; 86:1205-1209. [PMID: 38333292 PMCID: PMC10849427 DOI: 10.1097/ms9.0000000000001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction and importance Hyper-IgE syndrome (HIES), also known as Job syndrome, is a rare primary immunodeficiency disorder characterized by elevated serum IgE levels, recurrent infections, and various clinical features. Early diagnosis, prompt management of infections, and supportive care are essential in improving outcomes for individuals with HIES. Genetic testing, including STAT3 gene sequencing, plays a crucial role in confirming the diagnosis. Further research is needed to enhance our understanding of HIES and develop targeted therapies to improve the quality of life for affected individuals. Case presentation This case report presents the clinical features and management of a 37-year-old male with HIES, diagnosed at the age of 2 due to recurrent cold abscesses caused by Staphylococcal infections. Clinical discussion The patient exhibited typical symptoms of HIES, including recurrent eczema, frequent bacterial infections, mucocutaneous candidiasis, and various physical abnormalities. Diagnostic markers such as elevated IgE levels and eosinophilia supported the HIES diagnosis, which was further confirmed by the identification of a STAT3 gene mutation. Treatment primarily involved supportive measures and antibiotics for infections. The patient's blood test results and imaging findings revealed abnormalities such as low red blood cell count, elevated erythrocyte sedimentation rate, and pulmonary nodules. Conclusion This case report highlights the importance of early diagnosis, prompt management of infections, and the need for ongoing research to improve our understanding and treatment of HIES.
Collapse
Affiliation(s)
- Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | |
Collapse
|
16
|
Abstract
Cancer remains a leading cause of mortality on a global scale. Lung cancer, specifically non-small cell lung cancer (NSCLC), is a prominent contributor to this burden. The management of NSCLC has advanced substantially in recent years, with immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), leading to improved patient outcomes. Although generally well tolerated, the administration of ICIs can result in unique side effects known as immune-related adverse events (irAEs). The occurrence of irAEs involving the lungs, specifically checkpoint inhibitor pneumonitis (CIP), can have a profound effect on both future therapy options and overall survival. Despite CIP being one of the more common serious irAEs, limited treatment options are currently available, in part due to a lack of understanding of the underlying mechanisms involved in its development. In this Review, we aim to provide an overview of the epidemiology and clinical characteristics of CIP, followed by an examination of the emerging literature on the pathobiology of this condition.
Collapse
Affiliation(s)
| | - Karthik Suresh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Mohammadi T, Azizi G, Rafiemanesh H, Farahani P, Nirouei M, Tavakol M. A systematic review regarding the prevalence of malignancy in patients with the hyper-IgE syndrome. Clin Exp Med 2023; 23:4835-4859. [PMID: 37924455 DOI: 10.1007/s10238-023-01228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
The hyper-immunoglobulin E syndrome (HIES) is a primary immunodeficiency disease originally described as Job syndrome. The fundamental causative variant of the HIES is an autosomal dominant mutation in the signal transducer and activator of transcription 3 (STAT3) gene. It is characterized by recurrent staphylococcal cold skin abscess, sinopulmonary infection, eczema, head and face anomalies, frequent bone fractures, eosinophilia and extremely high serum IgE levels (IgE ≥ 2000 IU/mL). However, multiple other genetic defects are also known as HIES-like disorders. Apart from infectious manifestations, STAT3, DOCK8 and TYK2 gene mutations are associated with various malignancies. The most common malignancies reported in these patients are lymphomas, including Hodgkin's and non-Hodgkin's lymphomas (NHL) of B and T cells. This systematic review aimed to investigate the prevalence of malignancies in HIES and the factors associated with malignancy in these patients. In this survey, all articles published until April 1st, 2023, in Scopus, PubMed and Web of Science databases based on three groups of keywords related to HIES syndrome and malignancy were reviewed by three different researchers. Finally, 26 articles were evaluated from which 24 papers were meta-analyzed. In the current study, the demographic information of 1133 patients with HIES, which was mentioned in 24 articles enrolled in the project, was collected, and the information related to patients who had malignancy was analyzed and meta-analyzed. A total of 96 patients out of 1133 studied patients had at least one type of malignancy, the overall prevalence of malignancies reported in the articles was 6.5% (95% confidence interval 4.1-9%), and the total prevalence of malignancy in patients with NHL type and patients with squamous cell carcinoma (SCC) was 2.9% (95% confidence interval 1.7-4.4%) and 2.2% (95% confidence interval 0.3-4.1%), respectively. The results of this study indicated that in 6.5% of cases, HIES was complicated with malignancy, and considering the higher rate of these malignancies in women as well as in DOCK8 mutation sufferers, it is necessary for physicians to be aware of this association and includes malignancy screening in follow-up and periodic examinations of these patients. Indeed, more studies in this field will help to clarify the precise figures and predisposing factors of the relationship between HIES and malignancy.
Collapse
Affiliation(s)
- Tayebeh Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Pouria Farahani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Pediatrics, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
18
|
Yin J, Liu XH, Chen W. An apple in the heart: a rare case of cardiac hyper-immunoglobulin E syndrome. Eur Heart J 2023; 44:3933. [PMID: 37680109 DOI: 10.1093/eurheartj/ehad565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Affiliation(s)
- Jie Yin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Number 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Xiao-Hang Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Number 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Number 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
19
|
Morena D, Anta Y, Dbouk C. Hyper IgE Syndrome With Multiple Respiratory Infections. Review About a Clinical Case. OPEN RESPIRATORY ARCHIVES 2023; 5:100270. [PMID: 37842283 PMCID: PMC10568408 DOI: 10.1016/j.opresp.2023.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Diego Morena
- Servicio de Neumología, Hospital Universitario de Guadalajara, Spain
| | - Yunelsy Anta
- Servicio de Neumología, Hospital Universitario de Guadalajara, Spain
| | - Carmen Dbouk
- Servicio de Hematología, Hospital Universitario de Guadalajara, Spain
| |
Collapse
|
20
|
Arlabosse T, Materna M, Riccio O, Schnider C, Angelini F, Perreau M, Rochat I, Superti-Furga A, Campos-Xavier B, Héritier S, Pereira A, Deswarte C, Lévy R, Distefano M, Bustamante J, Roelens M, Borie R, Le Brun M, Crestani B, Casanova JL, Puel A, Hofer M, Fieschi C, Theodoropoulou K, Béziat V, Candotti F. New Dominant-Negative IL6ST Variants Expand the Immunological and Clinical Spectrum of GP130-Dependent Hyper-IgE Syndrome. J Clin Immunol 2023; 43:1566-1580. [PMID: 37273120 PMCID: PMC10499999 DOI: 10.1007/s10875-023-01517-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Patients with autosomal dominant (AD) hyper-IgE syndrome (HIES) suffer from a constellation of manifestations including recurrent bacterial and fungal infections, severe atopy, and skeletal abnormalities. This condition is typically caused by monoallelic dominant-negative (DN) STAT3 variants. In 2020, we described 12 patients from eight kindreds with DN IL6ST variants resulting in a new form of AD HIES. These variants encoded truncated GP130 receptors, with intact extracellular and transmembrane domains, but lacking the intracellular recycling motif and the four STAT3-binding residues, resulting in an inability to recycle and activate STAT3. We report here two new DN variants of IL6ST in three unrelated families with HIES-AD. The biochemical and clinical impacts of these variants are different from those of the previously reported variants. The p.(Ser731Valfs*8) variant, identified in seven patients from two families, lacks the recycling motif and all the STAT3-binding residues, but its levels on the cell surface are only slightly increased and it underlies mild biological phenotypes with variable clinical expressivity. The p.(Arg768*) variant, identified in a single patient, lacks the recycling motif and the three most distal STAT3-binding residues. This variant accumulates at the cell surface and underlies severe biological and clinical phenotypes. The p.(Ser731Valfs*8) variant shows that a DN GP130 expressed at near normal levels on the cell surface can underlie heterogeneous clinical presentations, ranging from mild to severe. The p.(Arg768*) variant demonstrates that a truncated GP130 protein retaining one STAT3-binding residue can underlie severe HIES.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Orbicia Riccio
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Schnider
- Pediatric Immuno-Rheumatology of Western Switzerland, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Federica Angelini
- Pediatric Immuno-Rheumatology of Western Switzerland, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Rochat
- Pediatric Pulmonology and Cystic Fibrosis Unit, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Héritier
- Division of Pediatric Hematology and Oncology, Armand Trousseau Hospital, Sorbonne University, Paris, France
| | - Anaïs Pereira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marco Distefano
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France
| | - Marie Roelens
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France
| | - Raphaël Borie
- Department of Medicine, Bichat Hospital, AP-HP, Paris, France
| | - Mathilde Le Brun
- Department of Pulmonology A, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, AP-HP, Paris, France
| | - Bruno Crestani
- Department of Pulmonology A, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Michaël Hofer
- Pediatric Immuno-Rheumatology of Western Switzerland, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Fieschi
- Department of Clinical Immunology, Paris Cité University, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Katerina Theodoropoulou
- Pediatric Immuno-Rheumatology of Western Switzerland, Pediatrics Service, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM), U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Milner JD. ERBIN and phosphoglucomutase 3 deficiency. Curr Opin Immunol 2023; 84:102353. [PMID: 37369151 PMCID: PMC11583051 DOI: 10.1016/j.coi.2023.102353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023]
Abstract
ERBIN and phosphoglucomutase 3 (PGM3) mutations both lead to rare primary atopic disorders characterized by allergic disease and connective tissue abnormalities, though each disorder has its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN mutations allow for enhanced TGFb signaling, and prevent STAT3 from negative-regulating TGFb signaling. This likely explains many elements of clinical overlap between disorders of STAT3 and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the atopic disease. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well understood, nor is the broad variability in disease penetrance and expressivity, though preliminary studies suggest an overlap with IL-6 receptor signaling defects.
Collapse
Affiliation(s)
- Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, USA.
| |
Collapse
|
22
|
Mahdaviani SA, Ghadimi S, Fallahi M, Hashemi-Moghaddam SA, Chavoshzadeh Z, Puel A, Rezaei N, Rekabi M, Daneshmandi Z, Sheikhy K, Kakhki AD, Saghebi SR, Pejhan S, Jamee M. Interventional pulmonary procedures and their outcomes in patients with STAT3 hyper IgE syndrome. BMC Surg 2023; 23:289. [PMID: 37741967 PMCID: PMC10517538 DOI: 10.1186/s12893-023-02193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND STAT3 hyperimmunoglobulin E syndrome (STAT3-HIES) also referred to as autosomal dominant HIES (AD-HIES) is an inborn error of immunity characterized by the classic triad of eczema, frequent opportunistic infections, and elevated serum IgE levels. As a consequence of lung sequels due to repeated infections and impaired tissue healing, patients may require interventional pulmonary procedures. METHOD Four patients with dominant-negative STAT3 mutations who had received interventional pulmonary procedures were enrolled. The demographic, clinical, and molecular characteristics were gathered through a medical record search. All reported STAT3-HIES patients in the literature requiring pulmonary procedures as part of their treatment were reviewed. RESULT Recurrent episodes of pneumonia and lung abscess were the most prevalent symptoms. The most common non-immunological features were scoliosis, failure to thrive, and dental problems such as primary teeth retention and disseminated decays. Bronchiectasis, lung abscess, pneumatocele, and cavitary lesion were the most prevalent finding on high-resolution computed tomography at the earliest recording. All patients underwent pulmonary surgery and two of them experienced complications. CONCLUSION Patients with STAT3-HIES have marked pulmonary infection susceptibility which may necessitate thoracic surgeries. Since surgical procedures involve a high risk of complication, surgical options are recommended to be utilized only in cases of drug resistance or emergencies.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Ghadimi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mazdak Fallahi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Atefeh Hashemi-Moghaddam
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rekabi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Daneshmandi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kambiz Sheikhy
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Daneshvar Kakhki
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Saghebi
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saviz Pejhan
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
23
|
Vaseghi-Shanjani M, Yousefi P, Sharma M, Samra S, Sifuentes E, Turvey SE, Biggs CM. Transcription factor defects in inborn errors of immunity with atopy. FRONTIERS IN ALLERGY 2023; 4:1237852. [PMID: 37727514 PMCID: PMC10505736 DOI: 10.3389/falgy.2023.1237852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency. These disorders offer valuable insights into the pathophysiology of allergic inflammation, expanding our understanding of both rare monogenic and common polygenic allergic diseases. Advances in genetic testing will likely uncover new IEIs associated with atopy, enriching our understanding of molecular pathways involved in allergic inflammation. Identification of monogenic disorders profoundly influences patient prognosis, treatment planning, and genetic counseling. Hence, the consideration of IEIs is essential for patients with severe, early-onset atopy. This review highlights the need for continued investigation into TF defects to enhance our understanding and management of allergic diseases.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Sifuentes
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E. Turvey
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M. Biggs
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Zhang Y, Lin T, Leung HM, Zhang C, Wilson-Mifsud B, Feldman MB, Puel A, Lanternier F, Couderc LJ, Danion F, Catherinot E, Salvator H, Tcherkian C, Givel C, Xu J, Tearney GJ, Vyas JM, Li H, Hurley BP, Mou H. STAT3 mutation-associated airway epithelial defects in Job syndrome. J Allergy Clin Immunol 2023; 152:538-550. [PMID: 36638921 PMCID: PMC10330947 DOI: 10.1016/j.jaci.2022.12.821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Job syndrome is a disease of autosomal dominant hyper-IgE syndrome (AD-HIES). Patients harboring STAT3 mutation are particularly prone to airway remodeling and airway infections. OBJECTIVES Airway epithelial cells play a central role as the first line of defense against pathogenic infection and express high levels of STAT3. This study thus interrogates how AD-HIES STAT3 mutations impact the physiological functions of airway epithelial cells. METHODS This study created human airway basal cells expressing 4 common AD-HIES STAT3 mutants (R382W, V463del, V637M, and Y657S). In addition, primary airway epithelial cells were isolated from a patient with Job syndrome who was harboring a STAT3-S560del mutation and from mice harboring a STAT3-V463del mutation. Cell proliferation, differentiation, barrier function, bacterial elimination, and innate immune responses to pathogenic infection were quantitatively analyzed. RESULTS STAT3 mutations reduce STAT3 protein phosphorylation, nuclear translocation, transcription activity, and protein stability in airway basal cells. As a consequence, STAT3-mutated airway basal cells give rise to airway epithelial cells with abnormal cellular composition and loss of coordinated mucociliary clearance. Notably, AD-HIES STAT3 airway epithelial cells are defective in bacterial killing and fail to initiate vigorous proinflammatory responses and neutrophil transepithelial migration in response to an experimental model of Pseudomonas aeruginosa infection. CONCLUSIONS AD-HIES STAT3 mutations confer numerous abnormalities to airway epithelial cells in cell differentiation and host innate immunity, emphasizing their involvement in the pathogenesis of lung complications in Job syndrome. Therefore, therapies must address the epithelial defects as well as the previously noted immune cell defects to alleviate chronic infections in patients with Job syndrome.
Collapse
Affiliation(s)
- Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Tian Lin
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, and the Departments of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn
| | - Brittany Wilson-Mifsud
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Michael B Feldman
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherché (INSERM) U1163, Paris, France; Departments of Medicine, Harvard Medical School, Boston, Mass
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherché (INSERM) U1163, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY
| | - Fanny Lanternier
- Institut Pasteur, Université Paris Cité, Centre National de Référence des Mycoses Invasives et Antifongiques, Centre National de la Recherche Scientifique, Unite Mixté de Recherche (UMR) 2000, Paris, France; Service de Maladies Infectieuses, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Louis-Jean Couderc
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Francois Danion
- Department of Infectious Diseases, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Université de Strasbourg, Strasbourg, France
| | | | - Hélène Salvator
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Colas Tcherkian
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
| | - Claire Givel
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Mich
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, and the Departments of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Jatin M Vyas
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Mass; Departments of Medicine, Harvard Medical School, Boston, Mass
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
25
|
Béziat V, Fieschi C, Momenilandi M, Migaud M, Belaid B, Djidjik R, Puel A. Inherited human ZNF341 deficiency. Curr Opin Immunol 2023; 82:102326. [PMID: 37080116 PMCID: PMC10620851 DOI: 10.1016/j.coi.2023.102326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Typical hyper-IgE syndromes (HIES) are caused by autosomal-dominant-negative (DN) variants of STAT3 (Signal Transducer And Activator Of Transcription 3) or IL6ST (Interleukin 6 Cytokine Family Signal Transducer), biallelic partial loss-of-function (LOF) variants of IL6ST, or biallelic complete LOF variants of ZNF341 (Zinc Finger Protein 341). Including the two new cases described in this review, only 20 patients with autosomal-recessive (AR) ZNF341 deficiency have ever been reported. Patients with AR ZNF341 deficiency have clinical and immunological phenotypes resembling those of patients with autosomal-dominant STAT3 deficiency, but with a usually milder clinical presentation and lower NK (Natural Killer) cell counts. ZNF341-deficient cells have 50% the normal level of STAT3 in the resting state. However, as there is no clear evidence that STAT3 haploinsufficiency causes HIES, this decrease alone is probably insufficient to explain the HIES phenotype observed in the ZNF341-deficient patients. The combination of decreased basal expression level and impaired autoinduction of STAT3 observed in ZNF341-deficient lymphocytes is considered a more likely pathophysiological mechanism. We review here what is currently known about the ZNF341 gene and ZNF341 deficiency, and briefly discuss possible roles for this protein in addition to its control of STAT3 activity.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France; Department of Clinical Immunology, University of Paris Cité, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France
| | - Brahim Belaid
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria; Faculty of Pharmacy, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria; Faculty of Pharmacy, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
26
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Mackie J, Ma CS, Tangye SG, Guerin A. The ups and downs of STAT3 function: too much, too little and human immune dysregulation. Clin Exp Immunol 2023; 212:107-116. [PMID: 36652220 PMCID: PMC10128169 DOI: 10.1093/cei/uxad007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
The STAT3 story has almost 30 years of evolving history. First identified in 1994 as a pro-inflammatory transcription factor, Signal Transducer and Activator of Transcription 3 (STAT3) has continued to be revealed as a quintessential pleiotropic signalling module spanning fields including infectious diseases, autoimmunity, vaccine responses, metabolism, and malignancy. In 2007, germline heterozygous dominant-negative loss-of-function variants in STAT3 were discovered as the most common cause for a triad of eczematoid dermatitis with recurrent skin and pulmonary infections, first described in 1966. This finding established that STAT3 plays a critical non-redundant role in immunity against some pathogens, as well as in the connective tissue, dental and musculoskeletal systems. Several years later, in 2014, heterozygous activating gain of function germline STAT3 variants were found to be causal for cases of early-onset multiorgan autoimmunity, thereby underpinning the notion that STAT3 function needed to be regulated to maintain immune homeostasis. As we and others continue to interrogate biochemical and cellular perturbations due to inborn errors in STAT3, we will review our current understanding of STAT3 function, mechanisms of disease pathogenesis, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
28
|
Carrabba M, Dellepiane RM, Cortesi M, Baselli LA, Soresina A, Cirillo E, Giardino G, Conti F, Dotta L, Finocchi A, Cancrini C, Milito C, Pacillo L, Cinicola BL, Cossu F, Consolini R, Montin D, Quinti I, Pession A, Fabio G, Pignata C, Pietrogrande MC, Badolato R. Long term longitudinal follow-up of an AD-HIES cohort: the impact of early diagnosis and enrollment to IPINet centers on the natural history of Job's syndrome. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:32. [PMID: 37081481 PMCID: PMC10115605 DOI: 10.1186/s13223-023-00776-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 04/22/2023]
Abstract
Job's syndrome, or autosomal dominant hyperimmunoglobulin E syndrome (AD-HIES, STAT3-Dominant Negative), is a rare inborn error of immunity (IEI) with multi-organ involvement and long-life post-infective damage. Longitudinal registries are of primary importance in improving our knowledge of the natural history and management of these rare disorders. This study aimed to describe the natural history of 30 Italian patients with AD-HIES recorded in the Italian network for primary immunodeficiency (IPINet) registry. This study shows the incidence of manifestations present at the time of diagnosis versus those that arose during follow up at a referral center for IEI. The mean time of diagnostic delay was 13.7 years, while the age of disease onset was < 12 months in 66.7% of patients. Respiratory complications, namely bronchiectasis and pneumatoceles, were present at diagnosis in 46.7% and 43.3% of patients, respectively. Antimicrobial prophylaxis resulted in a decrease in the incidence of pneumonia from 76.7% to 46.7%. At the time of diagnosis, skin involvement was present in 93.3% of the patients, including eczema (80.8%) and abscesses (66.7%). At the time of follow-up, under therapy, the prevalence of complications decreased: eczema and skin abscesses reduced to 63.3% and 56.7%, respectively. Antifungal prophylaxis decreased the incidence of mucocutaneous candidiasis from 70% to 56.7%. During the SARS-CoV-2 pandemic, seven patients developed COVID-19. Survival analyses showed that 27 out of 30 patients survived, while three patients died at ages of 28, 39, and 46 years as a consequence of lung bleeding, lymphoma, and sepsis, respectively. Analysis of a cumulative follow-up period of 278.7 patient-years showed that early diagnosis, adequate management at expertise centers for IEI, prophylactic antibiotics, and antifungal therapy improve outcomes and can positively influence the life expectancy of patients.
Collapse
Affiliation(s)
- Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Rosa Maria Dellepiane
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Lucia Augusta Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annarosa Soresina
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Emilia Cirillo
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Dotta
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Bianca Laura Cinicola
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Fausto Cossu
- Pediatric Clinic, Antonio Cao Hospital, Cagliari, Italy
| | - Rita Consolini
- Section of Pediatrics Immunology and Rheumatology, Department of Pediatrics, University of Pisa, Pisa, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, "Regina Margherita" Children Hospital, University of Turin, Turin, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Maria Cristina Pietrogrande
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Università Degli Studi of Milan, Milan, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
29
|
The signal transducer and activator of transcription 3 at the center of the causative gene network of the hyper-IgE syndrome. Curr Opin Immunol 2023; 80:102264. [PMID: 36435159 DOI: 10.1016/j.coi.2022.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The hyper-IgE syndrome (HIES) is characterized by atopic dermatitis with extremely high serum IgE levels and diminished inflammatory responses, in combination with bacterial and fungal infections followed by pneumatocele formation. These immunological manifestations are frequently associated with nonimmunological abnormalities, including characteristic face, pathological fracture, and retention of deciduous teeth. We previously identified that major causal variants of the HIES are dominant-negative variants in the signal transducer and activator of transcription 3 (STAT3) gene. Several new causative variants of HIES have been identified, interestingly, most of which are functionally associated with STAT3. These include a zinc finger transcription factor ZNF341 as well as IL-6 family cytokine receptors, IL6ST, and IL-6R. In this review, I will outline the pathological mechanisms of new causative variants, in which STAT3 is at the center of the causative gene network.
Collapse
|
30
|
Jacob M, Masood A, Abdel Rahman AM. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. Int J Mol Sci 2023; 24:ijms24032406. [PMID: 36768728 PMCID: PMC9916661 DOI: 10.3390/ijms24032406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023] Open
Abstract
Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925(98), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
31
|
Yaakoubi R, Mekki N, Ben-Mustapha I, Ben-Khemis L, Bouaziz A, Ben Fraj I, Ammar J, Hamzaoui A, Turki H, Boussofara L, Denguezli M, Haddad S, Ouederni M, Bejaoui M, Chan KW, Lau YL, Mellouli F, Barbouche MR, Ben-Ali M. Diagnostic challenge in a series of eleven patients with hyper IgE syndromes. Front Immunol 2023; 13:1057679. [PMID: 36703986 PMCID: PMC9871884 DOI: 10.3389/fimmu.2022.1057679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Hyper IgE syndromes (HIES) is a heterogeneous group of Inborn Errors of Immunity characterized by eczema, recurrent skin and lung infections associated with eosinophilia and elevated IgE levels. Autosomal dominant HIES caused by loss of function mutations in Signal transducer and activator of transcription 3 (STAT3) gene is the prototype of these disorders. Over the past two decades, advent in genetic testing allowed the identification of ten other etiologies of HIES. Although Dedicator of Cytokinesis 8 (DOCK8) deficiency is no more classified among HIES etiologies but as a combined immunodeficiency, this disease, characterized by severe viral infections, food allergies, autoimmunity, and increased risk of malignancies, shares some clinical features with STAT3 deficiency. The present study highlights the diagnostic challenge in eleven patients with the clinical phenotype of HIES in a resource-limited region. Candidate gene strategy supported by clinical features, laboratory findings and functional investigations allowed the identification of two heterozygous STAT3 mutations in five patients, and a bi-allelic DOCK8 mutation in one patient. Whole Exome Sequencing allowed to unmask atypical presentations of DOCK8 deficiency in two patients presenting with clinical features reminiscent of STAT3 deficiency. Our study underlies the importance of the differential diagnosis between STAT3 and DOCK8 deficiencies in order to improve diagnostic criteria and to propose appropriate therapeutic approaches. In addition, our findings emphasize the role of NGS in detecting mutations that induce overlapping phenotypes.
Collapse
Affiliation(s)
- Roukaya Yaakoubi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Leila Ben-Khemis
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Asma Bouaziz
- Department of Pediatrics, Ben Arous Hospital of Tunis, Tunis, Tunisia
| | - Ilhem Ben Fraj
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Jamel Ammar
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Agnès Hamzaoui
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Hamida Turki
- Department of Dermatology, HédiChaker Hospital of SFAX, Sfax, Tunisia
| | - Lobna Boussofara
- Department of Dermatology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Samir Haddad
- Department of Pediatrics, Children Hospital of Tunis, Tunis, Tunisia
| | - Monia Ouederni
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Koon Wing Chan
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fethi Mellouli
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,*Correspondence: Meriem Ben-Ali,
| |
Collapse
|
32
|
Mansouri M, El Haddoumi G, Bendani H, Boumajdi N, Hakmi M, Abbou H, Bouricha EM, Elgharbaoui B, Kartti S, El Jaoudi R, Belyamani L, Kandoussi I, Ibrahimi A, El Hafidi N. In Silico Analyses of All STAT3 Missense Variants Leading to Explore Divergent AD-HIES Clinical Phenotypes. Evol Bioinform Online 2023; 19:11769343231169374. [PMID: 37123531 PMCID: PMC10134169 DOI: 10.1177/11769343231169374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Autosomal dominant hyper-IgE syndrome (AD-HIES) is linked to dominant negative mutations of the STAT3 protein whose molecular basis for dysfunction is unclear and presenting with a variety of clinical manifestations with only supportive treatment. To establish the relationship between the impact of STAT3 mutations in different domains and the severity of the clinical manifestations, 105 STAT3 mutations were analyzed for their impact on protein stability, flexibility, function, and binding affinity using in Silico approaches. Our results showed that 73% of the studied mutations have an impact on the physicochemical properties of the protein, altering the stability, flexibility and function to varying degrees. In particular, mutations affecting the DNA binding domain (DBD) and the Src Homology 2 (SH2) have a significant impact on the protein structure and disrupt its interaction either with DNA or other STAT3 to form a heterodomain complex, leading to severe clinical phenotypes. Collectively, this study suggests that there is a close relationship between the domain involving the mutation, the degree of variation in the properties of the protein and the degree of loss of function ranging from partial loss to complete loss, explaining the variability of clinical manifestations between mild and severe.
Collapse
Affiliation(s)
- Mariam Mansouri
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Ghyzlane El Haddoumi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Houda Bendani
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Nasma Boumajdi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Mohammed Hakmi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Hanane Abbou
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health
Sciences (UM6SS), Casablanca, Morocco
| | - El Mehdi Bouricha
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Boutaina Elgharbaoui
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Souad Kartti
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Rachid El Jaoudi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
- Pharmacology and Toxicology Department,
Faculty of Medicine and Pharmacy, University Mohamed V, Rabat, Morocco
| | - Lahcen Belyamani
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health
Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital
Mohammed V, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Ilham Kandoussi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health
Sciences (UM6SS), Casablanca, Morocco
| | - Naima El Hafidi
- Biotechnology lab (MedBiotech),
Bioinova Research Center, Medical and Pharmacy School, Mohammed V University in
Rabat, Morocco
- Centre Mohammed VI of Research and
Innovation (CM6), Rabat, Morocco
- Division of Pediatric immunoallergology
and Infectious Diseases, Children University Hospital, Ibn Sina University Hospital,
Rabat, Morocco
- Pr. Naima El Hafidi, Biotechnology lab
(MedBiotech), Bioinova Research Center, Medical & Pharmacy School, Mohammed
V university in Rabat, Imp. Souissi, Rabat 10100, Morocco.
| |
Collapse
|
33
|
Conti F, Marzollo A, Moratti M, Lodi L, Ricci S. Inborn errors of immunity underlying a susceptibility to pyogenic infections: from innate immune system deficiency to complex phenotypes. Clin Microbiol Infect 2022; 28:1422-1428. [PMID: 35640842 DOI: 10.1016/j.cmi.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pyogenic bacteria are associated with a wide range of clinical manifestations, ranging from common and relatively mild respiratory and cutaneous infections to life-threatening localized or systemic infections, such as sepsis and profound abscesses. Despite vaccination and the widespread use of effective antibiotic treatment, severe infection is still observed in a subset of affected patients. OBJECTIVES We aim to summarize the available data regarding inborn errors of immunity that result in a high risk of severe pyogenic infections. SOURCES Case series, as well as review and original articles on human genetic susceptibility to pyogenic infections were examined. CONTENT We review host-associated factors resulting in inborn errors of immunity and leading to a susceptibility to pyogenic infections, including deficiency in major components of the immune system (e.g., neutrophils, complement, immunoglobulin, and spleen function) and novel monogenic disorders resulting in specific susceptibility to pyogenic infection. Specifically, innate immune system deficiency involving toll-like receptors and associated signaling typically predispose to a narrow spectrum of bacterial diseases in otherwise healthy people, making a diagnosis more difficult to suspect and confirm. More complex syndromes, such as hyper IgE syndrome, are associated with a high risk of pyogenic infections due to an impairment of the interleukin-6 or -17 signaling, demonstrating the pivotal role of these pathways in controlling bacterial infections. IMPLICATIONS In clinical practice, awareness of such conditions is essential, especially in the pediatric setting, to avoid a potentially fatal diagnostic delay, set the most proper and prompt treatment, and ensure prevention of severe complications.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy; Fondazione Citta' della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| | - Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, Bologna, Italy
| | - Lorenzo Lodi
- Section of Pediatrics, Department of Health Sciences, University of Florence, Florence, Italy; Immunology and Molecular Microbiology Unit, Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Section of Pediatrics, Department of Health Sciences, University of Florence, Florence, Italy; Immunology and Molecular Microbiology Unit, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
34
|
Garib V, Ben‐Ali M, Kundi M, Curin M, Yaakoubi R, Ben‐Mustapha I, Mekki N, Froeschl R, Perkmann T, Valenta R, Barbouche M. Profound differences in IgE and IgG recognition of micro-arrayed allergens in hyper-IgE syndromes. Allergy 2022; 77:1761-1771. [PMID: 34653276 PMCID: PMC9298271 DOI: 10.1111/all.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/02/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The specificities of IgE and IgG for allergen molecules in patients with inborn errors of immunity (IEI) have not been investigated in detail. OBJECTIVE To study IgE and IgG antibody specificities in patients with defined hyper-IgE syndromes (HIES) using a comprehensive panel of allergen molecules. METHODS We used chips containing micro-arrayed allergen molecules to analyze allergen-specific IgE and IgG levels in sera from two groups of HIES patients: Autosomal recessive mutations in phosphoglucomutase-3 (PGM3); Autosomal dominant negative mutations of STAT3 (STAT3); and age-matched subjects with allergic sensitizations. Assays with rat basophil leukemia cells transfected with human FcεRI were performed to study the biological relevance of IgE sensitizations. RESULTS Median total IgE levels were significantly lower in the sensitized control group (212.9 kU/L) as compared to PGM3 (5042 kU/L) and STAT3 patients (2561 kU/L). However, PGM3 patients had significantly higher allergen-specific IgE levels and were sensitized to a larger number of allergen molecules as compared to STAT3 patients. Biological relevance of IgE sensitization was confirmed for PGM3 patients by basophil activation testing. PGM3 patients showed significantly lower cumulative allergen-specific IgG responses in particular to milk and egg allergens as compared to STAT3 patients and sensitized controls whereas total IgG levels were comparable to STAT3 patients and significantly higher than in controls. CONCLUSION The analysis with multiple micro-arrayed allergen molecules reveals profound differences of allergen-specific IgE and IgG recognition in PGM3 and STAT3 patients which may be useful for classification of IEI and clinical characterization of patients.
Collapse
Affiliation(s)
- Victoria Garib
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Wien Austria
- Ministry of Innovation Development Tashkent Uzbekistan
| | - Meriem Ben‐Ali
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Department of Immunology Institut Pasteur de Tunis and University Tunis El Manar Tunis Tunisia
| | - Michael Kundi
- Department for Environmental Health Center for Public Health Medical University Vienna Wien Austria
| | - Mirela Curin
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Wien Austria
| | - Roukaya Yaakoubi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Department of Immunology Institut Pasteur de Tunis and University Tunis El Manar Tunis Tunisia
| | - Imen Ben‐Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Department of Immunology Institut Pasteur de Tunis and University Tunis El Manar Tunis Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Department of Immunology Institut Pasteur de Tunis and University Tunis El Manar Tunis Tunisia
| | - Renate Froeschl
- Department of Laboratory Medicine Medical University of Vienna Vienna Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Wien Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory of Immunopathology Department of Clinical Immunology and Allergology Sechenov First Moscow State Medical University Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Mohamed‐Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Department of Immunology Institut Pasteur de Tunis and University Tunis El Manar Tunis Tunisia
- Medical School University of Tunis El Manar Tunis Tunisia
| |
Collapse
|
35
|
Nelson RW, Geha RS, McDonald DR. Inborn Errors of the Immune System Associated With Atopy. Front Immunol 2022; 13:860821. [PMID: 35572516 PMCID: PMC9094424 DOI: 10.3389/fimmu.2022.860821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic disorders, including atopic dermatitis, food and environmental allergies, and asthma, are increasingly prevalent diseases. Atopic disorders are often associated with eosinophilia, driven by T helper type 2 (Th2) immune responses, and triggered by disrupted barrier function leading to abnormal immune priming in a susceptible host. Immune deficiencies, in contrast, occur with a significantly lower incidence, but are associated with greater morbidity and mortality. A subset of atopic disorders with eosinophilia and elevated IgE are associated with monogenic inborn errors of immunity (IEI). In this review, we discuss current knowledge of IEI that are associated with atopy and the lessons these immunologic disorders provide regarding the fundamental mechanisms that regulate type 2 immunity in humans. We also discuss further mechanistic insights provided by animal models.
Collapse
Affiliation(s)
- Ryan W Nelson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Lachover-Roth I, Lagovsky I, Shtorch-Asor A, Confino-Cohen R, Reinstein E, Garty BZ. Hyper IgE Syndrome in an Isolated Population in Israel. Front Immunol 2022; 13:829239. [PMID: 35185921 PMCID: PMC8854367 DOI: 10.3389/fimmu.2022.829239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hyper IgE syndromes (HIES) are a group of rare primary immunodeficiency characterized by high levels of serum IgE, cold abscesses, pulmonary infections, and eczema. ZNF341 deficiency was described in 2018 in 11 patients clinically diagnosed previously with HIES. Eight of those patients, all offspring of consanguineous couples, are from three families who live in a Muslim village in Israel which has approximately 15,000 residents. Objective Our study aimed to evaluate the prevalence of ZNF341 mutation in the population of the village. Methods Three hundred DNA samples of females were included in the study. The samples belong to females that were referred to the Meir Medical Center for prenatal genetic testing before pregnancy, during 2017-2019: 200 samples were from the village, and 100 samples of Muslim females were from other villages. All samples were tested by Sanger sequencing for the ZNF341 mutation (c.904C>T, NM_001282933.1). Results Heterozygous nonsense mutation in ZNF341 was found in ten samples (5%) of the study group compared to zero in the control group (p<0.01). Conclusion The carrier frequency of the mutation in ZNF341 in the studied village population is 1:20. This high frequency is probably due to founder mutation and consanguineous marriages.
Collapse
Affiliation(s)
- Idit Lachover-Roth
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- *Correspondence: Idit Lachover-Roth,
| | - Irina Lagovsky
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel
| | | | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Eyal Reinstein
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel
| | - Ben-Zion Garty
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel
- Allergy and Clinical Immunology Unit, Schneider Children’s Medical Center, Petach-Tikva, Israel
| |
Collapse
|
37
|
Wang Z, Zhang Y, Li G, Huang L, Chen J. Dedicator of cytokinesis 8 deficiency and hyperimmunoglobulin E syndrome: A case report. Medicine (Baltimore) 2022; 101:e28807. [PMID: 35119052 PMCID: PMC8812656 DOI: 10.1097/md.0000000000028807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Hyperimmunoglobulin E syndrome (HIES) is a rare and complex immunoregulatory multisystem disorder characterized by recurrent eczema, skin and sinopulmonary infections, elevated serum immunoglobulin E levels, and eosinophilia. Onset is most likely in childhood, although infrequent adult cases have been reported. Early diagnosis is important. The use of the National Institutes of Health scoring system and the HIES signal transducer and activation of transcription 3 score can standardize the diagnosis of HIES. PATIENT CONCERNS A 19-year-old woman presented with complaints of dry cough, pyrexia, dyspnea, and recurrent pneumonia. She had a history of milk allergy, recurrent eczema, suppurative otitis media, chalazia, and aphthous ulcers. Her parents had a consanguineous marriage. DIAGNOSIS HIES; severe pneumonia. INTERVENTIONS Voriconazole (200 mg iv 2 times/d) and flucytosine (1 g orally 4 times/d) for 3 weeks were administered, followed by oral administration of fluconazole for 3 weeks. OUTCOMES The patient experienced near-complete remission of her respiratory symptoms. The patient was followed-up for one and a half years. During the follow-up, the patient presented again with cough and dyspnea and was again admitted to hospital. After being hospitalized for 3 weeks of antibiotic treatment, the patient experienced near-complete relief of her respiratory symptoms. LESSONS Regardless of patient age, it is important to consider the possibility of HIES when a patient has recurrent eczema, skin and sinopulmonary infections, elevated serum immunoglobulin E levels, and eosinophilia. Early diagnosis and intervention are essential to improve prognosis.
Collapse
Affiliation(s)
- Zhaojun Wang
- Department of Pulmonary and Critical care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanan Zhang
- Department of Pulmonary and Critical care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Gang Li
- Central of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lingyan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Chen
- Department of Pulmonary and Critical care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
38
|
Kasuga K, Nakamoto K, Doi K, Kurokawa N, Saraya T, Ishii H. Chronic pulmonary aspergillosis in a patient with hyper-IgE syndrome. Respirol Case Rep 2022; 10:e0887. [PMID: 34888059 PMCID: PMC8636203 DOI: 10.1002/rcr2.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperimmunoglobulin E (IgE) syndrome (HIES) is a rare disease with an unclear prognosis. We report a case of HIES comorbid with chronic pulmonary aspergillosis (CPA). A 19-year-old male was referred to our department with a medical history of bacterial pneumonia and skin infection. Laboratory data showed an elevated eosinophil count and serum IgE level. Chest computed tomography (CT) showed a pneumatocele and bronchiectasis. On the basis of the clinical and laboratory findings and genetic mutation analysis, we diagnosed him as having HIES. Fourteen months later, he complained of blood-tinged sputum and haemoptysis. Chest CT showed pneumatocele wall thickening, fungus ball and consolidation. Serum Aspergillus precipitating antibody and serum galactomannan Aspergillus antigen were positive, and Aspergillus fumigatus was detected in the sputum. We diagnosed CPA and treated him using antifungal agents and bronchial artery embolization. CPA is a complication that requires attention in patients with HIES.
Collapse
Affiliation(s)
- Keisuke Kasuga
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Keitaro Nakamoto
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Kazuyuki Doi
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Nozomi Kurokawa
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Takeshi Saraya
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Haruyuki Ishii
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| |
Collapse
|
39
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
40
|
Abstract
Clinically and pathologically, the patients with hyper-IgE syndrome present similar skin manifestations to common atopic dermatitis. The original hyper-IgE syndrome is characterized by diminished inflammatory response, in combination with Staphylococcus aureus skin abscess and pneumonia followed by pneumatocele formation. These immunological manifestations are frequently associated with skeletal and connective tissue abnormalities. We previously identified that major causal variants of the hyper-IgE syndrome are dominant negative variants in the STAT3. In addition to the identification of new causative variants for the disorders similar to the original hyper-IgE syndrome, causative variants for new types of hyper-IgE syndrome centered only on atopy, high serum IgE levels, and susceptibility to infection, but not associated with diminished inflammatory response, pneumatocele formation, and connective tissue manifestations, have been identified. Recent discovery identified a novel zinc finger protein that regulates STAT3 transcription. Investigation of IL6ST variants disclosed that IL6ST/IL6R cytokine receptor plays a crucial role for the signal transduction upstream of STAT3 in the pathogenesis of the original hyper-IgE syndrome. Even if the same IL6ST variants are used for the signal transduction of IL-6 family cytokines, the signaling defect is more severe in IL-6/IL-11 and milder in LIF. The fact that the non-immune manifestations of the gain-of-function mutations of TGFBR1 and TGFBR2 are similar to the those of dominant negative mutations of STAT3 provide a clue to elucidate molecular mechanisms of non-immune manifestations of hyper-IgE syndrome. Research on this hereditary atopic syndrome is being actively conducted to elucidate the molecular mechanisms and to develop new therapeutic approaches.
Collapse
|
41
|
Chen YH, Spencer S, Laurence A, Thaventhiran JE, Uhlig HH. Inborn errors of IL-6 family cytokine responses. Curr Opin Immunol 2021; 72:135-145. [PMID: 34044328 PMCID: PMC8591178 DOI: 10.1016/j.coi.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023]
Abstract
The IL-6 family of cytokines mediates functions in host protective immunity, development of multiple organs, tissue regeneration and metabolism. Inborn errors in cytokines or cytokine receptor units highlight specific roles for IL-6, IL-11, LIF, OSM, and CLC signaling whereas incomplete loss-of-function variants in the common receptor chain GP130 encoded by IL6ST or the transcription factor STAT3, as well as genes that affect either GP130 glycosylation (PGM3) or STAT3 transcriptional control (ZNF341) lead to complex phenotypes including features of hyper-IgE syndrome. Gain-of-function variants in the GP130-STAT3 signaling pathway cause immune dysregulation disorders. Insights into IL-6 family cytokine signaling inform on therapeutic application in immune-mediated disorders and potential side effects such as infection susceptibility.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah Spencer
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Biomedical Research Center, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Staudacher O, Krüger R, Kölsch U, Thee S, Gratopp A, Wahn V, Lau S, von Bernuth H. Relieving job: Dupilumab in autosomal dominant STAT3 hyper-IgE syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:349-351.e1. [PMID: 34536614 DOI: 10.1016/j.jaip.2021.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Labor Berlin-Charité Vivantes GmbH, Department of Immunology, Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Kölsch
- Labor Berlin-Charité Vivantes GmbH, Department of Immunology, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Labor Berlin-Charité Vivantes GmbH, Department of Immunology, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
43
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
44
|
Frede N, Rojas-Restrepo J, Caballero Garcia de Oteyza A, Buchta M, Hübscher K, Gámez-Díaz L, Proietti M, Saghafi S, Chavoshzadeh Z, Soler-Palacin P, Galal N, Adeli M, Aldave-Becerra JC, Al-Ddafari MS, Ardenyz Ö, Atkinson TP, Kut FB, Çelmeli F, Rees H, Kilic SS, Kirovski I, Klein C, Kobbe R, Korganow AS, Lilic D, Lunt P, Makwana N, Metin A, Özgür TT, Karakas AA, Seneviratne S, Sherkat R, Sousa AB, Unal E, Patiroglu T, Wahn V, von Bernuth H, Whiteford M, Doffinger R, Jouhadi Z, Grimbacher B. Genetic Analysis of a Cohort of 275 Patients with Hyper-IgE Syndromes and/or Chronic Mucocutaneous Candidiasis. J Clin Immunol 2021; 41:1804-1838. [PMID: 34390440 PMCID: PMC8604890 DOI: 10.1007/s10875-021-01086-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/05/2021] [Indexed: 01/24/2023]
Abstract
Hyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.
Collapse
Affiliation(s)
- Natalie Frede
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero Garcia de Oteyza
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mary Buchta
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Hübscher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shiva Saghafi
- Immunology Asthma and Allergy Research Institute Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall D'Hebron, Barcelona, Catalonia, Spain
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, University of Abou-Bekr Belkaïd, Tlemcen, Algeria
| | - Ömür Ardenyz
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Prescott Atkinson
- Division of Pediatric Allergy & Immunology, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Fulya Bektas Kut
- Departmant of Pediatrics, Division of Pediatric Immunology and Allergy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Çelmeli
- Antalya Education and Research Hospital Department of Pediatric Immunology and Allergy, Antalya, Turkey
| | - Helen Rees
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sara S Kilic
- Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ilija Kirovski
- Medical Faculty Skopje, 50 Divizija BB, 1000, Skopje, Macedonia
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center , Hamburg-Eppendorf, Germany
| | | | - Desa Lilic
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Lunt
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | - Niten Makwana
- Department of Pediatrics, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Tuba Turul Özgür
- Department of Pediatrics, Division of Immunology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Ayse Akman Karakas
- Department of Dermatology and Venerology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Suranjith Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ana Berta Sousa
- Serviço de Genética, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, and Laboratório de Imunologia Básica, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey.,Deparment of Molecular Biology and Genetics, Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Margo Whiteford
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Hospital CHU Ibn Rochd, University Hassan 2, Casablanca, Morocco
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany. .,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany. .,CCI-Center for Chronic Immunodeficiency, Universitätsklinikum Freiburg, Breisacher Straße 115, 79106, Freiburg, Germany.
| |
Collapse
|
45
|
Yang J, Liu Y. Autosomal recessive hyper-IgE syndrome caused by DOCK8 gene mutation with new clinical features: a case report. BMC Neurol 2021; 21:288. [PMID: 34301197 PMCID: PMC8299654 DOI: 10.1186/s12883-021-02324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Autosomal recessive hyper-IgE syndrome (AR-HIES) caused by DOCK8 gene is a rare immunodeficiency disease, the main clinical manifestations include recurrent Eczema-like rash, skin and lung abscesses, accompanied with increased serum IgE level. Here, we report a 7-year-old Chinese girl with a new clinic features caused by DOCK8 gene mutations. CASE PRESENTATION A 7-year-old girl was admitted to our hospital because of abnormal walking posture. The clinical manifestations of the patient included abnormal gait, eczema-like rash, fingertip abscess, high muscle tone, and facial paralysis. Among them, high muscle tone and facial paralysis are new clinic features which have not been reported previously. The blood eosinophils and serum IgE levels were significantly increased, and the lymphocyte subsets indicated a decrease of T lymphocytes. The magnetic resonance imaging (MRI) of her brain suggested myelin dysplasia and brain atrophy. Two novel compound heterozygous mutations (c.1868 + 2 T > C and c.5962-2A > G) of DOCK8 gene were identified by whole exome sequencing. By literature review, there are 11 mutations of DOCK8 gene in Chinese AR-HIES patients. CONCLUSIONS Two novel splice-site mutations(c.1868 + 2 T > C and c.5962-2A > G) of DOCK8 gene and new clinic features were found in a Chinese girl with AR-HIES, which extends our understanding of DOCK8 gene mutation spectrum and phenotype of AR-HIES in children.
Collapse
Affiliation(s)
- Jing Yang
- Tong Ji Hospital, Tong Ji Medical College, Huazhong University of Science and Technology, jiefang Ave. No. 1095, Wuhan, 430030 China
| | - Yan Liu
- Tong Ji Hospital, Tong Ji Medical College, Huazhong University of Science and Technology, jiefang Ave. No. 1095, Wuhan, 430030 China
| |
Collapse
|
46
|
Tsilifis C, Freeman AF, Gennery AR. STAT3 Hyper-IgE Syndrome-an Update and Unanswered Questions. J Clin Immunol 2021; 41:864-880. [PMID: 33932191 PMCID: PMC8249299 DOI: 10.1007/s10875-021-01051-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
The hyper-IgE syndromes (HIES) are a heterogeneous group of inborn errors of immunity sharing manifestations including increased infection susceptibility, eczema, and raised serum IgE. Since the prototypical HIES description 55 years ago, areas of significant progress have included description of key disease-causing genes and differentiation into clinically distinct entities. The first two patients reported had what is now understood to be HIES from dominant-negative mutations in signal transduction and activator of transcription 3 (STAT3-HIES), conferring a broad immune defect across both innate and acquired arms, as well as defects in skeletal, connective tissue, and vascular function, causing a clinical phenotype including eczema, staphylococcal and fungal skin and pulmonary infection, scoliosis and minimal trauma fractures, and vascular tortuosity and aneurysm. Due to the constitutionally expressed nature of STAT3, initial reports at treatment with allogeneic stem cell transplantation were not positive and treatment has hinged on aggressive antimicrobial prophylaxis and treatment to prevent the development of end-organ disease such as pneumatocele. Research into the pathophysiology of STAT3-HIES has driven understanding of the interface of several signaling pathways, including the JAK-STAT pathways, interleukins 6 and 17, and the role of Th17 lymphocytes, and has been expanded by identification of phenocopies such as mutations in IL6ST and ZNF341. In this review we summarize the published literature on STAT3-HIES, present the diverse clinical manifestations of this syndrome with current management strategies, and update on the uncertain role of stem cell transplantation for this disease. We outline key unanswered questions for further study.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
47
|
Asano T, Khourieh J, Zhang P, Rapaport F, Spaan AN, Li J, Lei WT, Pelham SJ, Hum D, Chrabieh M, Han JE, Guérin A, Mackie J, Gupta S, Saikia B, Baghdadi JEI, Fadil I, Bousfiha A, Habib T, Marr N, Ganeshanandan L, Peake J, Droney L, Williams A, Celmeli F, Hatipoglu N, Ozcelik T, Picard C, Abel L, Tangye SG, Boisson-Dupuis S, Zhang Q, Puel A, Béziat V, Casanova JL, Boisson B. Human STAT3 variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. J Exp Med 2021; 218:212397. [PMID: 34137790 PMCID: PMC8217968 DOI: 10.1084/jem.20202592] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joëlle Khourieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Tanwir Habib
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar.,College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luckshman Ganeshanandan
- Department of Clinical Immunology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Australia
| | - Luke Droney
- Department of Clinical Immunology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrew Williams
- Immunology Laboratory, Children's Hospital Westmead, Westmead, Australia
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science Antalya Education and Research Hospital, Antalya, Turkey
| | - Nevin Hatipoglu
- Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Capucine Picard
- Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et de la Recherche Médicale UMR 1163, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| |
Collapse
|
48
|
Doulhousne H, Elqatni M, Janah H, Fatihi J, Sekkach Y, Ennibi K, Amezyane T, Abouzahir A, Fikri AE. [Recurrent skin and lung lesions]. Rev Med Interne 2021; 43:262-264. [PMID: 34099312 DOI: 10.1016/j.revmed.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/09/2021] [Indexed: 11/17/2022]
Affiliation(s)
- H Doulhousne
- Service de radiologie, département de radiologie, faculté de médecine et de pharmacie, université Cadi-Ayyad, 5(e) hôpital militaire de Guelmim, Marrakech, Maroc
| | - M Elqatni
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc.
| | - H Janah
- Service de pneumologie, faculté de médecine et de pharmacie, université Cadi-Ayyad, hôpital militaire Avicenne, Marrakech, Maroc
| | - J Fatihi
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc
| | - Y Sekkach
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc
| | - K Ennibi
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc
| | - T Amezyane
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc
| | - A Abouzahir
- Service de médecine interne, faculté de médecine et de pharmacie de Rabat, université Mohammed V, hôpital militaire d'instruction Mohammed-V, Rabat, Maroc
| | - A El Fikri
- Service de radiologie, département de radiologie, faculté de médecine et de pharmacie, université Cadi-Ayyad, 5(e) hôpital militaire de Guelmim, Marrakech, Maroc
| |
Collapse
|
49
|
Baghad B, Bousfiha AA, Chiheb S, Ailal F. [Genetic predisposition to mucocutaneous fungal infections]. Rev Med Interne 2021; 42:566-570. [PMID: 34052048 DOI: 10.1016/j.revmed.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/15/2022]
Abstract
Mucocutaneous fungal infections are common and usually occur in the presence of certain risk factors. However, these infections can occur in patients with no known risk factors. This indicates the presence of an underlying genetic susceptibility to fungi reflecting an innate or adaptive immune deficiency. In this review, we highlight genetic factors that predispose to mucocutaneous fungal infections specially candidiasis and dermatophytosis.
Collapse
Affiliation(s)
- B Baghad
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc; Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc.
| | - A A Bousfiha
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| | - S Chiheb
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc
| | - F Ailal
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| |
Collapse
|
50
|
Fukui R, Hidaka T, Terui H, Rikiishi T, Sasahara Y, Kagimoto Y, Kusakari Y, Yamasaki K, Aiba S. Chronological changes of skin eruptions toward cold abscess formation in hyper-immunoglobulin E syndrome. J Dermatol 2021; 48:e316-e317. [PMID: 33960444 DOI: 10.1111/1346-8138.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Reimu Fukui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Rikiishi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|