1
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
2
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
3
|
Thomas CM, Salamat MKF, de Wolf C, McCutcheon S, Blanco ARA, Manson JC, Hunter N, Houston EF. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One 2023; 18:e0293845. [PMID: 37917783 PMCID: PMC10621866 DOI: 10.1371/journal.pone.0293845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Efforts to prevent human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) by contaminated blood would be aided by the development of a sensitive diagnostic test that could be routinely used to screen blood donations. As blood samples from vCJD patients are extremely rare, here we describe the optimisation of real-time quaking-induced conversion (RT-QuIC) for detection of PrPSc (misfolded prion protein, a marker of prion infection) in blood samples from an established large animal model of vCJD, sheep experimentally infected with bovine spongiform encephalopathy (BSE). Comparative endpoint titration experiments with RT-QuIC, miniaturized bead protein misfolding cyclic amplification (mb-PMCA) and intracerebral inoculation of a transgenic mouse line expressing sheep PrP (tgOvARQ), demonstrated highly sensitive detection of PrPSc by RT-QuIC in a reference sheep brain homogenate. Upon addition of a capture step with iron oxide beads, the RT-QuIC assay was able to detect PrPSc in whole blood samples from BSE-infected sheep up to two years before disease onset. Both RT-QuIC and mb-PMCA also demonstrated sensitive detection of PrPSc in a reference vCJD-infected human brain homogenate, suggesting that either assay may be suitable for application to human blood samples. Our results support the further development and evaluation of RT-QuIC as a diagnostic or screening test for vCJD.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Nora Hunter
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
4
|
Suleiman S, McGuire LI, Chong A, Ritchie DL, Boyle A, McManus L, Brydon F, Smith C, Knight R, Green A, Diack AB, Barria MA. Conservation of vCJD Strain Properties After Extraction and In Vitro Propagation of PrP Sc from Archived Formalin-Fixed Brain and Appendix Tissues Using Highly Sensitive Protein Misfolding Cyclic Amplification. Mol Neurobiol 2023; 60:6275-6293. [PMID: 37442858 PMCID: PMC10533579 DOI: 10.1007/s12035-023-03444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Three retrospective lymphoreticular tissue studies (Appendix I, II, and III) aimed to estimate the UK prevalence of variant Creutzfeldt-Jakob disease (vCJD), following exposure of the population to the bovine spongiform encephalopathy (BSE) agent, in the late 1980s and 1990s. These studies evaluated the presence of abnormal prion protein aggregates, in archived formalin-fixed paraffin-embedded (FFPE) appendectomy samples, by immunohistochemical detection. Although there was concordance in the estimated prevalence of vCJD from these studies, the identification of positive specimens from pre- and post-BSE-exposure periods in Appendix III study has raised questions regarding the nature and origin of the detected abnormal prion protein. We applied a robust and novel approach in the extraction of disease-associated prion protein (PrPSc) present in frozen and FFPE samples of brain and appendix from a patient with pathologically confirmed vCJD. The extracted material was used to seed the highly sensitive protein misfolding cyclic amplification assay (hsPMCA) to investigate the in vitro and in vivo propagation properties of the extracted abnormal prion protein. We demonstrate that PrPSc can be successfully extracted from FFPE appendix tissue and propagated in vitro. Bioassay in wild-type and gene-targeted mouse models confirmed that the extracted and amplified product is infectious and retains strain properties consistent with vCJD. This provides a highly sensitive and reliable platform for subsequent analysis of the archived FFPE appendix tissue derived from the Appendix II and III surveys, to further evaluate the nature of the abnormal PrP detected in the positive samples.
Collapse
Affiliation(s)
- Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lynne I McGuire
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Angela Chong
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Aileen Boyle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Lee McManus
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Fraser Brydon
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alison Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Abigail B Diack
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
5
|
Kopycka K, Maddison BC, Gough KC. Recombinant ovine prion protein can be mutated at position 136 to improve its efficacy as an inhibitor of prion propagation. Sci Rep 2023; 13:3452. [PMID: 36859422 PMCID: PMC9978027 DOI: 10.1038/s41598-023-30202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders with no effective therapeutics. The central event leading to the pathology in the diseases is the conversion of PrPC into PrPSc and its accumulation in the central nervous system. Previous studies demonstrated that recombinant PrP (rPrP) and PrP peptides can inhibit the formation of PrPSc. Here, the effectiveness of ovine rPrP mutants at codon 136 and peptides derived from this region were assessed for their ability to inhibit PrPSc replication, using protein misfolding cyclic amplification (PMCA). Based on a rPrP VRQ (rVRQ) genotype background (positions 136, 154 and 171) and mutations at position 136, the most effective inhibitors were V136R, V136K and V136P mutants, with IC50 values of 1 to 2 nM; activities much more potent than rVRQ (114 nM). rRRQ and rKRQ were also shown to effectively inhibit multiple ruminant prion amplification reactions that used distinct prion strain seeds and substrate PRNP genotypes. rRRQ, rKRQ and rPRQ were also shown to effectively protect Rov9 cells from scrapie infection when applied at 250 nM. The study demonstrates for the first time that the rPrP sequence can be mutated at sites known to be involved in prion disease susceptibility, to produce inhibitors with improved efficacy.
Collapse
Affiliation(s)
- Katarzyna Kopycka
- grid.4563.40000 0004 1936 8868School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Loughborough, LE12 5RD Leicestershire UK
| | - Ben C. Maddison
- ADAS Biotechnology, Unit 27, Beeston Business Park, Technology Drive, Beeston, NG9 1LA Nottinghamshire UK
| | - Kevin C. Gough
- grid.4563.40000 0004 1936 8868School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Loughborough, LE12 5RD Leicestershire UK
| |
Collapse
|
6
|
Liu Y, Senatore A, Sorce S, Nuvolone M, Guo J, Gümüş ZH, Aguzzi A. Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions. Commun Biol 2022; 5:557. [PMID: 35676449 PMCID: PMC9177860 DOI: 10.1038/s42003-022-03496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.
Collapse
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Hofmann A, Wrede A, Jürgens-Wemheuer WM, Schulz-Schaeffer WJ. Prion type 2 selection in sporadic Creutzfeldt-Jakob disease affecting peripheral ganglia. Acta Neuropathol Commun 2021; 9:187. [PMID: 34819156 PMCID: PMC8611978 DOI: 10.1186/s40478-021-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
In sporadic Creutzfeldt–Jakob disease (sCJD), the pathological changes appear to be restricted to the central nervous system. Only involvement of the trigeminal ganglion is widely accepted. The present study systematically examined the involvement of peripheral ganglia in sCJD utilizing the currently most sensitive technique for detecting prions in tissue morphologically. The trigeminal, nodose, stellate, and celiac ganglia, as well as ganglia of the cervical, thoracic and lumbar sympathetic trunk of 40 patients were analyzed with the paraffin-embedded tissue (PET)-blot method. Apart from the trigeminal ganglion, which contained protein aggregates in five of 19 prion type 1 patients, evidence of prion protein aggregation was only found in patients associated with type 2 prions. With the PET-blot, aggregates of prion protein type 2 were found in all trigeminal (17/17), in some nodose (5 of 7) and thoracic (3 of 6) ganglia, as well as in a few celiac (4 of 19) and lumbar (1 of 5) ganglia of sCJD patients. Whereas aggregates of both prion types may spread to dorsal root ganglia, more CNS-distant ganglia seem to be only involved in patients accumulating prion type 2. Whether the prion type association is due to selection by prion type-dependent replication, or due to a prion type-dependent property of axonal spread remains to be resolved in further studies.
Collapse
|
8
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
9
|
Hannaoui S, Triscott E, Duque Velásquez C, Chang SC, Arifin MI, Zemlyankina I, Tang X, Bollinger T, Wille H, McKenzie D, Gilch S. New and distinct chronic wasting disease strains associated with cervid polymorphism at codon 116 of the Prnp gene. PLoS Pathog 2021; 17:e1009795. [PMID: 34310662 PMCID: PMC8341689 DOI: 10.1371/journal.ppat.1009795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/05/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids. Chronic wasting disease belongs to the family of prion diseases. It is considered the most contagious prion disease and the only one that affects free ranging wildlife. The disease range is expanding in North America and Northern Europe. This work describes the emergence and characterization of new chronic wasting disease strains related to a polymorphism in the prion protein gene. It supports the concept that strains are a dynamic mixture of substrains that can influence and interfere with each other. Because transmission barriers are governed by the compatibility of a particular prion strain with the new host’s prion protein, it is critical to understand the emergence and variety of chronic wasting disease strains circulating in wild animals and their ability to infect new host species including humans.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada
| | - Elizabeth Triscott
- Department of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Camilo Duque Velásquez
- Department of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada
| | - Irina Zemlyankina
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada
| | - Xinli Tang
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Trent Bollinger
- Western College of Veterinary Medicine, University of Saskatchewan, Canadian Wildlife Health Cooperative (CWHC), Saskatoon, Saskatchewan, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
10
|
Balkema-Buschmann A, Ziegler U, Priemer G, Tauscher K, Köster F, Ackermann I, Fatola OI, Balkema D, Schinköthe J, Hammerschmidt B, Fast C, Ulrich R, Groschup MH. Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion. J Gen Virol 2021; 102. [PMID: 32589123 PMCID: PMC8116782 DOI: 10.1099/jgv.0.001460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4–6 months of age. The animals were kept in a free-ranging group for 10 years. Starting from 24 months post-transfusion, a thorough clinical examination was performed every 6 weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Grit Priemer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Kerstin Tauscher
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Frauke Köster
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ivett Ackermann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Olanrewaju I Fatola
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Daniel Balkema
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Jan Schinköthe
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Christine Fast
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany.,Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| |
Collapse
|
11
|
Figgie MP, Appleby BS. Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses 2021; 13:v13050789. [PMID: 33925126 PMCID: PMC8146465 DOI: 10.3390/v13050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are difficult to recognize as many symptoms are shared among other neurologic pathologies and the full spectra of symptoms usually do not appear until late in the disease course. Additionally, many commonly used laboratory markers are non-specific to prion disease. The recent introduction of second-generation real time quaking induced conversion (RT-QuIC) has revolutionized pre-mortem diagnosis of prion disease due to its extremely high sensitivity and specificity. However, RT-QuIC does not provide prognostic data and has decreased diagnostic accuracy in some rarer, atypical prion diseases. The objective of this review is to provide an overview of the current clinical utility of fluid-based biomarkers, neurodiagnostic testing, and brain imaging in the diagnosis of prion disease and to suggest guidelines for their clinical use, with a focus on rarer prion diseases with atypical features. Recent advancements in laboratory-based testing and imaging criteria have shown improved diagnostic accuracy and prognostic potential in prion disease, but because these diagnostic tests are not sensitive in some prion disease subtypes and diagnostic test sensitivities are unknown in the event that CWD transmits to humans, it is important to continue investigations into the clinical utility of various testing modalities.
Collapse
Affiliation(s)
- Mark P. Figgie
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian S. Appleby
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
12
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Arnold M, Vilette D, Torres JM, Ironside JW, Andreoletti O. Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathol 2021; 141:383-397. [PMID: 33532912 PMCID: PMC7882550 DOI: 10.1007/s00401-021-02270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.
Collapse
Affiliation(s)
- Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mark Arnold
- APHA Sutton Bonington, Loughborough, LE12 5NB, Leicestershire, UK
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
13
|
Salamat MKF, Blanco ARA, McCutcheon S, Tan KBC, Stewart P, Brown H, Smith A, de Wolf C, Groschup MH, Becher D, Andréoletti O, Turner M, Manson JC, Houston EF. Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathog 2021; 17:e1009276. [PMID: 33600501 PMCID: PMC7891701 DOI: 10.1371/journal.ppat.1009276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products. Variant Creutzfeldt-Jakob disease (vCJD) resulted from zoonotic transmission of bovine spongiform encephalopathy (BSE), and has also been transmitted by blood transfusion. One of the most important risk reduction measures introduced by human transfusion services to safeguard the blood supply is leucodepletion (removal of white blood cells) of blood components. This study represents the largest experimental analysis to date of the risks of prion infection associated with transfusion of labile blood components, and the effectiveness of leucodepletion in preventing transmission. Using a BSE-infected sheep model, we found that red blood cells, platelets and plasma from preclinical donors were all infectious, even after leucodepletion, although leucodepletion significantly reduced transmission rates. In addition, the time course of detection of prions in blood varied significantly depending on the route and method of infection. This has important implications for the risk of onward transmission, and suggests that further improvements in sensitivity of diagnostic tests will be required for reliable preclinical diagnosis of vCJD and other prion diseases. The results of this study support the continuation of current measures to reduce the risk of vCJD transmission by blood products, and suggest areas for further improvement.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Kyle B. C. Tan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Paula Stewart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Allister Smith
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald, Germany
| | | | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Brown D, Sinka K, Andrews N, Dabaghian R, Simmons M, Edwards P, Bellerby P, Everest DJ, McCall M, McCardle LM, Linehan J, Mead S, Hilton DA, Ironside JW, Brandner S. Prevalence in Britain of abnormal prion protein in human appendices before and after exposure to the cattle BSE epizootic. Acta Neuropathol 2020; 139:965-976. [PMID: 32232565 PMCID: PMC7244468 DOI: 10.1007/s00401-020-02153-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Widespread dietary exposure of the population of Britain to bovine spongiform encephalopathy (BSE) prions in the 1980s and 1990s led to the emergence of variant Creutzfeldt-Jakob Disease (vCJD) in humans. Two previous appendectomy sample surveys (Appendix-1 and -2) estimated the prevalence of abnormal prion protein (PrP) in the British population exposed to BSE to be 237 per million and 493 per million, respectively. The Appendix-3 survey was recommended to measure the prevalence of abnormal PrP in population groups thought to have been unexposed to BSE. Immunohistochemistry for abnormal PrP was performed on 29,516 samples from appendices removed between 1962 and 1979 from persons born between 1891 through 1965, and from those born after 1996 that had been operated on from 2000 through 2014. Seven appendices were positive for abnormal PrP, of which two were from the pre-BSE-exposure era and five from the post BSE-exposure period. None of the seven positive samples were from appendices removed before 1977, or in patients born after 2000 and none came from individuals diagnosed with vCJD. There was no statistical difference in the prevalence of abnormal PrP across birth and exposure cohorts. Two interpretations are possible. Either there is a low background prevalence of abnormal PrP in human lymphoid tissues that may not progress to vCJD. Alternatively, all positive specimens are attributable to BSE exposure, a finding that would necessitate human exposure having begun in the late 1970s and continuing through the late 1990s.
Collapse
Affiliation(s)
- O Noel Gill
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Yvonne Spencer
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom
| | - Carole Kelly
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - David Brown
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Katy Sinka
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Nick Andrews
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Reza Dabaghian
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Marion Simmons
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Philip Edwards
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - Peter Bellerby
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - David J Everest
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Mark McCall
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Linda M McCardle
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - David A Hilton
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom.
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
15
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
16
|
Itzhaki Ben Zadok O, Orvin K, Inbar E, Rechavia E. Cardiomyopathy associated with Ceutzfeld-Jakob disease: a diagnosis of exclusion: a case report. Eur Heart J Case Rep 2020; 4:1-5. [PMID: 32128499 PMCID: PMC7047068 DOI: 10.1093/ehjcr/ytz236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 12/22/2019] [Indexed: 12/28/2022]
Abstract
Background Creutzfeldt–Jakob disease (CJD), the most common prion disease in humans, is primarily known for its adverse neurological impact and inevitable mortality. Data regarding myocardial involvement in CJD are scarce. Case summary A 54-year-old female patient, presented with progressive effort dyspnoea, was diagnosed with unexplained non-ischaemic cardiomyopathy. An extensive cardiac work-up including cardiac magnetic resonance imaging (MRI) did not reveal any underlying aetiology. Simultaneously, the patient developed involuntary limb movements and progressive cognitive decline. Thalamic high-signal abnormalities on diffusion-weighted images were apparent on brain MRI. Based on these findings, she was subsequently referred to a neurology department, where she suddenly died the day after her admission. Brain autopsy demonstrated spongiform encephalopathy. A genetic analysis performed to her son revealed a mutation in the PRNP gene; all of these were consistent with CJD. Discussion This case describes the clinical association of CJD and cardiomyopathy and the diagnosis prion-induced cardiomyopathy by exclusion. It is not inconceivable that the coexistence of these two clinical entities may be related to genetic expression and contemporaneously deposition of infectious prions in myocardial muscle and brain tissue. Awareness of this possible association could be of important public-safety concern, and merits further collaborative cardiac-neurological work-up to elucidate this phenotype among patients with unexplained cardiomyopathy with neurological symptoms that resemble CJD.
Collapse
Affiliation(s)
- Osnat Itzhaki Ben Zadok
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky, St. 49100 Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 39040 Tel Aviv, Israel
| | - Katia Orvin
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky, St. 49100 Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 39040 Tel Aviv, Israel
| | - Edna Inbar
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 39040 Tel Aviv, Israel.,Department of Radiology, Rabin Medical Center, 39 Jabotinsky, St. 49100 Petah Tikva, Israel
| | - Eldad Rechavia
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky, St. 49100 Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 39040 Tel Aviv, Israel
| |
Collapse
|
17
|
Review: Fluid biomarkers in the human prion diseases. Mol Cell Neurosci 2018; 97:81-92. [PMID: 30529227 DOI: 10.1016/j.mcn.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
The human prion diseases are a diverse set of often rapidly progressive neurodegenerative conditions associated with abnormal forms of the prion protein. We review work to establish diagnostic biomarkers and assays that might fill other important roles, particularly those that could assist the planning and interpretation of clinical trials. The field now benefits from highly sensitive and specific diagnostic biomarkers using cerebrospinal fluid: detecting by-products of rapid neurodegeneration or specific functional properties of abnormal prion protein, with the second generation real time quaking induced conversion (RT-QuIC) assay being particularly promising. Blood has been a more challenging analyte, but has now also yielded valuable biomarkers. Blood-based assays have been developed with the potential to screen for variant Creutzfeldt-Jakob disease, although it remains uncertain whether these will ever be used in practice. The very rapid neurodegeneration of prion disease results in strong signals from surrogate protein markers in the blood that reflect neuronal, axonal, synaptic or glial pathology in the brain: notably the tau and neurofilament light chain proteins. We discuss early evidence that such tests, applied alongside robust diagnostic biomarkers, may have potential to add value as clinical trial outcome measures, predictors of future disease course (including for asymptomatic individuals at high risk of prion disease), and as rapidly accessible and sensitive markers to aid early diagnosis.
Collapse
|
18
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Asher DM, Gregori L. Human transmissible spongiform encephalopathies: historic view. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:1-17. [PMID: 29887130 DOI: 10.1016/b978-0-444-63945-5.00001-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first of several pivotal moments leading to current understanding of human transmissible spongiform encephalopathies (TSEs) occurred in 1959 when veterinary pathologist W.J. Hadlow first recognized several similarities between scrapie-a slow infection of sheep caused by an unusual infectious agent-and kuru, a fatal exotic neurodegenerative disease affecting only people of a single language group in the remote mountainous interior of New Guinea, described two years earlier by D.C. Gajdusek and V. Zigas. Based on the knowledge of scrapie, Gajdusek, C.J. Gibbs, Jr., and M.P. Alpers soon initiated efforts to transmit kuru by inoculating kuru brain tissue into non-human primates, that-although requiring several years-ultimately proved successful. In the same year that Hadlow first proposed that kuru and scrapie might have similar etiology, I. Klatzo noted that kuru's histopathology resembled that of Creutzfeldt-Jakob disease (CJD), another progressive fatal neurodegenerative disease of unknown etiology that A.M. Jakob had first described in 1921. Gajdusek and colleagues went on to demonstrate that not only the more common sporadic form of CJD but also familial CJD and a generally similar familial brain disease (Gerstmann-Sträussler-Scheinker syndrome) were also transmissible, first to non-human primates and later to other animals. (Other investigators later transmitted an even rarer brain disease, fatal familial insomnia, to animals.) Iatrogenic CJD (spread by human pituitary-derived hormones and tissue grafts) was also transmitted to animals. Much later, in 1996, a new variant of CJD was attributed to human infection with the agent of bovine spongiform encephalopathy; vCJD itself caused an iatrogenic TSE spread by blood transfusion (and probably by a human-plasma-derived clotting factor). Starting in the 1930s, the scrapie agent was found to have a unique constellation of physical properties (marked resistance to inactivation by chemicals, heat and radiation), eventually interpreted as suggesting that it might be an unconventional self-replicating pathogen based on protein and containing no nucleic acid. The work of S.B. Prusiner led to the recognition in the early 1980s that a misfolded form of a ubiquitous normal host protein was usually if not always detectable in tissues containing TSE agents, greatly facilitating the diagnosis and TSEs and understanding their pathogenesis. Prusiner proposed that the TSE agent was likely to be composed partly if not entirely of the abnormal protein, for which he coined the term "prion" protein and "prion" for the agent. Expression of the prion protein by animals-while not essential for life-was later found to be obligatory to infect them with TSEs, and a variety of mutations in the protein clearly tracked with TSEs in families, explaining the autosomal dominant pattern of disease and confirming a central role for the protein in pathogenesis. Prusiner's terminology and the prion hypothesis came to be widely though not universally accepted. A popular corollary proposal, that prions arise by spontaneous misfolding of normal prion protein leading to sporadic cases of CJD, BSE, and scrapie, is more problematic and may serve to discourage continued search for environmental sources of exposure to TSE agents.
Collapse
Affiliation(s)
- David M Asher
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States.
| | - Luisa Gregori
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
20
|
|
21
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
22
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
23
|
Iaccarino L, Moresco RM, Presotto L, Bugiani O, Iannaccone S, Giaccone G, Tagliavini F, Perani D. An In Vivo 11C-(R)-PK11195 PET and In Vitro Pathology Study of Microglia Activation in Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:2856-2868. [PMID: 28455699 DOI: 10.1007/s12035-017-0522-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Microgliosis is part of the immunobiology of Creutzfeldt-Jakob disease (CJD). This is the first report using 11C-(R)-PK11195 PET imaging in vivo to measure 18 kDa translocator protein (TSPO) expression, indexing microglia activation, in symptomatic CJD patients, followed by a postmortem neuropathology comparison. One genetic CJD (gCJD) patient, two sporadic CJD (sCJD) patients, one variant CJD (vCJD) patient (mean ± SD age, 47.50 ± 15.95 years), and nine healthy controls (mean ± SD age, 44.00 ± 11.10 years) were included in the study. TSPO binding potentials were estimated using clustering and parametric analyses of reference regions. Statistical comparisons were run at the regional and at the voxel-wise levels. Postmortem evaluation measured scrapie prion protein (PrPSc) immunoreactivity, neuronal loss, spongiosis, astrogliosis, and microgliosis. 11C-(R)-PK11195-PET showed a significant TSPO overexpression at the cortical level in the two sCJD patients, as well as thalamic and cerebellar involvement; very limited parieto-occipital activation in the gCJD case; and significant increases at the subcortical level in the thalamus, basal ganglia, and midbrain and in the cerebellum in the vCJD brain. Along with misfolded prion deposits, neuropathology in all patients revealed neuronal loss, spongiosis and astrogliosis, and a diffuse cerebral and cerebellar microgliosis which was particularly dense in thalamic and basal ganglia structures in the vCJD brain. These findings confirm significant microgliosis in CJD, which was variably modulated in vivo and more diffuse at postmortem evaluation. Thus, TSPO overexpression in microglia activation, topography, and extent can vary in CJD subtypes, as shown in vivo, possibly related to the response to fast apoptotic processes, but reaches a large amount at the final disease course.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,IBFM-CNR, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.,Department of Health Sciences, University of Milan Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Luca Presotto
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Orso Bugiani
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Sandro Iannaccone
- Neurological Rehabilitation Unit, Clinical Neurosciences Department, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Fabrizio Tagliavini
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy. .,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
24
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
25
|
Abstract
Human prion diseases are rare neurodegenerative diseases that have become the subject of public and scientific interest because of concerns about interspecies transmission and the unusual biological properties of the causal agents: prions. These diseases are unique in that they occur in sporadic, hereditary, and infectious forms that are characterized by an extended incubation period between exposure to infection and the development of clinical illness. Silent infection can be present in peripheral tissues during the incubation period, which poses a challenge to public health, especially because prions are relatively resistant to standard decontamination procedures. Despite intense research efforts, no effective treatment has been developed for human prion diseases, which remain uniformly fatal.
Collapse
Affiliation(s)
- Robert G Will
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
26
|
Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1117-26. [PMID: 26888899 DOI: 10.1128/jcm.02700-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The present review discusses recent clinical data on diagnosis, new forms, and treatment of human prion diseases, and briefly summarizes research suggesting prion-like mechanisms in other neurodegenerative diseases. RECENT FINDINGS When proper sequences are performed, MRI has high diagnostic utility in prion disease, but there are issues with interpretation of images. The spectrum of MRI's utility for diagnosis and understanding human prion disease is still being explored. Two recent diffusion tensor imaging studies quantified changes in the gray and white matter in sporadic Jakob-Creutzfeldt disease, with unexpected results. The diagnostic utility of cerebrospinal fluid biomarkers has been controversial. A few studies showed that amplification methods can detect prions in either cerebrospinal fluid, olfactory epithelium, blood and/or urine in various human prion diseases. Additional cases of variably protease-sensitive prionopathy have led to a broader understanding of this novel sporadic prion disease. A few new mutations causing genetic prion disease, one with a very atypical presentation, have been identified. Although recent human prion disease treatment trials did not show benefit, they have improved our understanding, and led to better quantification, of the progression of these disorders. Lastly, we briefly summarize the increasing evidence that many nonprion neurodegenerative proteinopathies might spread in the brain by a prion-like mechanism. SUMMARY New prion detection methods appear promising, but need to be replicated with larger sample sizes. Identification of novel forms of human prion disease might better elucidate the full spectrum of prion diseases and expand our understanding of their pathogenesis.
Collapse
|
28
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Green AJE. Prion protein aggregation assays in the diagnosis of human prion diseases. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Sporadic Creutzfeldt–Jakob disease (sCJD) is the most common form of human prion disease and is associated with a progressive cognitive decline and death usually occurs within 6 months. Neuropathologically these diseases are characterized by the deposition of an abnormal form (PrPSc) of a normally expressed protein PrPC. At present there are no disease-specific diagnostic tests for prion diseases. Therefore, a test that will enable accurate and earlier diagnosis is needed. The ability of PrPSc to convert native PrPC into PrPSc has been exploited in a variety of protein aggregation assays such as protein misfolding cyclic amplification (PMCA), and real-time QuIC (RT-QuIC). Cerebrospinal fluid RT-QuIC is rapidly growing in acceptance as a reliable and accurate diagnostic test for sCJD.
Collapse
|
30
|
|
31
|
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. INFECTION GENETICS AND EVOLUTION 2014; 26:303-12. [PMID: 24956437 DOI: 10.1016/j.meegid.2014.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
Abstract
In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Stéphane Haïk
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France.
| | - Jean-Philippe Brandel
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France
| |
Collapse
|
32
|
Mead S, Wadsworth JDF, Porter MC, Linehan JM, Pietkiewicz W, Jackson GS, Brandner S, Collinge J. Variant Creutzfeldt-Jakob disease with extremely low lymphoreticular deposition of prion protein. JAMA Neurol 2014; 71:340-3. [PMID: 24445428 DOI: 10.1001/jamaneurol.2013.5378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Human transmission of bovine spongiform encephalopathy causes the fatal neurodegenerative condition variant Creutzfeldt-Jakob disease (vCJD) and, based on recent human prevalence studies, significant subclinical prion infection of the UK population. To date, all clinical cases have been fatal, totaling 228 mostly young adults residing in the United Kingdom. OBSERVATIONS Here we describe the investigation and case history of a patient recently diagnosed as having vCJD in the United Kingdom. Although his presentation, imaging findings, cerebrospinal fluid investigation results, and clinical progression were typical of other cases, tonsillar biopsy and subsequent examination of multiple tissues at autopsy showed minimal deposition of disease-associated prion protein in peripheral lymphoreticular tissue. The result of a blood test for vCJD, the Direct Detection Assay for vCJD, was negative. CONCLUSIONS AND RELEVANCE These findings suggest that some patients with vCJD have very low peripheral prion colonization and therefore may not have detectable prion deposition in diagnostic tonsillar biopsy or markers of prion infection in blood. These results have implications for accurate interpretation of diagnostic tests and prevalence studies based on lymphoreticular tissue or blood.
Collapse
Affiliation(s)
- Simon Mead
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, England2Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, En
| | - Jonathan D F Wadsworth
- Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England
| | - Marie-Claire Porter
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Jacqueline M Linehan
- Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England
| | | | - Graham S Jackson
- Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England
| | - Sebastian Brandner
- Division of Neuropathology, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England
| | - John Collinge
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, England2Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, En
| |
Collapse
|
33
|
Affiliation(s)
- M R Rai
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
34
|
Paul A, Gibson AA, Robinson ODG, Koch J. The traffic light bougie: a study of a novel safety modification. Anaesthesia 2014; 69:214-8. [DOI: 10.1111/anae.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2013] [Indexed: 12/17/2022]
Affiliation(s)
- A. Paul
- Royal Infirmary of Edinburgh; Edinburgh UK
| | | | | | - J. Koch
- Royal Infirmary of Edinburgh; Edinburgh UK
| |
Collapse
|
35
|
Cervenakova L, Brown P. Advances in screening test development for transmissible spongiform encephalopathies. Expert Rev Anti Infect Ther 2014; 2:873-80. [PMID: 15566331 DOI: 10.1586/14789072.2.6.873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The blood of patients with transmissible spongiform encephalopathy or prion disease can no longer be considered free of infectivity. There have been two recent reports of highly probable transfusion-associated iatrogenic variant Creutzfeldt-Jakob disease infections, and there is supporting experimental evidence of scrapie transmission by the transfusion of blood from sheep with naturally occurring disease. In the absence of a preclinical diagnostic test for transmissible spongiform encephalopathy, the main precautionary measures undertaken by blood agencies employ donor exclusion criteria, ensuring that the number of any further iatrogenic cases will be small. The development of a sensitive, specific and reliable diagnostic test is urgently needed for early identification of infected individuals in order to ensure the safety of blood supplies. During the past 5 years, significant progress has been made in improving the sensitivity and specificity of tests using brain and lymphoreticular tissues to identify Creutzfeldt-Jakob disease-infected individuals. However, the quest for a blood test is still in its infancy and requires extensive further research.
Collapse
Affiliation(s)
- Larisa Cervenakova
- American Red Cross Research and Development, 15601 Crabbs Branch Way, Rockville, MD 20855, USA.
| | | |
Collapse
|
36
|
Van Everbroeck B, Boons J, De Leenheir E, Lübke U, Cras P. Molecular diagnostic tools in Creutzfeldt-Jakob disease and other prion disorders. Expert Rev Mol Diagn 2014; 4:351-9. [PMID: 15137902 DOI: 10.1586/14737159.4.3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical criteria and cerebrospinal fluid biomarkers for the diagnosis of human prion diseases (sporadic, iatrogenic or variant Creutzfeldt-Jakob disease and genetic inherited transmissible spongiform encephalopathies) are now widely available and show a sensitivity and specificity of approximately 98%. Final diagnosis of prion diseases is obtained by post-mortem examination upon identification of the pathological conformer of the prion protein (PrPSc) in the brain. Several diagnostic kits are now available that facilitate the immunochemical measurement of PrPSc. Several new molecular diagnostic techniques, aimed at increasing the sensitivity and specificity of PrPSc detection and at identifying markers of disease other than PrPSc, are the subject of ongoing studies. The aim of these studies is to develop preclinical screening tests for the identification of infected but still healthy individuals. These tests are also essential to investigate the safety of blood or blood-derived products and to ensure meat safety in European countries.
Collapse
Affiliation(s)
- Bart Van Everbroeck
- Laboratory of Neurobiology, Borne Bunge Foundation, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Haley NJ, Van de Motter A, Carver S, Henderson D, Davenport K, Seelig DM, Mathiason C, Hoover E. Prion-seeding activity in cerebrospinal fluid of deer with chronic wasting disease. PLoS One 2013; 8:e81488. [PMID: 24282599 PMCID: PMC3839929 DOI: 10.1371/journal.pone.0081488] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/18/2013] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a uniformly fatal family of neurodegenerative diseases in mammals that includes chronic wasting disease (CWD) of cervids. The early and ante-mortem identification of TSE-infected individuals using conventional western blotting or immunohistochemistry (IHC) has proven difficult, as the levels of infectious prions in readily obtainable samples, including blood and bodily fluids, are typically beyond the limits of detection. The development of amplification-based seeding assays has been instrumental in the detection of low levels of infectious prions in clinical samples. In the present study, we evaluated the cerebrospinal fluid (CSF) of CWD-exposed (n=44) and naïve (n=4) deer (n=48 total) for CWD prions (PrPd) using two amplification assays: serial protein misfolding cyclic amplification with polytetrafluoroethylene beads (sPMCAb) and real-time quaking induced conversion (RT-QuIC) employing a truncated Syrian hamster recombinant protein substrate. Samples were evaluated blindly in parallel with appropriate positive and negative controls. Results from amplification assays were compared to one another and to obex immunohistochemistry, and were correlated to available clinical histories including CWD inoculum source (e.g. saliva, blood), genotype, survival period, and duration of clinical signs. We found that both sPMCAb and RT-QuIC were capable of amplifying CWD prions from cervid CSF, and results correlated well with one another. Prion seeding activity in either assay was observed in approximately 50% of deer with PrPd detected by IHC in the obex region of the brain. Important predictors of amplification included duration of clinical signs and time of first tonsil biopsy positive results, and ultimately the levels of PrPd identified in the obex by IHC. Based on our findings, we expect that both sPMCAb and RT-QuIC may prove to be useful detection assays for the detection of prions in CSF.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Alexandra Van de Motter
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott Carver
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia
| | - Davin Henderson
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristen Davenport
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
38
|
Abstract
Individuals infected with prions succumb to brain damage, and prion infections continue to be inexorably lethal. However, many crucial steps in prion pathogenesis occur in lymphatic organs and precede invasion of the central nervous system. In the past two decades, a great deal has been learnt concerning the cellular and molecular mechanisms of prion lymphoinvasion. These properties are diagnostically useful and have, for example, facilitated preclinical diagnosis of variant Creutzfeldt-Jakob disease in the tonsils. Moreover, the early colonization of lymphoid organs can be exploited for post-exposure prophylaxis of prion infections. As stromal cells of lymphoid organs are crucial for peripheral prion infection, the dedifferentiation of these cells offers a powerful means of hindering prion spread in infected individuals. In this Review, we discuss the current knowledge of the immunobiology of prions with an emphasis on how basic discoveries might enable translational strategies.
Collapse
|
39
|
Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R, Boyes L, Linehan J, Simmons M, Webb P, Bellerby P, Andrews N, Hilton DA, Ironside JW, Beck J, Poulter M, Mead S, Brandner S. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 2013; 347:f5675. [PMID: 24129059 PMCID: PMC3805509 DOI: 10.1136/bmj.f5675] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To carry out a further survey of archived appendix samples to understand better the differences between existing estimates of the prevalence of subclinical infection with prions after the bovine spongiform encephalopathy epizootic and to see whether a broader birth cohort was affected, and to understand better the implications for the management of blood and blood products and for the handling of surgical instruments. DESIGN Irreversibly unlinked and anonymised large scale survey of archived appendix samples. SETTING Archived appendix samples from the pathology departments of 41 UK hospitals participating in the earlier survey, and additional hospitals in regions with lower levels of participation in that survey. SAMPLE 32,441 archived appendix samples fixed in formalin and embedded in paraffin and tested for the presence of abnormal prion protein (PrP). RESULTS Of the 32,441 appendix samples 16 were positive for abnormal PrP, indicating an overall prevalence of 493 per million population (95% confidence interval 282 to 801 per million). The prevalence in those born in 1941-60 (733 per million, 269 to 1596 per million) did not differ significantly from those born between 1961 and 1985 (412 per million, 198 to 758 per million) and was similar in both sexes and across the three broad geographical areas sampled. Genetic testing of the positive specimens for the genotype at PRNP codon 129 revealed a high proportion that were valine homozygous compared with the frequency in the normal population, and in stark contrast with confirmed clinical cases of vCJD, all of which were methionine homozygous at PRNP codon 129. CONCLUSIONS This study corroborates previous studies and suggests a high prevalence of infection with abnormal PrP, indicating vCJD carrier status in the population compared with the 177 vCJD cases to date. These findings have important implications for the management of blood and blood products and for the handling of surgical instruments.
Collapse
Affiliation(s)
- O Noel Gill
- HIV and STI Department, and CJD Section, National Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Buléon C, Parienti JJ, Lesage A, Grandin W, Pouliquen E, Flais F, Simonet T, Gérard JL, Hanouz JL. Comparison of plastic and metallic single-use and metallic reusable laryngoscope blades. Eur J Anaesthesiol 2013; 30:163-9. [DOI: 10.1097/eja.0b013e32835c1cdb] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Uppington KM, Brown DR. Modelling neurodegeneration in prion disease - applications for drug development. Expert Opin Drug Discov 2013; 2:777-88. [PMID: 23488996 DOI: 10.1517/17460441.2.6.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prion diseases are a group of neurodegenerative diseases that affect mammals, including humans and ruminants such as sheep. They are believed to be caused by the conversion of the prion protein (PrP), a host expressed protein, into a toxic form (PrP(sc)). PrP(sc) accumulates in the brain, resulting in neuronal loss and the typical spongiform appearance of the brain. So far, there are no effective therapies available for prion diseases. This review discusses possible therapies for prion diseases and the models available for advancing research into the disease.
Collapse
Affiliation(s)
- Kay M Uppington
- University of Bath, Department of Biology and Biochemistry, Bath, Claverton Down, BA2 7AY, UK +44 1255 383133 ; +44 1225 386779 ;
| | | |
Collapse
|
43
|
Lacroux C, Bougard D, Litaise C, Simmons H, Corbiere F, Dernis D, Tardivel R, Morel N, Simon S, Lugan S, Costes P, Weisbecker JL, Schelcher F, Grassi J, Coste J, Andréoletti O. Impact of leucocyte depletion and prion reduction filters on TSE blood borne transmission. PLoS One 2012; 7:e42019. [PMID: 22860049 PMCID: PMC3409224 DOI: 10.1371/journal.pone.0042019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022] Open
Abstract
The identification in the UK of 4 v-CJD infected patients thought to be due to the use of transfused Red Blood Cell units prepared from blood of donors incubating v-CJD raised major concerns in transfusion medicine. The demonstration of leucocyte associated infectivity using various animal models of TSE infection led to the implementation of systematic leuco-depletion (LD) of Red Blood cells concentrates (RBCs) in a number of countries. In the same models, plasma also demonstrated a significant level of infectivity which raised questions on the impact of LD on the v-CJD transmission risk. The recent development of filters combining LD and the capture of non-leucocyte associated prion infectivity meant a comparison of the benefits of LD alone versus LD/prion-reduction filters (LD/PR) on blood-borne TSE transmission could be made. Due to the similarity of blood/plasma volumes to human transfusion medicine an experimental TSE sheep model was used to characterize the abilities of whole blood, RBCs, plasma and buffy-coat to transmit the disease through the transfusion route. The impact of a standard RBCs LD filter and of two different RBCs LD/PR prototype filters on the disease transmission was then measured. Homologous recipients transfused with whole-blood, buffy-coat and RBCs developed the disease with 100% efficiency. Conversely, plasma, when intravenously administered resulted in an inconstant infection of the recipients and no disease transmission was observed in sheep that received cryo-precipitated fraction or supernatant obtained from infectious plasma. Despite their high efficacy, LD and LD/PR filtration of the Red Blood Cells concentrate did not provide absolute protection from infection. These results support the view that leuco-depletion strongly mitigates the v-CJD blood borne transmission risk and provide information about the relative benefits of prion reduction filters.
Collapse
Affiliation(s)
- Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Daisy Bougard
- UPR CNRS 1142, R&D TransDiag, EFS Pyrénées –Méditerranée, Montpellier, France
| | - Claire Litaise
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Hugh Simmons
- AHVLA Weybridge, ASU, New Haw, Addlestone, Surrey, United Kingdom
| | - Fabien Corbiere
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | | | - Nathalie Morel
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Stephanie Simon
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | - François Schelcher
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Jacques Grassi
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Joliette Coste
- UPR CNRS 1142, R&D TransDiag, EFS Pyrénées –Méditerranée, Montpellier, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
44
|
Prion diseases. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.
Collapse
|
46
|
Boden L, Handel I, Hawkins N, Houston F, Fryer H, Kao R. An economic evaluation of preclinical testing strategies compared to the compulsory scrapie flock scheme in the control of classical scrapie. PLoS One 2012; 7:e32884. [PMID: 22412943 PMCID: PMC3296747 DOI: 10.1371/journal.pone.0032884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/06/2012] [Indexed: 01/09/2023] Open
Abstract
Cost-benefit is rarely combined with nonlinear dynamic models when evaluating control options for infectious diseases. The current strategy for scrapie in Great Britain requires that all genetically susceptible livestock in affected flocks be culled (Compulsory Scrapie Flock Scheme or CSFS). However, this results in the removal of many healthy sheep, and a recently developed pre-clinical test for scrapie now offers a strategy based on disease detection. We explore the flock level cost-effectiveness of scrapie control using a deterministic transmission model and industry estimates of costs associated with genotype testing, pre-clinical tests and the value of a sheep culled. Benefit was measured in terms of the reduction in the number of infected sheep sold on, compared to a baseline strategy of doing nothing, using Incremental Cost Effectiveness analysis to compare across strategies. As market data was not available for pre-clinical testing, a threshold analysis was used to set a unit-cost giving equal costs for CSFS and multiple pre-clinical testing (MT, one test each year for three consecutive years). Assuming a 40% within-flock proportion of susceptible genotypes and a test sensitivity of 90%, a single test (ST) was cheaper but less effective than either the CSFS or MT strategies (30 infected-sales-averted over the lifetime of the average epidemic). The MT strategy was slightly less effective than the CSFS and would be a dominated strategy unless preclinical testing was cheaper than the threshold price of £6.28, but may be appropriate for flocks with particularly valuable livestock. Though the ST is not currently recommended, the proportion of susceptible genotypes in the national flock is likely to continue to decrease; this may eventually make it a cost-effective alternative to the MT or CSFS.
Collapse
Affiliation(s)
- Lisa Boden
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Handel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | | - Fiona Houston
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Helen Fryer
- Department of Zoology, The Institute for Emerging Infections, The Oxford Martin School, Oxford University, United Kingdom
| | - Rowland Kao
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Haley NJ, Mathiason CK, Carver S, Telling GC, Zabel MD, Hoover EA. Sensitivity of protein misfolding cyclic amplification versus immunohistochemistry in ante-mortem detection of chronic wasting disease. J Gen Virol 2012; 93:1141-1150. [PMID: 22278825 DOI: 10.1099/vir.0.039073-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As the only prion disease affecting free-ranging animals, ante-mortem identification of affected cervids has become paramount in understanding chronic wasting disease (CWD) pathogenesis, prevalence and control of horizontal or vertical transmission. To seek maximal sensitivity in ante-mortem detection of CWD infection, this study used paired tonsil biopsy samples collected at various time points from 48 CWD-exposed cervids to compare blinded serial protein misfolding cyclic amplification (sPMCA) with the assay long considered the 'gold standard' for CWD detection, immunohistochemistry (IHC). sPMCA-negative controls (34 % of the samples evaluated) included tissues from mock-inoculated animals and unspiked negative controls, all of which tested negative throughout the course of the study. It was found that sPMCA on tonsil biopsies detected CWD infection significantly earlier (2.78 months, 95 % confidence interval 2.40-3.15) than conventional IHC. Interestingly, a correlation was observed between early detection by sPMCA and host PRNP genotype. These findings demonstrate that in vitro-amplification assays provide enhanced sensitivity and advanced detection of CWD infection in the peripheral tissues of cervids, with a potential role for spike or substrate genotype in sPMCA amplification efficiency.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark D Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
|
49
|
Haïk S, Brandel JP. Biochemical and strain properties of CJD prions: complexity versus simplicity. J Neurochem 2011; 119:251-61. [PMID: 21790605 DOI: 10.1111/j.1471-4159.2011.07399.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.
Collapse
Affiliation(s)
- Stéphane Haïk
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière (CRICM), UMRS 975, Equipe "Alzheimer's and Prion Diseases", Paris, France.
| | | |
Collapse
|
50
|
Abstract
Over the past year, several situations have occurred in Canada in which patients who had recently undergone a surgical procedure were subsequently diagnosed with confirmed or suspected Creutzfeldt-Jakob disease (CJD). This raised concerns over contamination of surgical instruments: which instruments might have been contaminated from direct exposure to tissues; can instruments become cross-contaminated by exposure to other contaminated instruments; what assessment is necessary to determine cross-contamination; and what should be done with instruments that have been contaminated. Additionally, should there be a patient traceback in the face of potential but unproven exposure? Unfortunately, there are no easy answers to most of the above questions. Australia, the United Kingdom and the World Health Organization have developed guidelines for the infection control management of patients with CJD, as well as instruments and devices that come into contact with them and their tissues (1-3). Health Canada's draft CJD infection control guidelines, withdrawn from the Health Canada Web site until safety concerns regarding sodium hydroxide can be addressed, closely mirrored recommendations made in those documents. The Centers for Disease Control and Prevention guidelines for CJD are under revision. However, a recent American publication made recommendations on what procedures should be used for reprocessing items that have been in contact with the prion protein (PrP) (4). These recommendations differ substantially from the draft Canadian guidelines. This article reviews current knowledge about CJD, and highlights some of the infection control concerns and controversies.
Collapse
|