1
|
Taya T, Kami D, Teruyama F, Matoba S, Gojo S. Peptide-encoding gene transfer to modulate intracellular protein-protein interactions. Mol Ther Methods Clin Dev 2024; 32:101226. [PMID: 38516692 PMCID: PMC10952081 DOI: 10.1016/j.omtm.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein-protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd, Tokyo, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Kjeldsen T, Andersen AS, Hubálek F, Johansson E, Kreiner FF, Schluckebier G, Kurtzhals P. Molecular engineering of insulin for recombinant expression in yeast. Trends Biotechnol 2024; 42:464-478. [PMID: 37880066 DOI: 10.1016/j.tibtech.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.
Collapse
|
3
|
Lorrine OE, Raja Abd. Rahman RNZ, Tan JS, Raja Khairuddin RF, Salleh AB, Oslan SN. Determination of Putative Vacuolar Proteases, PEP4 and PRB1 in a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO Using Bioinformatics Tools. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.30.1.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.
Collapse
|
4
|
Wu Y, Hua H, Huang Z, Feng M, Feng J. Cloning, expression, and purification of porcine adrenocorticotropic hormone in Escherichia coli. Protein Expr Purif 2020; 176:105731. [PMID: 32871252 DOI: 10.1016/j.pep.2020.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Adrenocorticotropic hormone (ACTH) is an old medicine derived from porcine pituitary gland that has been marketed for more than 60 years. In this study, we present a recombinant approach to produce ACTH in Escherichia coli (E. coli). The SUMO-tagged fusion protein was cloned and expressed after induction with isopropyl-β-d-thiogalactopyranoside (IPTG) at 25 °C for 8 h. The fusion protein was extracted and purified by anion exchange chromatography, and the SUMO tag was subsequently removed by digestion with ubiquitin-like protease 1 (ULP1). Approximately 95.3 mg of recombinant ACTH with 94.2% purity was obtained after cation exchange purification performed on a 5 mL column, from 286 mL fermentation broth based on the amount of pellets homogenized. The molecular mass of the recombinant ACTH was confirmed by mass spectrometry to equal 4567.32 Da.
Collapse
Affiliation(s)
- Yong Wu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Duomirui Biotechnology Ltd, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Haoju Hua
- Shanghai Duomirui Biotechnology Ltd, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Zongqing Huang
- Shanghai Duomirui Biotechnology Ltd, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Meiqing Feng
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Jun Feng
- Shanghai Duomirui Biotechnology Ltd, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
5
|
Lee MH, Hsu TL, Lin JJ, Lin YJ, Kao YY, Chang JJ, Li WH. Constructing a human complex type N-linked glycosylation pathway in Kluyveromyces marxianus. PLoS One 2020; 15:e0233492. [PMID: 32469948 PMCID: PMC7259728 DOI: 10.1371/journal.pone.0233492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Glycosylation can affect various protein properties such as stability, biological activity, and immunogenicity. To produce human therapeutic proteins, a host that can produce glycoproteins with correct glycan structures is required. Microbial expression systems offer economical, rapid and serum-free production and are more amenable to genetic manipulation. In this study, we developed a protocol for CRISPR/Cas9 multiple gene knockouts and knockins in Kluyveromyces marxianus, a probiotic yeast with a rapid growth rate. As hyper-mannosylation is a common problem in yeast, we first knocked out the α-1,3-mannosyltransferase (ALG3) and α-1,6-mannosyltransferase (OCH1) genes to reduce mannosylation. We also knocked out the subunit of the telomeric Ku domain (KU70) to increase the homologous recombination efficiency of K. marxianus. In addition, we knocked in the MdsI (α-1,2-mannosidase) gene to reduce mannosylation and the GnTI (β-1,2-N-acetylglucosaminyltransferase I) and GnTII genes to produce human N-glycan structures. We finally obtained two strains that can produce low amounts of the core N-glycan Man3GlcNAc2 and the human complex N-glycan Man3GlcNAc4, where Man is mannose and GlcNAc is N-acetylglucosamine. This study lays a cornerstone of glycosylation engineering in K. marxianus toward producing human glycoproteins.
Collapse
Affiliation(s)
- Ming-Hsuan Lee
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Nankang, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jinn-Jy Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yi-Ying Kao
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wen-Hsiung Li
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ho PW, Klein M, Futschik M, Nevoigt E. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2018; 18:4898018. [DOI: 10.1093/femsyr/foy019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ping-Wei Ho
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias Futschik
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, PL4 8AA, UK
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, 8005-139, Portugal
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
7
|
Kroukamp H, den Haan R, la Grange DC, Sibanda N, Foulquié‐Moreno MR, Thevelein JM, van Zyl WH. Strain Breeding Enhanced Heterologous Cellobiohydrolase Secretion by
Saccharomyces cerevisiae
in a Protein Specific Manner. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heinrich Kroukamp
- Department of MicrobiologyUniversity of StellenboschStellenboschSouth Africa
| | - Riaan den Haan
- Department of BiotechnologyUniversity of Western CapeBellvilleSouth Africa
| | - Daniël C. la Grange
- Unit of Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Ntsako Sibanda
- Department of Biochemistry, Microbiology and BiotechnologyUniversity of LimpopoSovengaSouth Africa
| | - Maria R. Foulquié‐Moreno
- Institute of Botany and MicrobiologyKU LeuvenLeuven‐HeverleeBelgium
- Department of Molecular Microbiology, VIBLeuven‐HeverleeBelgium
| | - Johan M. Thevelein
- Institute of Botany and MicrobiologyKU LeuvenLeuven‐HeverleeBelgium
- Department of Molecular Microbiology, VIBLeuven‐HeverleeBelgium
| | - Willem H. van Zyl
- Department of MicrobiologyUniversity of StellenboschStellenboschSouth Africa
| |
Collapse
|
8
|
Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC. Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 2017; 101:5749-5763. [PMID: 28577027 DOI: 10.1007/s00253-017-8335-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/30/2022]
Abstract
Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S. cerevisiae strains overexpressing metal-binding hexapeptides (MeBHxP) fused to the carboxy-terminus of a myristoylated green fluorescent protein (myrGFP). Three non-toxic myrGFP-MeBHxP (myrGFP-H6, myrGFP-C6, and myrGFP-(DE)3) were investigated against an array of heavy metals in terms of their effect on S. cerevisiae growth, heavy metal (hyper) accumulation, and capacity to remove heavy metal from contaminated environments.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Aurora Daniela Neagoe
- Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, Bucharest, Romania
| | - Andrei José Petrescu
- Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, Romania
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | | |
Collapse
|
9
|
Engholm E, Hansen TH, Johansson E, Strauss HM, Vinther TN, Jensen KJ, Hubálek F, Kjeldsen TB. Expression, Receptor Binding, and Biophysical Characterization of Guinea Pig Insulin desB30: A Monomeric Insulin Variant. Chembiochem 2015; 16:954-8. [DOI: 10.1002/cbic.201402688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/06/2022]
|
10
|
Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. ACTA ACUST UNITED AC 2015; 42:423-36. [DOI: 10.1007/s10295-014-1539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Abstract
A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5–50 g/L), and lab-scale (0–5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.
Collapse
Affiliation(s)
- Jie Sun
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
| | - Hal S Alper
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
- grid.89336.37 0000000419369924 Institute for Cellular and Molecular Biology The University of Texas at Austin 2500 Speedway Avenue 78712 Austin TX USA
| |
Collapse
|
11
|
Biopharmaceutical protein production bySaccharomyces cerevisiae: current state and future prospects. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Ye W, Ma Y, Wang H, Luo X, Zhang W, Wang J, Wang X. A new strategy for recovery of two peptides without Glu employing glutamate-specific endopeptidase from Bacillus licheniformis. Enzyme Microb Technol 2014; 54:25-31. [PMID: 24267564 DOI: 10.1016/j.enzmictec.2013.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
The difficulty in the purification of bioactive peptide limited its application in food, drug and cosmetic industry. Here we report a new strategy for the recovery of two peptides employing glutamate-specific endopeptidase from Bacillus licheniformis (GSE-BL), which shows strong specificity for Glu residue. Human glucagon and human beta-defensin-2 (HBD-2) were peptides without Glu residue, and Glu residue was introduced between affinity tag and target peptide as recognition site of GSE-BL. Tagless human glucagon with the same HPLC retention time as native human glucagon and mature HBD-2 with antibacterial activity and cytotoxicity were obtained after GSE-BL treatment. This strategy has great potential in the recovery of bioactive peptide without Glu residue, thus facilitating large scale preparation of peptide and widening the application of bioactive peptide.
Collapse
Affiliation(s)
- Wei Ye
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China; State Key Laboratory of Applied Microbiology, South China (The Ministry-Province Joint Development), Guangdong Institute of Microbiology, GuangZhou 510070, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Tullin S, Sams A, Brandt J, Dahl K, Gong W, Jeppesen CB, Krogh TN, Olsen GS, Liu Y, Pedersen AA, Petersen JM, Rolin B, Wahlund PO, Kalthoff C. Recombinant adiponectin does not lower plasma glucose in animal models of type 2 diabetes. PLoS One 2012; 7:e44270. [PMID: 23049674 PMCID: PMC3462199 DOI: 10.1371/journal.pone.0044270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/31/2012] [Indexed: 12/13/2022] Open
Abstract
Aims/Hypothesis Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats. Methods Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10–30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5–15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days. Results Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active. Conclusions/Interpretation Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.
Collapse
Affiliation(s)
- Søren Tullin
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012; 69:2671-90. [PMID: 22388689 PMCID: PMC11115109 DOI: 10.1007/s00018-012-0945-1] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
Abstract
Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.
Collapse
Affiliation(s)
- Kuk-Ki Hong
- Novo Nordisk Centre for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Research Institute of Biotechnology, CJ CheilJedang, Seoul, 157-724 Korea
| | - Jens Nielsen
- Novo Nordisk Centre for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
15
|
Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 2012; 109:1259-68. [PMID: 22179756 DOI: 10.1002/bit.24409] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 11/06/2022]
Abstract
Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (µmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, that is, the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, (Tyo et al. submitted) in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter). For the IP there is more than 10-fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast.
Collapse
Affiliation(s)
- Zihe Liu
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
16
|
Li WF, Ji J, Wang G, Wang HY, Niu BL, Josine TL. Oxidative stress-resistance assay for screening yeast strains overproducing heterologous proteins. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ganatra MB, Vainauskas S, Hong JM, Taylor TE, Denson JPM, Esposito D, Read JD, Schmeisser H, Zoon KC, Hartley JL, Taron CH. A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis. FEMS Yeast Res 2010; 11:168-78. [PMID: 21166768 PMCID: PMC3041862 DOI: 10.1111/j.1567-1364.2010.00703.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.
Collapse
Affiliation(s)
- Mehul B Ganatra
- Division of Gene Expression, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho EY, Cheon SA, Kim H, Choo J, Lee DJ, Ryu HM, Rhee SK, Chung BH, Kim JY, Kang HA. Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae. J Biotechnol 2010; 149:1-7. [DOI: 10.1016/j.jbiotec.2010.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022]
|
19
|
Gagnon-Arsenault I, Tremblay J, Bourbonnais Y. Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 2006; 6:966-78. [PMID: 17042746 DOI: 10.1111/j.1567-1364.2006.00129.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A novel class of aspartic peptidases known as fungal yapsins, whose first member ScYps1p was identified more than a decade ago in Saccharomyces cerevisiae, is characteristically modified by the addition of a glycophosphatidylinositol moiety and has a preference for cleaving substrates C-terminally to mono- and paired-basic residues. Over the years, several other members, first in S. cerevisiae and then in other fungi, have been identified. The implication of fungal yapsins in cell-wall assembly and/or remodelling had been suspected for many years. However, it is only very recently that studies performed on S. cerevisae and Candida albicans have confirmed their importance for cell-wall integrity. Here, we review 16 years of research, covering all fundamental aspects of these unique enzymes, in an effort to track their functional significance. We also propose a nomenclature for fungal yapsins based on their sequence identity with the founding members of this family, the S. cerevisiae yapsins.
Collapse
Affiliation(s)
- Isabelle Gagnon-Arsenault
- Département de biochimie & microbiologie and Centre de Recherche sur la fonction, la structure et l'ingéniérie des proteins, Université Laval, Québec, QC, Canada
| | | | | |
Collapse
|
20
|
Jønson L, Rehfeld JF, Johnsen AH. Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2005; 271:4788-97. [PMID: 15606766 DOI: 10.1111/j.1432-1033.2004.04443.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Saccharomyces cerevisiae is a widely used host in the production of therapeutic peptides and proteins. Here we report the identification of a novel endoprotease in S. cerevisiae. It is encoded by the CYM1 gene and is specific for the C-terminus of basic residues of heterologously expressed peptides. Gene disruption of CYM1 not only reduced the intracellular proteolysis, but also enhanced the secretion of heterologously expressed peptides such as growth hormone, pro-B-type natriuretic peptide and pro-cholecystokinin. Cym1p resembles metalloendoproteases of the pitrilysin family with the HXXEH(X)E(71-77) catalytic domain as seen in insulysin, nardilysin and human metalloprotease 1. It is a nuclear encoded protease that localizes to mitochondria without a hydrophobic N-terminal signal sequence or a C-terminal tail-anchor. The protease does not require post-translational processing prior to activation and it contains cytosolic activity that processes peptides designated for the secretory pathway prior to translocation into the endoplasmic reticulum.
Collapse
Affiliation(s)
- Lars Jønson
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Bartkeviciūte D, Sasnauskas K. Disruption of the gene enhances protein secretion in and. FEMS Yeast Res 2004; 4:833-40. [PMID: 15450190 DOI: 10.1016/j.femsyr.2004.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/01/2004] [Accepted: 03/13/2004] [Indexed: 11/26/2022] Open
Abstract
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.
Collapse
|
22
|
Bartkeviciute D, Sasnauskas K. Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast 2003; 20:1-11. [PMID: 12489121 DOI: 10.1002/yea.935] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated mutants responsible for a super-secretion phenotype in Kluyveromyces lactis using the gene coding for a Bacillus amyloliquefaciens alpha-amylase as a marker for secretion. These mutations defined two groups, dominant and recessive. The recessive mutant strain, which secreted the heterologous protein in five-fold excess compared to the wild-type strain, was used for the cloning of genes, restraining the super-secreting phenotype. In screening for genes affecting super-secreting phenotype, we found that multiple copies of 10 different independently isolated DNA sequences suppressed the super-secreting phenotype. The first among the genes characterized, named KlSEL1 ('secretion lowering') showed homology to Saccharomyces cerevisiae ORF YML013w. The KlSEL1 gene is predicted to encode a polypeptide of 620 amino acid residues containing a putative transmembrane domain and UBX domain, characteristic for the ubiquitin-regulatory proteins. We demonstrated that the disruption of the SEL1 orthologues in K. lactis and S. cerevisiae conferred the super-secreting phenotype. SEL1 isolated from S. cerevisiae suppressed the super-secretion phenotype in K. lactis klsel1 strain, likewise homologous KlSEL1. No other phenotypic features for strains lacking the SEL1 gene were noticed except for the S. cerevisiae mutant growth being notably slower than in a wt strain. No growth changes were observed in the K. lactis klsel1 mutant. The set of genes (suppressors of over-secreting phenotype) could be attractive for further analysis of gene functions, super-secreting mechanisms and construction of new strains. This collection could be useful for the expedient construction of reduced yeast genomes, optimized for heterologous protein secretion.
Collapse
|