1
|
Yadav A, Dogra P, Sagar P, Srivastava M, Srivastava A, Kumar R, Srivastava SK. A contemporary overview on quantum dots-based fluorescent biosensors: Exploring synthesis techniques, sensing mechanism and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126002. [PMID: 40068316 DOI: 10.1016/j.saa.2025.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
In the epoch of bioinformatics, pivotal biomedical scrutiny and clinical diagnosis hinge upon the unfolding of highly efficacious biosensors for intricate and targeted identification of specific biomolecules. In pursuit of developing robust biosensors endowed with superior sensitivity, precise selectivity, rapid performance, and operational simplicity, semiconductor QDs have been acknowledged as pivotal and advantageous entities. In this review, we present a comprehensive analysis of the latest unfolding within the domain of QDs used in fluorescent biosensors for the detection of diverse biomolecular entities, encompassing proteins, nucleic acids, and a range of small molecules, with an emphasis on the synthesis methodologies of QDs employed and mechanism behind sensing. Additionally, this review delves into several pivotal facets of QD-based fluorescent biosensors in detail, such as surface functionalization methodologies aimed at enhancing biocompatibility and improving target specificity. The challenges and future perspectives of QD-based fluorescent biosensors are also considered, emphasizing the necessity of ongoing multidisciplinary research to realize their full potential in enhancing personalized medicine and biomedical diagnostics.
Collapse
Affiliation(s)
- Anushka Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Dogra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Physics-Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur 222001, India
| | - Rajneesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
3
|
Hasan MS, Kalam MAE, Faisal M. PCF Based Four-Channel SPR Biosensor With Wide Sensing Range. IEEE Trans Nanobioscience 2024; 23:233-241. [PMID: 37665704 DOI: 10.1109/tnb.2023.3311611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this article, we have demonstrated a highly sensitive four-channel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor which can detect four different analytes simultaneously. To ease practical implementation, four analyte sensing layers and plasmonic materials such as gold (Au) and gold (Au) with Tantalum Pentoxide (Ta2O5) are placed on the exterior of the four arms of the square shaped structure. The sensor's structure consists of only nine circular air holes, making it simple and easy to fabricate using currently available technologies. Finite element method (FEM) based numerical analysis is used to evaluate the sensing performance of the proposed sensor. With optimum structure parameters, the sensor achieves maximum wavelength sensitivity of 11000, 25000, 11000 and 25000 nm/RIU for Channel-1, Channel-2, Channel-3, and Channel-4 respectively. It shows maximum amplitude sensitivity of 803.732, 709.171, 803.827, 709.146 RIU -1 for Channel 1, 2, 3, and 4 respectively. It also shows maximum FOM of 232.55, 352.36, 231.57, 352.36 RIU -1 in Ch-1, Ch-2, Ch-3 and Ch-4 respectively. Moreover, the proposed sensor shows a wide range of refractive index sensing capability from 1.30 to 1.41. Due to multi-analyte detection capability, large sensing range, and excellent sensitivity the proposed sensor unfolds unrivalled capacity of detecting chemicals, carcinogenic agents, biomolecules, and other analytes.
Collapse
|
4
|
Assad H, Lone IA, Kumar A, Kumar A. Unveiling the contemporary progress of graphene-based nanomaterials with a particular focus on the removal of contaminants from water: a comprehensive review. Front Chem 2024; 12:1347129. [PMID: 38420577 PMCID: PMC10899519 DOI: 10.3389/fchem.2024.1347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Water scarcity and pollution pose significant challenges to global environmental sustainability and public health. As these concerns intensify, the quest for innovative and efficient water treatment technologies becomes paramount. In recent years, graphene-based nanomaterials have emerged as frontrunners in this pursuit, showcasing exceptional properties that hold immense promise for addressing water contamination issues. Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, exhibits extraordinary mechanical, electrical, and chemical properties. These inherent characteristics have led to a surge of interest in leveraging graphene derivatives, such as graphene oxide (GO), reduced graphene oxide and functionalized graphene, for water treatment applications. The ability of graphene-based nanomaterials to adsorb, catalyze, and photocatalyze contaminants makes them highly versatile in addressing diverse pollutants present in water sources. This review will delve into the synthesis methods employed for graphene-based nanomaterials and explore the structural modifications and functionalization strategies implemented to increase their pollutant removal performance in water treatment. By offering a critical analysis of existing literature and highlighting recent innovations, it will guide future research toward the rational design and optimization of graphene-based nanomaterials for water decontamination. The exploration of interdisciplinary approaches and cutting-edge technologies underscores the evolving landscape of graphene-based water treatment, fostering a path toward sustainable and scalable solutions. Overall, the authors believe that this review will serve as a valuable resource for researchers, engineers, and policymakers working toward sustainable and effective solutions for water purification.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Imtiyaz Ahmad Lone
- Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Alok Kumar
- Department of Mechanical Engineering, Nalanda College of Engineering, Bihar Engineering University, Department of Science, Technology and Technical Education, Government of Bihar, Patna, India
| | - Ashish Kumar
- Department of Chemistry, Nalanda College of Engineering, Bihar Engineering University, Department of Science, Technology and Technical Education, Government of Bihar, Patna, India
| |
Collapse
|
5
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Sabbih GO, Wijesinghe KM, Algama C, Dhakal S, Danquah MK. Computational generation and characterization of IsdA-binding aptamers with single-molecule FRET analysis. Biotechnol J 2023; 18:e2300076. [PMID: 37593983 DOI: 10.1002/biot.202300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Staphylococcus aureus is a major foodborne bacterial pathogen. Early detection of S. aureus is crucial to prevent infections and ensure food quality. The iron-regulated surface determinant protein A (IsdA) of S. aureus is a unique surface protein necessary for sourcing vital iron from host cells for the survival and colonization of the bacteria. The function, structure, and location of the IsdA protein make it an important protein for biosensing applications relating to the pathogen. Here, we report an in-silico approach to develop and validate high-affinity binding aptamers for the IsdA protein detection using custom-designed in-silico tools and single-molecule Fluorescence Resonance Energy Transfer (smFRET) measurements. We utilized in-silico oligonucleotide screening methods and metadynamics-based methods to generate 10 aptamer candidates and characterized them based on the Dissociation Free Energy (DFE) of the IsdA-aptamer complexes. Three of the aptamer candidates were shortlisted for smFRET experimental analysis of binding properties. Limits of detection in the low picomolar range were observed for the aptamers, and the results correlated well with the DFE calculations, indicating the potential of the in-silico approach to support aptamer discovery. This study showcases a computational SELEX method in combination with single-molecule binding studies deciphering effective aptamers against S. aureus IsdA, protein. The established approach demonstrates the ability to expedite aptamer discovery that has the potential to cut costs and predict binding efficacy. The application can be extended to designing aptamers for various protein targets, enhancing molecular recognition, and facilitating the development of high-affinity aptamers for multiple uses.
Collapse
Affiliation(s)
| | | | - Chamika Algama
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soma Dhakal
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael K Danquah
- University of Tennessee, Chattanooga, Tennessee, USA
- University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
9
|
Adane AM, Park SY. Bilayer Actuator Film for Urea Biosensing with Dual Responsiveness: Bending Actuation and Photonic Color Change. ACS Sens 2023; 8:2290-2297. [PMID: 37213078 DOI: 10.1021/acssensors.3c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A noninvasive sweat-based biosensor was developed for urea detection using a photonic bilayer actuator film (BAF) consisting of an interpenetrating polymer network (IPN) as the active layer and a flexible poly(ethylene terephthalate) (PET) substrate as the passive layer (IPN/PET). The active IPN layer comprises intertwined solid-state cholesteric liquid crystal and poly(acrylic acid) (PAA) networks. Urease was immobilized in the PAA network in the IPN layer of the photonic BAF. The interaction with aqueous urea altered the curvature and photonic color of the photonic urease-immobilized IPN/PET (IPNurease/PET) BAF. The curvature (and wavelength of the photonic color) of the IPNurease/PET BAF increased linearly with urea concentration (Curea) in the range of Curea = 20-65 (and 30-65) mM with a limit of detection value of 1.42 (and 1.34) mM. The developed photonic IPNurease/PET BAF exhibited high selectivity toward urea and excellent spike test results with real human sweat. This novel IPNurease/PET BAF is promising because it enables battery-free, cost-effective, and visual detection-based analysis without the use of sophisticated instruments. Furthermore, the application of this photonic IPN/PET BAF can be easily extended to other biosensors by immobilizing other receptors on the IPN.
Collapse
Affiliation(s)
- Amhagiyorgis Mesfin Adane
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Bruce-Tagoe TA, Danquah MK. Bioaffinity Nanoprobes for Foodborne Pathogen Sensing. MICROMACHINES 2023; 14:1122. [PMID: 37374709 DOI: 10.3390/mi14061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
11
|
Elbehiry A, Abalkhail A, Marzouk E, Elmanssury AE, Almuzaini AM, Alfheeaid H, Alshahrani MT, Huraysh N, Ibrahem M, Alzaben F, Alanazi F, Alzaben M, Anagreyyah SA, Bayameen AM, Draz A, Abu-Okail A. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines (Basel) 2023; 11:vaccines11040725. [PMID: 37112637 PMCID: PMC10143666 DOI: 10.3390/vaccines11040725] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogens found in food are believed to be the leading cause of foodborne illnesses; and they are considered a serious problem with global ramifications. During the last few decades, a lot of attention has been paid to determining the microorganisms that cause foodborne illnesses and developing new methods to identify them. Foodborne pathogen identification technologies have evolved rapidly over the last few decades, with the newer technologies focusing on immunoassays, genome-wide approaches, biosensors, and mass spectrometry as the primary methods of identification. Bacteriophages (phages), probiotics and prebiotics were known to have the ability to combat bacterial diseases since the turn of the 20th century. A primary focus of phage use was the development of medical therapies; however, its use quickly expanded to other applications in biotechnology and industry. A similar argument can be made with regards to the food safety industry, as diseases directly endanger the health of customers. Recently, a lot of attention has been paid to bacteriophages, probiotics and prebiotics most likely due to the exhaustion of traditional antibiotics. Reviewing a variety of current quick identification techniques is the purpose of this study. Using these techniques, we are able to quickly identify foodborne pathogenic bacteria, which forms the basis for future research advances. A review of recent studies on the use of phages, probiotics and prebiotics as a means of combating significant foodborne diseases is also presented. Furthermore, we discussed the advantages of using phages as well as the challenges they face, especially given their prevalent application in food safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
- Correspondence:
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Ahmed Elnadif Elmanssury
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Human Nutrition, School of Medicine, Nursing and Dentistry, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Mohammed T. Alshahrani
- Department of Neurology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Nasser Huraysh
- Department of Family Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Farhan Alanazi
- Supply Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, Jubail 35517, Saudi Arabia
| | - Mohammed Alzaben
- Department of Food Factories Inspection, Operation Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | | | | | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
12
|
Lee I, So H, Kim J, Auh JH, Wall MM, Li Y, Ho K, Jun S. Selective Detection of Escherichia coli K12 and Staphylococcus aureus in Mixed Bacterial Communities Using a Single-Walled Carbon Nanotube (SWCNT)-Functionalized Electrochemical Immunosensor with Dielectrophoretic Concentration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:985. [PMID: 36985878 PMCID: PMC10051117 DOI: 10.3390/nano13060985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102-3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.
Collapse
Affiliation(s)
- Inae Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Heejin So
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Jungyoon Kim
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Marisa M. Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Yong Li
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Kacie Ho
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Soojin Jun
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| |
Collapse
|
13
|
Bakhshpour-Yucel M, Gür SD, Seymour E, Aslan M, Lortlar Ünlü N, Ünlü MS. Highly-Sensitive, Label-Free Detection of Microorganisms and Viruses via Interferometric Reflectance Imaging Sensor. MICROMACHINES 2023; 14:281. [PMID: 36837980 PMCID: PMC9960798 DOI: 10.3390/mi14020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic microorganisms and viruses can easily transfer from one host to another and cause disease in humans. The determination of these pathogens in a time- and cost-effective way is an extreme challenge for researchers. Rapid and label-free detection of pathogenic microorganisms and viruses is critical in ensuring rapid and appropriate treatment. Sensor technologies have shown considerable advancements in viral diagnostics, demonstrating their great potential for being fast and sensitive detection platforms. In this review, we present a summary of the use of an interferometric reflectance imaging sensor (IRIS) for the detection of microorganisms. We highlight low magnification modality of IRIS as an ensemble biomolecular mass measurement technique and high magnification modality for the digital detection of individual nanoparticles and viruses. We discuss the two different modalities of IRIS and their applications in the sensitive detection of microorganisms and viruses.
Collapse
Affiliation(s)
- Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Sinem Diken Gür
- Department of Biotechnology, Hacettepe University, Ankara 06800, Turkey
| | - Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mete Aslan
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - M. Selim Ünlü
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
14
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors-The Future of Pathogen Real-Time Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249757. [PMID: 36560126 PMCID: PMC9785510 DOI: 10.3390/s22249757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 05/26/2023]
Abstract
Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armored and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
15
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
17
|
Aparna, Garg M, Vishwakarma N, Mizaikoff B, Singh S. Molecularly imprinted conducting polymer based sensor for Salmonella typhimurium detection. Bioelectrochemistry 2022; 147:108211. [PMID: 35905668 DOI: 10.1016/j.bioelechem.2022.108211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
This manuscript reports the design and fabrication of conducting plastibody based electrochemical sensor for the detection of Salmonella typhimurium. The conductive plastibody was fabricated on an Indium Tin Oxide surface through potentiostatic method (electrodeposition for 400 s), wherein a polymer mix of pyrrole, lactic acid, ammonium chloride, and sodium dodecyl sulfate was employed for the electrodeposition. Various template removal methods were tested and electrochemical cleaning in the MES buffer was found to be the most suitable, which was optimized further. The synthesized plastibody sensors were characterized using electrochemical impedance spectroscopy, contact angle, FTIR spectroscopy and scanning electron microscopy. Amperometry was used as the electrochemical analytical technique for the determination of the analyte in the concentration range of 100 -108 CFU/mL having a limit of detection of 3.42 CFU/mL. Sensor's performance was also compared with the non-imprinted electrode and an imprinting factor of 3.8 was found. The plastibody sensor was tested against other bacteria and coefficient of selectivity was calculated to be 1.0, 10.8, 5.6 and 2.4 towards S. typhi, S. aureus, E. coli and L. monocytogenes respectively. The sensor was also found to be reproducible in nature (RSD 0.11 %) and this generic concept presented herein may be extended for the detection of pathogens in other matrices as well.
Collapse
Affiliation(s)
- Aparna
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
| | - Mayank Garg
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
| | - Neelam Vishwakarma
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Germany; Hahn-Schickard Institute for Microanalysis Systems, Ulm, Germany.
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India.
| |
Collapse
|
18
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
20
|
Fundamentals of Biosensors and Detection Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:3-29. [PMID: 35760986 DOI: 10.1007/978-3-031-04039-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.
Collapse
|
21
|
Sakdaphetsiri K, Teanphonkrang S, Schulte A. Cheap and Sustainable Biosensor Fabrication by Enzyme Immobilization in Commercial Polyacrylic Acid/Carbon Nanotube Films. ACS OMEGA 2022; 7:19347-19354. [PMID: 35721902 PMCID: PMC9202243 DOI: 10.1021/acsomega.2c00925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Novel glucose biosensors were constructed by loading glucose oxidase (GOx) into the nanopores of homogenous carbon nanotube (CNT) films on the surface of Pt disk electrodes and trapping the enzyme by subsequent deposition of polyacrylic acid (PAA), forming PAA/GOx-CNT-modified Pt disks. In amperometric biosensing with anodic hydrogen peroxide (H2O2) detection at a potential of +600 mV, increasing electrolyte glucose concentrations produced instantaneous steps in the H2O2 oxidation current. Glucose biosensor amperometry was feasible down to 10 μM, with a sensitivity of about 34 μA mM-1 cm-2 and linear current response up to 5 mM. The biosensors reliably determined glucose concentrations in human serum and a beverage. Successful trials with PAA/GOx-CNT-modified screen-printed Pt electrode disks demonstrated the potential of this means of enzyme fixation in biosensor mass fabrication, which offers a unique combination of cheap availability of the two matrix constituents and sensor layer formation through simple drop-and-dry steps. PAA/GOx-CNT/Pt biosensors are green and user-friendly bioanalytical tools that do not need large budgets, special skills, or laboratory amenities for their production. Any user, from industrial, university, or school laboratories, even if inexperienced in biosensor construction, can prepare functional biosensors with GOx, as in these proof-of-principle studies, or with other redox enzymes, for clinical, environmental, pharmaceutical, or food sample analysis.
Collapse
|
22
|
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. CHEMOSPHERE 2022; 295:133915. [PMID: 35143869 DOI: 10.1016/j.chemosphere.2022.133915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Significant findings for microbial removal have led to expertise on several kinds of nanomaterials that made new paths for removing various biological contaminants in a variety of water resources in recent years. Furthermore, advancements in multifunctional nanocomposites synthesis pave the enhanced possibility for their use in water treatment system design. The adsorption towards microbial elimination has been reviewed and compared in this review article using four common kinds of nanomaterials: carbon materials, metal oxides, metal/metal oxides, polymeric metal oxide nanocomposites and their most important mechanistic behavior also discussed. We also describe and analyze recent findings on the effects of engineered nanomaterials on microbial communities in natural and artificial environments. Understanding the removal mechanistic strategy is crucial to improving the nanoparticles (NPs) efficiency and increasing their applicability against a variety of bacteria in various environmental conditions. Also, our study focused on their behavioral effects on microbial structure and functionality towards the removal. Future research opportunities connected to the use of nanomaterials in microbial control and inactivation with societal and health implications are also discussed. We also highlight a number of interesting research subjects that might be of futuristic interest to the scientific community.
Collapse
Affiliation(s)
- A Chithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - Rajaseetharama Sekar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India.
| | - G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| |
Collapse
|
23
|
Demuth J, Kantor M, Kucera R, Miletin M, Novakova V. Comparison of Quenching Efficiencies in Long Triple-Labeled and Double-Labeled TaqMan Oligodeoxynucleotide Probes. Bioconjug Chem 2022; 33:788-794. [PMID: 35476400 DOI: 10.1021/acs.bioconjchem.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although triple labeling of molecular beacons has been documented to improve quenching efficiencies and studies generally assume similar benefits at long TaqMan probes, a limited number of works have studied this issue in TaqMan probes. We therefore prepared a series of long triple-labeled oligodeoxynucleotide probes with 6-carboxyfluorescein as a fluorophore at the 5'-end and BlackBerry (BBQ-650) or azaphthalocyanine quenchers at the 3'-end and in the intrastrand position and systematically compared their quenching efficiencies with those of the corresponding double-labeled probes including important control probes. A model polymerase chain reaction (PCR) assay enabled the determination of the quenching efficiencies of static and Förster resonance energy transfer (FRET) quenching in the target probes. The type of probe had no effect on the static quenching ability. Importantly, FRET quenching of double-labeled probes with a quencher at the 3'-end showed a statistically insignificant difference from the control probe without any quencher, indicating the need to shift the quencher closer to the fluorophore in long probes. Shortening the distance between the fluorophore and the quencher played a key role in FRET quenching, whereas the introduction of an additional quencher only slightly improved the quenching efficiency. BBQ-labeled probes had lower quenching efficiencies than azaphthalocyanine probes. The methodologies and relationships described above seem, however, to be universal and applicable to any quencher.
Collapse
Affiliation(s)
- Jiri Demuth
- Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
| | - Michal Kantor
- Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
| | - Radim Kucera
- Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
24
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
25
|
Jamil T, Munir S, Wali Q, Shah GJ, Khan ME, Jose R. Water Purification through a Novel Electrospun Carbon Nanofiber Membrane. ACS OMEGA 2021; 6:34744-34751. [PMID: 34963957 PMCID: PMC8697392 DOI: 10.1021/acsomega.1c05197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Here, we report water purification through novel polyvinyl alcohol (PVA)-based carbon nanofibers synthesized through the electrospinning technique. In our novel approach, we mix PVA and tetraethyl orthosilicate (TEOS) with green tea solutions with different concentrations to synthesize carbon-based nanofibers (CNFs) and further calcine at 280 °C for carbonization. The scanning electron microscopy (SEM) results show the diameter of the nanofibers to be ∼500 nm, which decreases by about 50% after carbonization, making them more suitable candidates for the filtration process. Next, using these carbon nanofibers, we prepare filters for water purification. The synthesized CNF filters show excellent performance and successful removal of contaminants from the water by analyzing the CNF-based filters before and after the filtration of water through SEM and energy-dispersive X-ray (EDX) spectroscopy. Our SEM and EDX results indicate the presence of various nanoparticles consisting of different elements such as Mg, Na, Ti, S, Si, and Fe on the filters, after the filtration of water. Additionally, the SEM results show that PVA and TEOS concentrations play an important role in the formation, uniformity, homogeneity, and particularly in the reduction of the nanofiber diameter.
Collapse
Affiliation(s)
- Tariq Jamil
- Faculty
of Engineering Science, Ghulam Ishaq Khan
Institute of Engineering Sciences and Technology, 23460 Topi, Khyber Pakhtunkhwa, Pakistan
| | - Shamsa Munir
- School
of Applied Sciences & Humanities, National
University of Technology, 44000 Islamabad, Pakistan
| | - Qamar Wali
- School
of Applied Sciences & Humanities, National
University of Technology, 44000 Islamabad, Pakistan
| | - Gul Jamil Shah
- Pakistan
Navy Engineering College, National University
of Science and Technology, 44000 Islamabad, Pakistan
| | - Muhammad Ejaz Khan
- Department
of Computer Engineering, National University
of Technology, 44000 Islamabad, Pakistan
| | - Rajan Jose
- Nanostructured
Renewable Energy Materials Laboratory, Faculty
of Industrial Sciences & Technology, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
26
|
Sen RK, Prabhakar P, Bisht N, Patel M, Mishra S, Yadav AK, Venu DV, Gupta GK, Solanki PR, Ramakrishnan S, Mondal D, Srivastava AK, Dwivedi N, Dhand C. 2D Materials-Based Aptamer Biosensors: Present Status and Way Forward. Curr Med Chem 2021; 29:5815-5849. [PMID: 34961455 DOI: 10.2174/0929867328666211213115723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.
Collapse
Affiliation(s)
- Raj Kumar Sen
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Priyanka Prabhakar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Shruti Mishra
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Amit Kumar Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067. India
| | - Divya Vadakkumana Venu
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Gaurav Kumar Gupta
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067. India
| | - Seeram Ramakrishnan
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore, 117576. Singapore
| | - Dehipada Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | | | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| |
Collapse
|
27
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Kim S, Romero-Lozano A, Hwang DS, Yoon JY. A guanidinium-rich polymer as a new universal bioreceptor for multiplex detection of bacteria from environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125338. [PMID: 33592489 DOI: 10.1016/j.jhazmat.2021.125338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
Protamine, a guanidinium rich polymer, is proposed as a universal bioreceptor for bacteria, towards rapid and handheld bacteria detection from complex environmental water samples without the need for specific antibodies or primers. Escherichia coli K12, Salmonella Typhimurium, and Staphylococcus aureus (MSSA) were assayed, representing gram-negative, gram-positive, rod- and round-shaped bacteria. Samples and the protamine conjugated fluorescent particles were sequentially loaded to the paper microfluidic chips and flowed through the channels spontaneously via capillary action. The particles were aggregated via protamine-bacteria membrane interactions and unbound particles were rinsed via capillary action. A low-cost smartphone fluorescence microscope was designed, fabricated, and imaged the paper channels. A unique image processing algorithm isolated only the aggregated particles to detect all three bacteria (p < 0.05) with a detection limit of 101-102 CFU/mL. Protamine did not induce any particle aggregation with a model protein, algae, and virus. Successful bacteria detection was also demonstrated with environmental field water samples. Total assay time was < 10 min with neither extraction nor enrichment steps. In summary, a guanidinium-rich polymer showed a promise as a universal bioreceptor for bacteria and can be used on a paper microfluidic chip and smartphone quantification towards rapid and handheld detection.
Collapse
Affiliation(s)
- Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Anakaren Romero-Lozano
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
30
|
Ogawa U, Koyama K, Koseki S. Rapid detection and enumeration of aerobic mesophiles in raw foods using dielectrophoresis. J Microbiol Methods 2021; 186:106251. [PMID: 34038753 DOI: 10.1016/j.mimet.2021.106251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
The concept of dielectrophoresis (DEP), which involves the movement of neutral particles by induced polarization in nonuniform electric fields, has been exploited in various biological applications. However, only a few studies have investigated the use of DEP for detecting and enumerating microorganisms in foodstuffs. Therefore, we aimed to evaluate the accuracy and efficiency of a DEP-based method for enumerating viable bacteria in three raw foods: freshly cut lettuce, chicken breast, and minced pork. The DEP separation of bacterial cells was conducted at 20 V of output voltage and 6000 to 9000 kHZ of frequency with sample conductivity of 30-70 μS/cm. The accuracy and validity of the DEP method for enumerating viable bacteria were compared with those of the conventional culture method; no significant variation was observed. We found a high correlation between the data obtained using DEP and the conventional aerobic plate count culture method, with a high coefficient of determination (R2 > 0.90) regardless of the food product; the difference in cell count data between both methods was within 1.0 log CFU/mL. Moreover, we evaluated the efficiency of the DEP method for enumerating bacterial cells in chicken breasts subjected to either freezing or heat treatment. After thermal treatment at 55 °C and 60 °C, the viable cell counts determined via the DEP method were found to be lower than those obtained using the conventional culture method, which implies that the DEP method may not be suitable for the direct detection of injured cells. In addition to its high accuracy and efficiency, the DEP method enables the determination of viable cell counts within 30 min, compared to 48 h required for the conventional culture method. In conclusion, the DEP method may be a potential alternative tool for rapid determination of viable bacteria in a variety of foodstuffs.
Collapse
Affiliation(s)
- Umi Ogawa
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kento Koyama
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Shigenobu Koseki
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
31
|
Pilevar M, Kim KT, Lee WH. Recent advances in biosensors for detecting viruses in water and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124656. [PMID: 33308919 DOI: 10.1016/j.jhazmat.2020.124656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 05/09/2023]
Abstract
As there is a considerable number of virus particles in wastewater which cause numerous infectious diseases, it is necessary to eliminate viruses from domestic wastewater before it is released in the environment. In addition, on-site detection of viruses in wastewater can provide information on possible virus exposures in the community of a given wastewater catchment. For this purpose, the pre-detection of different strains of viruses in wastewaters is an essential environmental step. Epidemiological studies illustrate that viruses are the most challenging pathogens to be detected in water samples because of their nano sizes, discrete distribution, and low infective doses. Over the past decades, several methods have been applied for the detection of waterborne viruses which include polymerase chain reaction-based methods (PCR), enzyme-linked immunosorbent assay (ELISA), and nucleic acid sequence-based amplification (NASBA). Although they have shown acceptable performance in virus measurements, their drawbacks such as complicated and time-consuming procedures, low sensitivity, and high analytical cost call for alternatives. Although biosensors are still in an early stage for practical applications, they have shown great potential to become an alternative means for virus detection in water and wastewater. This comprehensive review addresses the different types of viruses found in water and the recent development of biosensors for detecting waterborne viruses.
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
32
|
Abstract
The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of light-known as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as "quantum plasmonic sensing", and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.
Collapse
Affiliation(s)
- Changhyoup Lee
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Benjamin Lawrie
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raphael Pooser
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kwang-Geol Lee
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021Karlsruhe, Germany.,Max Planck School of Photonics, 07745 Jena, Germany
| | - Mark Tame
- Department of Physics, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
33
|
Yao S, Zhao C, Shang M, Li J, Wang J. Enzyme-free and label-free detection of Staphylococcus aureus based on target-inhibited fluorescence signal recovery. Food Chem Toxicol 2021; 150:112071. [PMID: 33609594 DOI: 10.1016/j.fct.2021.112071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/30/2022]
Abstract
In this work, a one-step fluorometric strategy based on nanometal surface energy transfer (NSET) between carbon dots (CDs) and gold nanoparticles (AuNPs) was developed for facile detection of Staphylococcus aureus (S. aureus). The fluorescence of CDs was quenched up to 63.5% by AuNPs due to nucleic acid hybridization in the presence of linker DNA, which contained the complementary sequences of S. aureus-specific aptamer, and the fluorescence signal was in the "off" state. Upon aptamer addition, the CDs was released from linker DNA through the strong competitiveness of aptamer, leading to the notable fluorescence recovered. Once S. aureus is introduced, aptamer preferentially bind to the bacterial surface and cannot hybridize with complementary sequences in the linker DNA, resulting in the fluorescence signal with "off" state. Based on these findings, the performance and reliability of the fluorescence-based assay were evaluated. Compared to direct hybridization of complementary DNA on the surface of CDs and AuNPs, our sensing strategy has enhanced detection limit (10 cfu⋅mL-1) and improved linear range (10 to 106 cfu⋅mL-1) for S. aureus. Therefore, our proposed enzyme-free and label-free strategy may become a promising method for ease of operation, sensitive and selective S. aureus detection.
Collapse
Affiliation(s)
- Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Mingyu Shang
- College of Earth Sciences, Jilin University, Changchun, 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Arreguin-Campos R, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B, Eersels K. Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety. BIOSENSORS 2021; 11:46. [PMID: 33670184 PMCID: PMC7916965 DOI: 10.3390/bios11020046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023]
Abstract
Foodborne illnesses represent high costs worldwide in terms of medical care and productivity. To ensure safety along the food chain, technologies that help to monitor and improve food preservation have emerged in a multidisciplinary context. These technologies focus on the detection and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides) safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and biological contaminants. While numerous reviews have focused on the use of these robust materials in extraction and separation applications, little bibliography summarizes the research that has been performed on their coupling to sensing platforms for food safety. The aim of this work is therefore to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting technology in the whole value chain ranging from IP preparation to integrated sensor systems for the specific recognition and quantification of chemical and microbiological contaminants in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616,6200 MD Maastricht, The Netherlands; (R.A.-C.); (K.L.J.-M.); (H.D.); (T.J.C.); (B.v.G.)
| |
Collapse
|
35
|
Yamaguchi Y, Yamamoto T. One-Dimensional Flow of Bacteria on an Electrode Rail by Dielectrophoresis: Toward Single-Cell-Based Analysis. MICROMACHINES 2021; 12:mi12020123. [PMID: 33498919 PMCID: PMC7911595 DOI: 10.3390/mi12020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Many applications in biotechnology and medicine, among other disciplines, require the rapid enumeration of bacteria, preferably using miniaturized portable devices. Microfluidic technology is expected to solve this miniaturization issue. In the enumeration of bacteria in microfluidic devices, the technique of aligning bacteria in a single line prior to counting is the key to an accurate count at single-bacterium resolution. Here, we describe the numerical and experimental evaluation of a device utilizing a dielectrophoretic force to array bacteria in a single line, allowing their facile numeration. The device comprises a channel to flow bacteria, two counter electrodes, and a capture electrode several microns or less in width for arranging bacteria in a single line. When the capture electrode is narrower than the diameter of a bacterium, the entrapment efficiency of the one-dimensional array is 80% or more within 2 s. Furthermore, since some cell-sorting applications require bacteria to move against the liquid flow, we demonstrated that bacteria can move in a single line in the off-axial direction tilted 30° from the flow direction. Our findings provide the basis for designing miniature, portable devices for evaluating bacteria with single-cell accuracy.
Collapse
|
36
|
Yu J, Wu H, He L, Tan L, Jia Z, Gan N. The universal dual-mode aptasensor for simultaneous determination of different bacteria based on naked eyes and microfluidic-chip together with magnetic DNA encoded probes. Talanta 2020; 225:122062. [PMID: 33592781 DOI: 10.1016/j.talanta.2020.122062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It was critically important to develop some sensitive, convenient and on-site methods for simultaneous assay of different pathogenic bacteria in foods. In this work, a dual-mode aptasensor was established for fulfilling above aims combing colorimetry with microfluidic chip. This as-prepared dual-mode aptasensor not only realized rapid screening by naked eye on-site, but also the simultaneous quantification of multiple bacteria. Namely, the presence of pathogenic bacteria was firstly judged by naked eyes with Salmonella typhimurium (S.T) and Vibrio parahaemolyticus (V.P) as models. And then, S.T and V.P in positive samples were simultaneously quantified by microfluidic chip. In order to obtain the multiple signals, a series of magnetic DNA encoded-probes (MDEs) was fabricated containing rolling cycle amplified long DNA chain (RCA-DNA) rich in G-quadruplex sequences. They can combine with hemin as DNAzyme to catalyze 3,3'-5,5'-Tetramethyl benzidine (TMB)-H2O2 system for color development and be cleaved by EcoRV endonuclease to produce DNA fragments with different lengths. The microfluidic chip was employed to separate and quantify the fragments for quantifying S.T and V.P simultaneously. For this protocol, 100 CFU·mL-1 of V.P or S.T could be observed by the naked eye and as low as 32 S.T and 30 CFU·mL-1 V.P could be detected by the chip within 3 min. The dual-mode aptasensor could quickly screen positive samples, and simultaneously perform quantitative detection of the bacteria in positive samples. Our protocol demonstrated its potential in on-site qualification & simultaneous quantification of foodborne bacteria in foods.
Collapse
Affiliation(s)
- Jiale Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Huihui Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Liyong He
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510000, PR China
| | - Zhijian Jia
- School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, PR China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China.
| |
Collapse
|
37
|
Development of MWCNTs/TiO2 nanoadsorbent for simultaneous removal of phenol and cyanide from refinery wastewater. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Bruce JA, Clapper JC. Conjugation of Carboxylated Graphene Quantum Dots with Cecropin P1 for Bacterial Biosensing Applications. ACS OMEGA 2020; 5:26583-26591. [PMID: 33110986 PMCID: PMC7581262 DOI: 10.1021/acsomega.0c03342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/25/2020] [Indexed: 05/03/2023]
Abstract
Biosensors that can accurately and rapidly detect bacterial concentrations in solution are important for potential applications such as assessing drinking water safety. Meanwhile, quantum dots have proven to be strong candidates for biosensing applications in recent years because of their strong light emission properties and their ability to be modified with a variety of functional groups for the detection of different analytes. Here, we investigate the use of conjugated carboxylated graphene quantum dots (CGQDs) for the detection of Escherichia coli using a biosensing assay that focuses on measuring changes in fluorescence intensity. We have further developed this assay into a novel, compact, field-deployable biosensor focused on rapidly measuring changes in absorbance to determine E. coli concentrations. Our CGQDs were conjugated with cecropin P1, a naturally produced antibacterial peptide that facilitates the attachment of CGQDs to E. coli cells; to our knowledge, this is the first instance of cecropin P1 being used as a biorecognition element for quantum dot biosensors. As such, we confirm the structural modification of these conjugated CGQDs in addition to analyzing their optical characteristics. Our findings have the potential to be used in situations where rapid, reliable detection of bacteria in liquids, such as drinking water, is required, especially given the low range of E. coli concentrations (103 to 106 CFU/mL) within which our two biosensing assays have collectively been shown to function.
Collapse
Affiliation(s)
- Jonathan A. Bruce
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| | - Jude C. Clapper
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| |
Collapse
|
40
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|
41
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
42
|
Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020; 165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, MD, 21250, United States.
| |
Collapse
|
43
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
44
|
Cui RF, Chen QH, Chen JX. Separation of nanoparticles via surfing on chemical wavefronts. NANOSCALE 2020; 12:12275-12280. [PMID: 32246757 DOI: 10.1039/d0nr01211d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The separation of micro and nanoscale colloids is a necessary step in most biological microassay techniques, and is a common practice in microchemical processing. Chemical waves are frequently encountered in biochemical systems driven far from equilibrium. Here, we put forward a strategy for separating small suspending colloids by means of their surfing on substrate chemical wavefronts. The colloids with catalytic activities sensitive to the substrates are activated to show self-propulsion and consequently exhibit a chemotactic response to the traveling wavefronts, which results in their spontaneous separation from the multicomponent complex mixture via self-diffusiophoresis. The dynamics of the process is analyzed through a particle-based simulation. In addition, it is found that separation can be carried out according to particle size. The mechanisms underpinning the chemical and physical separation processes are discussed, and the dependencies on the reaction rate constant and particle size are presented. The results may prove relevant for further experimental and theoretical studies of separation in complex active environments.
Collapse
Affiliation(s)
- Ru-Fei Cui
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qing-Hu Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
45
|
Patel DK, Kim HB, Dutta SD, Ganguly K, Lim KT. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1679. [PMID: 32260227 PMCID: PMC7178645 DOI: 10.3390/ma13071679] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) are considered a promising nanomaterial for diverse applications owing to their attractive physicochemical properties such as high surface area, superior mechanical and thermal strength, electrochemical activity, and so on. Different techniques like arc discharge, laser vaporization, chemical vapor deposition (CVD), and vapor phase growth are explored for the synthesis of CNTs. Each technique has advantages and disadvantages. The physicochemical properties of the synthesized CNTs are profoundly affected by the techniques used in the synthesis process. Here, we briefly described the standard methods applied in the synthesis of CNTs and their use in the agricultural and biotechnological fields. Notably, better seed germination or plant growth was noted in the presence of CNTs than the control. However, the exact mechanism of action is still unclear. Significant improvements in the electrochemical performances have been observed in CNTs-doped electrodes than those of pure. CNTs or their derivatives are also utilized in wastewater treatment. The high surface area and the presence of different functional groups in the functionalized CNTs facilitate the better adsorption of toxic metal ions or other chemical moieties. CNTs or their derivatives can be applied for the storage of hydrogen as an energy source. It has been observed that the temperature widely influences the hydrogen storage ability of CNTs. This review paper highlighted some recent development on electrochemical platforms over single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), and nanocomposites as a promising biomaterial in the field of agriculture and biotechnology. It is possible to tune the properties of carbon-based nanomaterials by functionalization of their structure to use as an engineering toolkit for different applications, including agricultural and biotechnological fields.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Been Kim
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
46
|
Baraketi A, D'Auria S, Shankar S, Fraschini C, Salmieri S, Menissier J, Lacroix M. Novel spider web trap approach based on chitosan/cellulose nanocrystals/glycerol membrane for the detection of Escherichia coli O157:H7 on food surfaces. Int J Biol Macromol 2020; 146:1009-1014. [DOI: 10.1016/j.ijbiomac.2019.09.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
|
47
|
Yao S, Zhao C, Liu Y, Nie H, Xi G, Cao X, Li Z, Pang B, Li J, Wang J. Colorimetric Immunoassay for the Detection of Staphylococcus aureus by Using Magnetic Carbon Dots and Sliver Nanoclusters as o-Phenylenediamine-Oxidase Mimetics. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-019-01683-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Scanone AC, Santamarina SC, Heredia DA, Durantini EN, Durantini AM. Functionalized Magnetic Nanoparticles with BODIPYs for Bioimaging and Antimicrobial Therapy Applications. ACS APPLIED BIO MATERIALS 2020; 3:1061-1070. [DOI: 10.1021/acsabm.9b01035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ana C. Scanone
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Sofía C. Santamarina
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Daniel A. Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Andrés M. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|
49
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Faal Maleki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
50
|
Ahmad J, Naeem S, Ahmad M, Usman ARA, Al-Wabel MI. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:214-228. [PMID: 31176983 DOI: 10.1016/j.jenvman.2019.05.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The prevalence of organic micropollutants (OMPs) in various environmental compartments is posing a serious health risks to all kinds of lives on the planet. The levels of OMPs such as polyaromatic hydrocarbons, antibiotics, pesticides, contraceptive medicines, and personal care products in water bodies are increasing with each passing day. It is an urgent need of time to limit the release of OMPs into the environment, and to remove the prevailing OMPs for sustainable environmental management. The majority of the conventional means of water decontamination are either inefficient or expensive. However, due to nanosize, high surface area, and hollow and layered structure, carbon nanotubes (CNTs) serve as excellent sorbents for the removal of a diverse range of OMPs. The occurrence of emerging OMPs and their detrimental effects on human and animal health are collected and discussed in this review. The characteristics and efficacy of various CNTs (pristine and modified) for the efficient removal of different OMPs, and the removal mechanisms have been reviewed and discussed. The literature demonstrated that adsorption of OMPs onto CNTs is very complicated and rely on multiple factors including the properties of adsorbent and the adsorbate as well as solution chemistry. It was found that H-bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, H-π bongs, and π-π interactions were the major mechanisms responsible for the adsorption of OMPs onto various kinds of CNTs. Despite of higher affinities for OMPs, hydrophobicity and higher costs restrain the practical application of CNTs for wastewater treatment on large scale. However, continuous production may lead to the development of cost-effective, efficient and eco-friendly CTNs technology for wastewater treatments in future.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 61000, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shoaib Naeem
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|