1
|
Baptista-Perianes A, Simbara MMO, Malmonge SM, da Cunha MR, Buchaim DV, Miglino MA, Kassis EN, Buchaim RL, Santos AR. Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers (Basel) 2024; 16:3054. [PMID: 39518269 PMCID: PMC11548402 DOI: 10.3390/polym16213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness and porosity of the scaffolds were determined. Functional assessments of mesenchymal stem cells (MSCs) included the MTT assay, alkaline phosphatase (ALP) production, and morphological and cytochemical analyses. Moreover, these polymers were implanted into rats to evaluate their in vivo performance. The morphology and FTIR spectra of the scaffolds were consistent with the expected results. Porous polymers were thicker than dense polymers, and porosity was higher than 92% in all samples. The cells exhibited good viability, activity, and growth on the scaffolds. A higher number of cells was observed on dense polymers, likely due to their smaller surface area. ALP production occurred in all samples, but enzyme activity was more intense in PCL samples. The scaffolds did not interfere with the osteogenic capacity of MSCs, and mineralized nodules were present in all samples. Histological analysis revealed new bone formation in all samples, although pure PHBV exhibited lower results compared to the other blends. In vivo results indicated that dense PCL and the dense 75/25 blend were the best materials tested, with PCL tending to improve the performance of PHBV in vivo.
Collapse
Affiliation(s)
- Amália Baptista-Perianes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| | - Marcia Mayumi Omi Simbara
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Sônia Maria Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Marcelo Rodrigues da Cunha
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Elias Naim Kassis
- University Center of the North of São Paulo (UNORTE), São José Do Rio Preto 15020-040, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Arnaldo Rodrigues Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| |
Collapse
|
2
|
Lima GMR, Mukherjee A, Picchioni F, Bose RK. Characterization of Biodegradable Polymers for Porous Structure: Further Steps toward Sustainable Plastics. Polymers (Basel) 2024; 16:1147. [PMID: 38675066 PMCID: PMC11054705 DOI: 10.3390/polym16081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics-polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 μm2, PBS showed an average porous area of 673 μm2, PHBV displayed open pores with an average area of 116.6 μm2, and PLA exhibited an average porous area of 620 μm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Product Technology Department, University of Groningen, 9747 AG Groningen, The Netherlands; (G.M.R.L.); (A.M.); (F.P.)
| |
Collapse
|
3
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Zhuikova YV, Zhuikov VA, Makhina TK, Efremov YM, Aksenova NA, Timashev PS, Bonartseva GA, Varlamov VP. Preparation and characterization of poly(3-hydroxybutyrate)/chitosan composite films using acetic acid as a solvent. Int J Biol Macromol 2023; 248:125970. [PMID: 37494998 DOI: 10.1016/j.ijbiomac.2023.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Poly(3-hydroxybutyrate) and chitosan are among the most widely used polymers for biomedical applications due to their biocompatibility, renewability and low toxicity. The creation of composite materials based on biopolymers belonging to different classes makes it possible to overcome the disadvantages of each of the components and to obtain a material with specific properties. Solving this problem is associated with difficulties in the selection of conditions and solvents for obtaining the composite material. In our study, acetic acid was used as a common solvent for hydrophobic poly(3-hydroxybutyrate) and chitosan. Mechanical, thermal, physicochemical and surface properties of the composites and homopolymers were investigated. The composite films had less crystallinity and hydrophobicity than poly(3-hydroxybutyrate), and the addition of chitosan caused an increase in moisture absorption, a decrease in contact angle and changes in mechanical properties of the poly(3-hydroxybutyrate). The inclusion of varying amounts of chitosan controlled the properties of the composite, which will be important in the future for its specific biomedical applications.
Collapse
Affiliation(s)
- Yulia V Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana K Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nadezhda A Aksenova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare" Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Valery P Varlamov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Mansi K, Kumar R, Jindal N, Singh K. Biocompatible nanocarriers an emerging platform for augmenting the antiviral attributes of bioactive polyphenols: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Bonartsev A, Voinova V, Volkov A, Muraev A, Boyko E, Venediktov A, Didenko N, Dolgalev A. Scaffolds Based on Poly(3-Hydroxybutyrate) and Its Copolymers for Bone Tissue Engineering (Review). Sovrem Tekhnologii Med 2022; 14:78-90. [PMID: 37181830 PMCID: PMC10171059 DOI: 10.17691/stm2022.14.5.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 05/16/2023] Open
Abstract
Biodegradable and biocompatible polymers are actively used in tissue engineering to manufacture scaffolds. Biomedical properties of polymer scaffolds depend on the physical and chemical characteristics and biodegradation kinetics of the polymer material, 3D microstructure and topography of the scaffold surface, as well as availability of minerals, medicinal agents, and growth factors loaded into the scaffold. However, in addition to the above, the intrinsic biological activity of the polymer and its biodegradation products can also become evident. This review provides studies demonstrating that scaffolds made of poly(3-hydroxybutyrate) (PHB) and its copolymers have their own biological activity, and namely, osteoinductive properties. PHB can induce differentiation of mesenchymal stem cells in the osteogenic direction in vitro and stimulates bone tissue regeneration during the simulation of critical and non-critical bone defects in vivo.
Collapse
Affiliation(s)
- A.P. Bonartsev
- Associate Professor, Department of Bioengineering, Faculty of Biology; Lomonosov Moscow State University, 1–12 Leninskiye Gory, Moscow, 119234, Russia
| | - V.V. Voinova
- Senior Researcher, Department of Biochemistry, Faculty of Biology; Lomonosov Moscow State University, 1–12 Leninskiye Gory, Moscow, 119234, Russia
| | - A.V. Volkov
- Senior Researcher; N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, 10 Priorova St., Moscow, 127299, Russia; Associate Professor, Department of Pathological Anatomy, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - A.A. Muraev
- Professor, Department of Maxillofacial Surgery and Surgical Dentistry; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - E.M. Boyko
- Teacher, Essentuki Branch; Stavropol State Medical University, 310 Mira St., Stavropol, 355017, Russia
| | - A.A. Venediktov
- Director; Cardioplant LLC, 1B Tsentralnaya St., Bldg. 2, Penza, 440004, Russia
| | - N.N. Didenko
- Assistant, Department of Pathological Physiology; Stavropol State Medical University, 310 Mira St., Stavropol, 355017, Russia
| | - A.A. Dolgalev
- Associate Professor, Professor, Department of General and Pediatric Dentistry; Stavropol State Medical University, 310 Mira St., Stavropol, 355017, Russia; Head of the Center for Innovation and Technology Transfer of the Research and Innovation Association; Stavropol State Medical University, 310 Mira St., Stavropol, 355017, Russia
| |
Collapse
|
8
|
Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. Int J Biol Macromol 2022; 221:1184-1201. [PMID: 36113591 DOI: 10.1016/j.ijbiomac.2022.09.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 01/23/2023]
Abstract
PHA is one of the most promising candidates in bio-polymer family which is biodegradable and environment-friendly in nature. In recent years, it has been applied as a biodegradable alternative for petroleum-based plastic across different domains. In literature, several research groups have scrutinised the biocompatibility and biodegradability of PHA in both in vivo settings as well as in in vitro conditions. Microbial yield polyhydroxyalkanoates (PHAs) are promoted at present as biodegradable plastics. On the other hand, only a limited number of products is being commercially manufactured out of PHAs (e.g., bottles). A succession of microbes (prokaryotes in addition to eukaryotes) has been identified as potential candidates that can disintegrate PHAs. These materials have been successfully employed in packaging industry, medical devices and implants, moulded goods, paper coatings, adhesives, performance additives, mulch films, non-woven fabrics, etc. The present paper reviews and focuses on the potential applications of PHA and its derivatives in different industries.
Collapse
|
9
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
10
|
Yang Q, Liu H, Wang L, Wei B, Wu Q, Xu Q, Tang Q, Qi J, Li J, Wang J, Hu J, Li L. Untargeted metabolomics study on the effects of rearing ducks in cages on bone quality. Poult Sci 2021; 101:101604. [PMID: 34936950 PMCID: PMC8703082 DOI: 10.1016/j.psj.2021.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
The cage rearing model of the modern poultry industry makes the bones of birds more vulnerable to deterioration. In this study, at 8 wk of age, a total of 60 birds were randomly allocated to 2 groups, including the floor rearing group (FRD) and cage rearing group (CRD), and their body weight was measured every 2 wk. At the age of 20 wk, the tibia, femur, and humerus were collected from each group (n = 12) to determine the bone quality parameters such as weight, size, bone mineral density (BMD), breaking strength, cortical thickness, and area, ash content, calcium (Ca) content, and phosphorus (P) content. Meanwhile, the serum metabolome composition of both groups was detected by untargeted metabolome technology. The results showed that there were no significant differences in body weight, bone weight, and size between the 2 groups (P > 0.05), but the humerus mineral density and the breaking strength, cortical bone thickness, cortical bone area percentage of tibia, femur, and humerus of CRD was significantly lower than those of FRD (P < 0.05), indicating that the cage rearing system caused the deterioration of bone quality. Based on nontarget metabolomics, 49 metabolites were correlated with bone quality parameters, and 10 key metabolites were strongly correlated, including erucic acid, citric acid, and ketoleucine. In addition, the KEGG analysis showed that the caged system mainly perturbed amino acid metabolism, lipid metabolism, and energy metabolism, which led to changes in related metabolite levels, produced ROS, and altering energy supply, thus leading to a deterioration of bone quality of cage rearing ducks. Therefore, our findings were helpful to further understand the potential mechanism of the deterioration of duck bone quality in cage rearing system, provided a theoretical basis for reducing the occurrence of poultry osteoporosis, and ensuring the healthy development of poultry breeding.
Collapse
Affiliation(s)
- Qinglan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Luyao Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Qifan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jianmei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China.
| |
Collapse
|
11
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
12
|
|
13
|
Xu JK, Zhang L, Li DL, Bao JB, Wang ZB. Foaming of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with Supercritical Carbon Dioxide: Foaming Performance and Crystallization Behavior. ACS OMEGA 2020; 5:9839-9845. [PMID: 32391471 PMCID: PMC7203685 DOI: 10.1021/acsomega.9b04501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/13/2020] [Indexed: 05/12/2023]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) samples were successfully foamed using supercritical carbon dioxide as a physical foaming agent. PHBV sheets were first saturated at 175 °C followed by a foaming process at different temperatures (145 to 165 °C) and different CO2 pressures (10 to 29 MPa). It was found that microcellular structures with average cell sizes ranging from 6 to 22 μm and cell densities ranging from 108 to 1.2 × 109 cells/cm3 could be controllably prepared by selecting suitable foaming conditions. To investigate crystallization behavior during the foaming process and explore the corresponding foaming mechanism, differential scanning calorimetry, wide angle X-ray diffraction, and small-angle X-ray scattering characterizations were carried out. Stretching behavior during the cell growth stage may increase the crystal nucleation rate, and the generated crystal nucleus accelerates the crystallization rate as well as thickens PHBV crystal lamellae.
Collapse
Affiliation(s)
- Jin-Ke Xu
- Ningbo Key Laboratory of
Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Li Zhang
- Ningbo Key Laboratory of
Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - De-Long Li
- Ningbo Key Laboratory of
Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jin-Biao Bao
- Ningbo Key Laboratory of
Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zong-Bao Wang
- Ningbo Key Laboratory of
Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11:764-786. [PMID: 31692924 PMCID: PMC6828591 DOI: 10.4252/wjsc.v11.i10.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal multipotent stem cells that can differentiate into multiple cell types, including fibroblasts, osteoblasts, chondrocytes, adipocytes, and myoblasts, thus allowing them to contribute to the regeneration of various tissues, especially bone tissue. MSCs are now considered one of the most promising cell types in the field of tissue engineering. Traditional petri dish-based culture of MSCs generate heterogeneity, which leads to inconsistent efficacy of MSC applications. Biodegradable and biocompatible polymers, poly(3-hydroxyalkanoates) (PHAs), are actively used for the manufacture of scaffolds that serve as carriers for MSC growth. The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers, the 3D and surface microstructure of the scaffolds, and the biological activity of PHAs, which was discovered in a series of investigations. The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied. We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs, especially the most widespread representative poly(3-hydroxybutyrate) (PHB). This biopolymer is present in the bacteria of mammalian microbiota, whereas endogenous poly(3-hydroxybutyrate) is found in mammalian tissues. The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate) in bacteria and eukaryotes, including in humans, is discussed in this paper.
Collapse
Affiliation(s)
- Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Garina Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
15
|
Dalgic AD, Atila D, Karatas A, Tezcaner A, Keskin D. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:735-746. [DOI: 10.1016/j.msec.2019.03.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
|
16
|
Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices 2019; 16:467-482. [PMID: 31058550 DOI: 10.1080/17434440.2019.1615439] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The applications of naturally obtained polymers are tremendously increased due to them being biocompatible, biodegradable, environmentally friendly and renewable in nature. Among them, polyhydroxyalkanoates are widely studied and they can be utilized in many areas of human life research such as drug delivery, tissue engineering, and other medical applications. AREAS COVERED This review provides an overview of the polyhydroxyalkanoates biosynthesis and their possible applications in drug delivery in the range of micro- and nano-size. Moreover, the possible applications in tissue engineering are covered considering macro- and microporous scaffolds and extracellular matrix analogs. EXPERT COMMENTARY The majority of synthetic plastics are non-biodegradable so, in the last years, a renewed interest is growing to develop alternative processes to produce biologically derived polymers. Among them, PHAs present good properties such as high immunotolerance, low toxicity, biodegradability, so, they are promisingly using as biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Enas Elmowafy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Abdalla Abdal-Hay
- b Dentistry and Oral Health School , The University of Queensland , Qld , Australia
| | - Athanasios Skouras
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy.,d Department of Life Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Mattia Tiboni
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Luca Casettari
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Vincenzo Guarino
- e Institute of Polymers, composites and Biomaterials , National Research Council of Italy , Naples , Italy
| |
Collapse
|
17
|
Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3831251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHA), a microbial plastic has emerged as promising biomaterial owing to the broad range of mechanical properties. However, some studies revealed that PHA is hydrophobic and has no recognition site for cell attachment and this is often a limitation in tissue engineering aspects. Owing to this, the polymer is tailored accordingly in order to enhance the biocompatibilityin vivoas well as to suit the intended application. Thus far, these surface modifications have led to PHA being widely used in various biomedical and pharmaceutical applications such as cardiac patches, wound management, nerve, bone, and cartilage repair. This review addresses the surface modification on biomedical applications focusing on short-chain-length PHA such as poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)].
Collapse
|
18
|
Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res 2016; 108:1-9. [DOI: 10.1016/j.mvr.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022]
|
19
|
Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells on random and aligned nanofibrous scaffolds of PHBV and PHBV-gelatin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
|
21
|
Kosorn W, Sakulsumbat M, Uppanan P, Kaewkong P, Chantaweroad S, Jitsaard J, Sitthiseripratip K, Janvikul W. PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds. J Biomed Mater Res B Appl Biomater 2016; 105:1141-1150. [DOI: 10.1002/jbm.b.33658] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/10/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Wasana Kosorn
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Morakot Sakulsumbat
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Paweena Uppanan
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Pakkanun Kaewkong
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Surapol Chantaweroad
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Jaturong Jitsaard
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Kriskrai Sitthiseripratip
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| | - Wanida Janvikul
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center; Klong Luang Pathumthani 12120 Thailand
| |
Collapse
|
22
|
Qian J, Ma J, Su J, Yan Y, Li H, Shin JW, Wei J, Zhao L. PHBV-based ternary composite by intermixing of magnesium calcium phosphate nanoparticles and zein: In vitro bioactivity, degradability and cytocompatibility. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Wang C, Zheng Y, Sun Y, Fan J, Qin Q, Zhao Z. A novel biodegradable polyurethane based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol) as promising biomaterials with the improvement of mechanical properties and hemocompatibility. Polym Chem 2016. [DOI: 10.1039/c6py01131d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biodegradable PHBV-based polyurethane was designed and synthesized by using PHBV, MDI and PEG.
Collapse
Affiliation(s)
- Cai Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yudong Zheng
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yi Sun
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Jinsheng Fan
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Qiujing Qin
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Zhenjiang Zhao
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
24
|
KÖSE S, AERTS KAYA F, DENKBAŞ EB, KORKUSUZ P, ÇETİNKAYA FD. Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1508-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
25
|
Olkhov AA, Kosenko RY, Goldshtrakh MA, Markin VS, Ischenko AA, Iordanskii AL. Diffusive transport of drugs from film matrices. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2015. [DOI: 10.1134/s0040579515060068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Onder S, Calikoglu-Koyuncu AC, Kazmanli K, Urgen M, Torun Kose G, Kok FN. Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings. N Biotechnol 2015; 32:747-55. [DOI: 10.1016/j.nbt.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
|
27
|
Mu J, Niu H, Zhang J, Hu P, Bo P, Wang Y. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. J Histotechnol 2015. [DOI: 10.1179/2046023615y.0000000006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Li HY, Li H, Wang BJ, Gu Q, Jiang ZQ, Wu XD. Synthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitin nanocrystals composite scaffolds for tissue engineering. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Ke Y, Qu Z, Wu G, Wang Y. Thermal and in vitro degradation properties of the NH2-containing PHBV films. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
ZHOU MINGSHU, YU DONG. Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds. Mol Med Rep 2014; 10:508-14. [DOI: 10.3892/mmr.2014.2145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
|
31
|
PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:157987. [PMID: 24579074 PMCID: PMC3919120 DOI: 10.1155/2014/157987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/21/2013] [Indexed: 11/17/2022]
Abstract
Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with locally oriented hydrophilic polyacrylamide (PAM) inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100 μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance.
Collapse
|
32
|
Paşcu EI, Stokes J, McGuinness GB. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4905-16. [DOI: 10.1016/j.msec.2013.08.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 02/01/2023]
|
33
|
|
34
|
Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One 2013; 8:e71563. [PMID: 23951190 PMCID: PMC3739736 DOI: 10.1371/journal.pone.0071563] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV.
Collapse
|
35
|
Selcan Gungor-Ozkerim P, Balkan T, Kose GT, Sezai Sarac A, Kok FN. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. J Biomed Mater Res A 2013; 102:1897-908. [DOI: 10.1002/jbm.a.34857] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/31/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- P. Selcan Gungor-Ozkerim
- Molecular Biology-Genetics and Biotechnology Program; Istanbul Technical University; MOBGAM Istanbul 34469 Turkey
| | - Timucin Balkan
- Istanbul Technical University; Department of Chemistry & Polymer Science and Technology; Istanbul 34469 Turkey
| | - Gamze T. Kose
- Yeditepe University; Department of Genetics and Bioengineering; Istanbul 34755 Turkey
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University; Ankara Turkey
| | - A. Sezai Sarac
- Istanbul Technical University; Department of Chemistry & Polymer Science and Technology; Istanbul 34469 Turkey
| | - Fatma N. Kok
- Molecular Biology-Genetics and Biotechnology Program; Istanbul Technical University; MOBGAM Istanbul 34469 Turkey
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University; Ankara Turkey
- Istanbul Technical University; Molecular Biology and Genetics Department; Istanbul 34469 Turkey
| |
Collapse
|
36
|
Niu H, Mu J, Zhang J, Hu P, Bo P, Wang Y. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1535-1542. [PMID: 23620011 DOI: 10.1007/s10856-012-4842-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/12/2012] [Indexed: 06/02/2023]
Abstract
The purpose of this study was to investigate the most suitable polymer material for supporting stem cell growth as a myocardial patch. After cell isolation and expansion of mouse bone marrow mesenchymal stem cells (BMSC), the cells were induced to differentiate into cardiomyocytes with 5-azacytidine to determine their differentiation potential. BMSCs were also seeded onto three types of polymer material film, including polyurethane (PU), 3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB)], and polypropylene carbonate (PPC). The results revealed that cell numbers were more abundant on both the PU and P(3HB-co-4HB) material surfaces. Conversely, the surface of PPC was smooth with only cell lysate debris observed. The average cell counts were as follows: 143.78 ± 38.38 (PU group), 159.50 ± 33.07 [P(3HB-co-4HB) group], and 1.40 ± 0.70 (PPC group). There was no statistically significant difference in cell numbers between the PU and P(3HB-co-4HB) groups. A statistically significant difference was identified between the PPC group and both the PU (P1) and P(3HB-co-4HB) groups (P2). Polymer biomaterial patches composed of PU and P(3HB-co-4HB) permit good stem cell growth. P(3HB-co-4HB) has the potential for development as a clinical alternative to current treatment methods for the regeneration of cardiomyocytes in patients with myocardial infarction.
Collapse
Affiliation(s)
- Hongxing Niu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
37
|
Zhao H, Cui Z, Sun X, Turng LS, Peng X. Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends. Ind Eng Chem Res 2013. [DOI: 10.1021/ie301573y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Haibin Zhao
- National Engineering Research
Center of Novel Equipment for Polymer Processing, The Key Laboratory
of Polymer Processing Engineering Ministry of Education, South China University of Technology, Guangzhou, China
| | - Zhixiang Cui
- School of Materials Science
and Engineering, Fujian University of Technology, Fuzhou, China
| | - Xiaofei Sun
- Polymer
Engineering Center, University of Wisconsin−Madison, Wisconsin,
United States
| | - Lih-Sheng Turng
- Polymer
Engineering Center, University of Wisconsin−Madison, Wisconsin,
United States
| | - Xiangfang Peng
- National Engineering Research
Center of Novel Equipment for Polymer Processing, The Key Laboratory
of Polymer Processing Engineering Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
38
|
Polyhydroxyalkanoates: The Natural Polymers Produced by Bacterial Fermentation. ADVANCES IN NATURAL POLYMERS 2013. [DOI: 10.1007/978-3-642-20940-6_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
de Paula ACC, Zonari AAC, Martins TMDM, Novikoff S, da Silva ARP, Correlo VM, Reis RL, Gomes DA, Goes AM. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. Tissue Eng Part A 2012; 19:277-89. [PMID: 22920790 DOI: 10.1089/ten.tea.2012.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.
Collapse
Affiliation(s)
- Ana Cláudia Chagas de Paula
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mangindaan D, Yared I, Kurniawan H, Sheu JR, Wang MJ. Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. J Biomed Mater Res A 2012; 100:3177-88. [DOI: 10.1002/jbm.a.34251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 11/09/2022]
|
41
|
Karadas O, Yucel D, Kenar H, Torun Kose G, Hasirci V. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. J Tissue Eng Regen Med 2012; 8:534-45. [PMID: 22744919 DOI: 10.1002/term.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 05/25/2012] [Indexed: 01/22/2023]
Abstract
The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 µm. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtained from Wharton's jelly and menstrual blood were seeded on the collagen scaffolds and proliferation and osteogenic differentiation capacities of these cells from two different sources were compared. The cells on the composite scaffold showed the highest alkaline phosphatase activity compared to the controls, cells on tissue culture polystyrene and cells on collagen scaffolds without in situ-formed calcium phosphate. MSCs isolated from both Wharton's jelly and menstrual blood showed a significant level of osteogenic activity, but those from Wharton's jelly performed better. In this study it was shown that collagen nanocomposite scaffolds seeded with cells obtained non-invasively from human tissues could represent a potential construct to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Ozge Karadas
- Department of Biotechnology, METU, Ankara, Turkey; METU Centre of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Ankara, Turkey
| | | | | | | | | |
Collapse
|
42
|
Shishatskaya EI, Khlusov IA, Volova TG. A hybrid PHB–hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:481-98. [PMID: 16800151 DOI: 10.1163/156856206776986242] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260 degrees C to 225 degrees C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russia
| | | | | |
Collapse
|
43
|
Wang A, Gan Y, Yu H, Liu Y, Zhang M, Cheng B, Wang F, Wang H, Yan J. Improvement of the cytocompatibility of electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] mats by Ecoflex. J Biomed Mater Res A 2012; 100:1505-11. [PMID: 22408070 DOI: 10.1002/jbm.a.34034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 11/17/2011] [Indexed: 11/06/2022]
Abstract
Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) is a nature-derived polyester with potential application in tissue engineering scaffolds. However, PHBV is associated with disadvantages including high brittleness, slow degradation, high hydrophobicity, and unsatisfactory biocompatibility. In this study, we sought to improve the properties of PHBV by blending it with Ecoflex, a synthetic biopolyester with a high flexibility, fast degradation, and comparatively higher hydrophilicity. PHBV was codissolved with Ecoflex in dichloromethane at different mass ratios (PHBV/Ecoflex: 100/0, 70/30, 50/50, and 30/70) and electrospun into mats. Compared with the pure PHBV mat, the Ecoflex-containing mats showed decreased contact angles with phosphate-buffered saline (PBS), accelerated weight loss in PBS, and increased strain at break with increasing Ecoflex mass ratios. In vitro cell culture also showed significantly improved adhesion and proliferation of human bone marrow stroma cells with the introduction of Ecoflex. Blending PHBV with Ecoflex is a simple and effective method to improve the chemical, mechanical, and biological properties of PHBV simultaneously and thereby to expedite its application in tissue engineering. To our knowledge, this is the first report showing the biocompatibility of Ecoflex-containing materials with human cells.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Epidemiology, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ma Y, Zheng Y, Wei G, Song W, Hu T, Yang H, Xue R. Processing, structure, and properties of multiwalled carbon nanotube/poly(hydroxybutyrate‐
co
‐valerate) biopolymer nanocomposites. J Appl Polym Sci 2012. [DOI: 10.1002/app.35650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanxuan Ma
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yudong Zheng
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Guangye Wei
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Wenhui Song
- Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London UB8 3PH, United Kingdom
| | - Te Hu
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Huai Yang
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Rundong Xue
- Research Center of Biomedical Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
45
|
Wang J, Wang Z, Li J, Wang B, Liu J, Chen P, Miao M, Gu Q. Chitin nanocrystals grafted with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr Polym 2012; 87:784-789. [DOI: 10.1016/j.carbpol.2011.08.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
46
|
Abstract
Objectives The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation. Methods Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining. Results Following 14 days of incubation the generated tissue showed histological characteristics of bone-like material due to the characteristic eosinophilic staining, a positive staining for collagen trichrome and a positive specific staining for osteocalcin and collagen 1. Macroscopically, this tissue appeared in aggregates of between 0.5 cm and 2 cm. Conclusions We present evidence that the interaction of the cellular, inorganic and mechanical components in vitro can rapidly generate three-dimensional bone-like tissue that might be used as an autologous bone graft.
Collapse
Affiliation(s)
- N. Rosenberg
- Ruth and Bruce Rappaport Faculty of Medicine, Technion
– Israel Institute of Technology, POB 9602, Haifa
31096, Israel
| | - O. Rosenberg
- Sheltagen Medical LTD, Yafe
Nof 22A, 30300 Atlit, Israel
| |
Collapse
|
47
|
Rosenberg N, Rosenberg O. Extracorporeal human bone-like tissue generation. Bone Joint Res 2012; 1:1-7. [PMID: 23610651 PMCID: PMC3626187 DOI: 10.1302/2046-3758.11.2000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/23/2011] [Indexed: 11/05/2022] Open
Abstract
Objectives The need for bone tissue supplementation exists in a wide range
of clinical conditions involving surgical reconstruction in limbs,
the spine and skull. The bone supplementation materials currently
used include autografts, allografts and inorganic matrix components;
but these pose potentially serious side-effects. In particular the
availability of the autografts is usually limited and their harvesting
causes surgical morbidity. Therefore for the purpose of supplementation
of autologous bone graft, we have developed a method for autologous
extracorporeal bone generation. Methods Human osteoblast-like cells were seeded on porous granules of
tricalcium phosphate and incubated in osteogenic media while exposed
to mechanical stimulation by vibration in the infrasonic range of
frequencies. The generated tissue was examined microscopically following
haematoxylin eosin, trichrome and immunohistochemical staining. Results Following 14 days of incubation the generated tissue showed histological
characteristics of bone-like material due to the characteristic
eosinophilic staining, a positive staining for collagen trichrome
and a positive specific staining for osteocalcin and collagen 1.
Macroscopically, this tissue appeared in aggregates of between 0.5
cm and 2 cm. Conclusions We present evidence that the interaction of the cellular, inorganic
and mechanical components in vitro can rapidly
generate three-dimensional bone-like tissue that might be used as
an autologous bone graft.
Collapse
Affiliation(s)
- N Rosenberg
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9602, Haifa 31096, Israel
| | | |
Collapse
|
48
|
Ertan AB, Yılgor P, Bayyurt B, Çalıkoğlu AC, Kaspar Ç, Kök FN, Kose GT, Hasirci V. Effect of double growth factor release on cartilage tissue engineering. J Tissue Eng Regen Med 2011; 7:149-60. [DOI: 10.1002/term.509] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023]
Affiliation(s)
- Ayşe Burcu Ertan
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
| | - Pınar Yılgor
- Department of Biochemistry Cukurova University Faculty of Medicine Balcali Adana Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Banu Bayyurt
- Department of Molecular Biology and Genetics, Biotherapeutic ODN Lab Bilkent University Ankara Turkey
| | - Ayşe Ceren Çalıkoğlu
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
| | - Çiğdem Kaspar
- Department of Medicine Yeditepe University Istanbul Turkey
| | - Fatma Neşe Kök
- Molecular Biology and Genetics Department Istanbul Technical University Maslak Istanbul Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Vasif Hasirci
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
49
|
Kim YH, Min YK, Lee BT. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering. J Biomater Appl 2011; 27:457-68. [PMID: 22071348 DOI: 10.1177/0885328211411956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fibrous PHBV cross-ply scaffolds were fabricated using the electrospinning technique. The electrospun fibers were arranged depending on angles of alignment, which were 180°, 90°, 60°, and 45°. The stress and strain values of the fibrous PHBV cross-ply scaffolds increased as the cross-ply angle increased. At 180°, the strength and strain values of the fibers depended on tensile loading directions. At an alignment of 90°, the PHBV scaffolds had a stress value of 3.5 MPa, which was more than two times higher than the random structure. The cell morphology and proliferation of L-929 cells was strongly dependant on the fiber alignment and the best results were observed when the angle alignment was high. The results of this study showed that the cross-ply structure of the PHBV scaffold affected not only the cell adhesion and spreading properties but also dictated the mechanical properties, which were dependent on the angles of alignment.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Department of Biomedical Engineering and Materials, School of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090, Republic of Korea
| | | | | |
Collapse
|
50
|
Jagoda A, Ketikidis P, Zinn M, Meier W, Kita-Tokarczyk K. Interactions of biodegradable poly([R]-3-hydroxy-10-undecenoate) with 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid: a monolayer study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10878-10885. [PMID: 21749038 DOI: 10.1021/la201654d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible polyesters and very attractive candidates for biomedical applications as materials for tissue engineering. They have a hydrophobic character, but some are able to spread at the air-water interface to form monomolecularly thin films (Langmuir monolayers). This is a very convenient model to analyze PHA self-assembly in two dimensions and to study their molecular interactions with other amphiphilic compounds, which is very important considering compatibility between biomaterials and cell membranes. We used the Langmuir monolayer technique and Brewster angle microscopy to study the properties of poly([R]-3-hydroxy-10-undecenoate) (PHUE) films on the free water surface in various experimental conditions. Moreover, we investigated the interactions between the polymer and one of the main biomembrane components, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The addition of lipid to a polymer film does not change the monolayer phase behavior; however, the interactions between these two materials are repulsive and fall in two composition-dependent regimes. In summary, this is the first systematic study of the monolayer behavior of PHUE, thus forming a solid basis for a thorough understanding of material interactions, in particular in the context of biomaterials and implants.
Collapse
Affiliation(s)
- Agnieszka Jagoda
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|