1
|
Linghu K, Xu K, Zhao X, Zhou J, Wang X. Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase. BIORESOURCE TECHNOLOGY 2025; 427:132348. [PMID: 40081774 DOI: 10.1016/j.biortech.2025.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.
Collapse
Affiliation(s)
- Kai Linghu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Identification of molecular signatures for azole fungicide toxicity in zebrafish embryos by integrating transcriptomics and gene network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126215. [PMID: 40189088 DOI: 10.1016/j.envpol.2025.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Azoles control fungal growth by inhibiting sterol biosynthesis in fungi according to the fungicide resistance action committee. Furthermore, previous studies have highlighted several effects of azole fungicides in fish including endocrine disruption. In this study, we analysed the transcriptome responses of zebrafish embryos exposed to azole fungicides to identify gene expression fingerprints indicating toxic effects such as endocrine disruption induced by sterol biosynthesis inhibition. Firstly, a modified zebrafish embryo toxicity test was conducted following the OECD 236 guideline, exposing embryos to difenoconazole, epoxiconazole, and tebuconazole. After 96 h, RNA was extracted for transcriptome analysis, which revealed concentration-dependent responses for each fungicide. Additionally, overrepresentation analysis of significantly differentially expressed genes revealed biological functions related to sterol biosynthesis and endocrine disruption. A gene set with specific expression patterns was was identified as molecular signature for indicating adverse effects induced by sterol biosynthesis inhibitors in zebrafish embryos. After further validation, the gene expression fingerprints and biomarkers identified in this study may be used in the future to identify endocrine activity of substances under development in a pre-regulatory screening using the zebrafish embryo model.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
3
|
Cao X, Zhang Y, Xu Q, Yan H. Whole-genome analysis of Bacillus paranthracis YC06 isolated from healthy individual feces for biodegrading inosine and guanosine. BMC Microbiol 2025; 25:335. [PMID: 40426045 DOI: 10.1186/s12866-025-04063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
The overproduction of uric acid, driven by its key precursors (inosine and guanosine), leads to hyperuricemia, a metabolic disorder associated with severe complications such as gout and renal dysfunction. Here, a promising bacterial strain YC06 with excellent biodegradation capability for inosine and guanosine was successfully isolated from healthy individual feces and identified as Bacillus paranthracis through average nucleotide identity (ANI) analysis. B. paranthracis YC06 resting cells (live but suspended in PBS buffer) and its cell-free extracts could effectively biodegrade inosine and guanosine in vitro. Whole-genome sequencing revealed a 5,535,183 bp draft genome (52 contigs, 35.22% GC content) containing 5,672 protein-coding genes. B. paranthracis YC06 demonstrated high survival rates in simulated gastrointestinal fluids, supported by the presence of stress-response genes and bile salt hydrolase genes associated with gastrointestinal tolerance. However, this strain exhibited hemolytic activity and no amino acid decarboxylase activity, while hemolysin genes, antibiotic genes and toxin-producing genes were identified, raising potential biosafety concerns for its further application. The gene functional annotation and polymerase chain reaction (PCR) amplification electrophoresis identified key genes (rihA, rihB, deoD and pnp) encoding purine nucleosidase and purine-nucleoside phosphorylase, and combined with biodegradation product analysis, elucidated the pathways of inosine and guanosine biodegradation into hypoxanthine and guanine. Comprehensive safety evaluations, including cytotoxicity assay and in vivo pathogenicity studies, must be conducted to rigorously assess its risks prior to practical utilization.
Collapse
Affiliation(s)
- Xiaoyu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yu Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Vats A, Xi Y, Wolf-Johnston AS, Clinger OD, Arbuckle RK, Sheng L, Jiang X, Dermond CD, Li J, Stolz DB, St Leger AJ, Sahel JA, Jackson EK, Birder LA, Chen Y. Oral 8-aminoguanine against age-related retinal degeneration. Commun Biol 2025; 8:812. [PMID: 40419664 DOI: 10.1038/s42003-025-08242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Vision decline in the elderly, often due to retinal aging, predisposes individuals to pathologies like age-related macular degeneration. Currently, there are few effective oral treatments for this condition. Our study introduces an oral agent, 8-aminoguanine (8-AG), which targets age-related retinal degeneration using an aged Fischer 344 rat model. When administered in drinking water at a low dose for 8 weeks starting at 22 months of age, 8-AG significantly preserves retinal structure and function, as evidenced by increased retinal thickness, enhanced photoreceptor integrity, and improved electroretinogram responses. 8-AG reduces apoptosis, oxidative damage, and microglial/macrophage activation in aging retinae. 8-AG also mitigates retinal inflammation at transcriptional and cytokine levels. Extending treatment to 17 weeks further amplifies these protective effects. Given its efficacy in various disease models, 8-AG shows great promise as an anti-aging compound with the potential to mitigate common hallmarks of aging.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda S Wolf-Johnston
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Riley K Arbuckle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Li Sheng
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xingcan Jiang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Li
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Shuai F, Yin Y, Yao Y, Deng L, Wen Y, Zhao H, Han X. A nucleoside-based supramolecular hydrogel integrating localized self-delivery and immunomodulation for periodontitis treatment. Biomaterials 2025; 316:123024. [PMID: 39705922 DOI: 10.1016/j.biomaterials.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis is a highly prevalent oral disease characterized by bacterial-induced hyperactivation of the host immune system, leading to a sustained inflammatory response and osteoclastic activity, which ultimately results in periodontal destruction. In this work, an immunomodulatory supramolecular hydrogel for the topical treatment of periodontitis was synthesized using a simple one-pot method. This phenylboronate ester-based 8AGPB hydrogel exhibited excellent stability, self-healing properties, injectability, and biocompatibility. During degradation, the 8AGPB hydrogel releases immunomodulatory agent 8-aminoguanosine (8AG), which regulates MAPK and NF-κB signaling pathways by modulation of second messengers in macrophages. In combination with 1,4-phenylenediboronic acid (PBA), which possesses antioxidant properties, 8AG effectively inhibits ROS production and oxidative damage in LPS-stimulated macrophages, lowering the M1/M2 macrophage polarization ratio and reducing the secretion of pro-inflammatory factors. In an experimental periodontitis model using C57BL/6 mice, periodontal injection of the 8AGPB hydrogel reduced inflammatory infiltration and osteoclastic activity through immunomodulation and inhibition of osteoclast differentiation, thereby ameliorating periodontal destruction during periodontitis progression. Overall, the 8AGPB supramolecular hydrogel, serving as an injectable self-delivery platform for 8AG, may represent a promising novel strategy for periodontitis treatment and offer insights for the development of future topical anti-inflammatory systems.
Collapse
Affiliation(s)
- Fangyuan Shuai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
6
|
Ghosh AK, Groom DP, Schramm VL. Transition State Analysis of SAMHD1 from Primary 18O, 33P, and Solvent Kinetic Isotope Effects. J Am Chem Soc 2025; 147:8852-8863. [PMID: 40014869 DOI: 10.1021/jacs.5c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Human sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) is an allosterically regulated dNTP triphosphohydrolase (dNTP + H2O → dNuc + PPPi) involved in deoxynucleotide regulation and DNA repair. We characterized the chemical features of the SAMHD1 transition state for 2'-deoxyadenosine 5'-triphosphate (dATP) hydrolysis by analysis of 18O and 33P primary kinetic isotope effects (KIEs) at the α-phosphoryl of the leaving triphosphate group. The intrinsic KIE values for [5'-18O]dATP of 1.028 ± 0.003 and for [α-33P]dATP of 1.015 ± 0.004 provide insights into the mechanistic details of the SAMHD1 transition state. Solvent 2H2O isotope effects for the hydrolysis of dATP indicate that a single proton is being transferred at the transition state to give a solvent KIE of 3.2 ± 0.1. Quantum chemical matching of the isotope effects supports a concerted, loose, highly asymmetric DNAN transition state with a Pauling bond order of 0.17 to the attacking hydroxide oxygen nucleophile and 0.53 to the departing deoxyadenosine. The reaction coordinate distance is 4.7 Å from attacking the hydroxyl oxygen to departing 5'-deoxyadenosine oxygen. The solvent KIE is consistent with a near-midpoint proton transfer from the His215 catalytic site proton donor to the deoxyadenosine 5'-oxygen in the transition state. This is the first triphosphohydrolase transition state to be characterized and the first use of a 33P primary isotope effect to characterize a phosphotransferase transition state.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Daniel P Groom
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
7
|
Sant'Anna I, Arêdes RS, de Souza WCP, Lessa RCDS, de Moraes MC. Development of an immobilized Mycobacterium tuberculosis purine nucleoside phosphorylase platform for ligand fishing and inhibition assays. J Pharm Biomed Anal 2025; 254:116576. [PMID: 39603195 DOI: 10.1016/j.jpba.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Purine nucleoside phosphorylase (PNP) from Mycobacterium tuberculosis (MtPNP) plays a crucial role in purine metabolism, making it an attractive target for developing new tuberculosis treatments. In this study, we developed a ligand screening platform using MtPNP covalently immobilized on magnetic particles (MtPNP-MPs). The immobilization process achieved a high enzyme loading and preserved the enzyme catalytic activity, enabling its use in both activity and affinity-based screening assays. The activity of MtPNP-MPs was monitored by quantifying hypoxanthine released from inosine phosphorolysis, and kinetic studies revealed Michaelis-Menten behavior for inosine and inorganic phosphate substrates, with KM values comparable to those of free MtPNP. A proof-of-concept inhibitor study using the transition state analog DI4G demonstrated the platform capability for recognizing and characterizing inhibitors, yielding an IC50 value of 91.4 nM and a competitive inhibition mechanism with a Ki of 69.2 nM. Furthermore, the MtPNP-MPs exhibited high stability, retaining over 80 % of their activity after six months of storage and more than 90 % after five consecutive reaction cycles, highlighting their potential for reuse in high-throughput assays. We optimized key parameters for ligand fishing assay, including the amount of MtPNP-MPs, incubation time, and elution conditions. While higher organic solvent concentrations and longer elution times improved ligand isolation, these conditions also reduced enzyme activity. This trade-off between ligand isolation yield and enzyme reusability suggests that elution conditions should be tailored based on the ligand binding strength. Overall, this study establishes the MtPNP-MPs platform as a versatile tool for ligand identification and inhibitor characterization, with promising applications in the screening of complex libraries, such as natural products, for bioactive compounds.
Collapse
Affiliation(s)
- Isabella Sant'Anna
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Rafaella Silva Arêdes
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Walter Claudino P de Souza
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Renato Corrêa da Silva Lessa
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Marcela Cristina de Moraes
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil.
| |
Collapse
|
8
|
Shao Y, Zhu W, Liu S, Zhang K, Sun Y, Liu Y, Wen T, Zou Y, Zheng Q. Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism. BMC Oral Health 2025; 25:25. [PMID: 39755609 DOI: 10.1186/s12903-024-05355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S. mutans exhibits greater resistance to drugs and host immune defenses than the planktonic form of the bacteria. The objective of this study was to evaluate the anti-biofilm effect of cordycepin from the perspective of metabolomics. METHODS The minimum inhibitory concentration (MIC) was determined to evaluate the antimicrobial effect of cordycepin on planktonic S. mutans. The 24-h biofilm was treated with 128 µg/mL of cordycepin for 10 min at the 8- or 20-h time points. Biofilm biomass and metabolism were assessed using crystal violet and MTT assays and cordycepin cytotoxicity was evaluated in human oral keratinocytes (HOK) using CCK-8 assays. The live bacterial rate and the biofilm volume were assessed by confocal laser scanning microscopy. Metabolic changes in the biofilm collected at different times during with cordycepin were analyzed by metabolomics and verified by quantitative real-time PCR. RESULTS The results showed that treatment with 128 µg/mL cordycepin reduced both the biomass and metabolic activity of the biofilm without killing the bacteria, and cordycepin at this concentration showed good biocompatibility. Metabolomics analysis showed that differentially abundant metabolites following cordycepin treatment were mainly related to purine and nucleotide metabolism. After immediate treatment with cordycepin, genes related to purine and nucleotide metabolism were downregulated, and the levels of various metabolites changed significantly. However, the effect was reversible. After continuing culture for 4 h, the changes in genes and most metabolites were reversed, although the levels of 2'-deoxyadenosine, 2'-deoxyinosine, and adenine remained significantly different. CONCLUSIONS Cordycepin has the effect of anti-biofilm of S. mutans, mainly related to purine and nucleotide metabolism.
Collapse
Affiliation(s)
- Yidan Shao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Wenyan Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yudong Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Tingchi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yingxue Zou
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Tianjin Children's Hospital, 225 Machang Road, Hexi District, Tianjin, 300202, China.
| | - Qingwei Zheng
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
9
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines: A Promising New Direction for Purine-Based Therapeutics. Hypertension 2024; 81:2410-2414. [PMID: 39429198 PMCID: PMC11578759 DOI: 10.1161/hypertensionaha.124.21726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Research in purinergic pharmacology has yielded major advances in cardiovascular therapeutics such as adenosine for terminating atrioventricular reentrant tachycardia, regadenoson for pharmacological ischemic stress testing, and selective P2Y12 receptor antagonists for prevention of stroke and myocardial infarction. Mechanistically, these FDA-approved purine-based therapeutics activate or antagonize receptors having endogenous ligands containing the purine nucleobase adenine. Recent discoveries suggest a novel direction for purine-based therapeutics. An investigation of the cardiorenal effects of 8-substituted guanosine and guanine derivatives revealed that 8-aminoguanosine and 8-aminoguanine acutely trigger diuresis, natriuresis, and glucosuria, with the effects of 8-aminoguanosine being mediated by its rapid conversion to 8-aminoguanine. Mechanistic studies showed that 8-aminoguanine induces diuresis/natriuresis/glucosuria in part by inhibiting purine nucleoside phosphorylase (PNPase). Inhibition of PNPase increases its substrates (inosine and guanosine) while decreasing its products (hypoxanthine and guanine), thus “rebalancing” the purine metabolome. Additional mechanistic studies revealed that inosine activates adenosine A2B receptors which increases renal medullary blood flow thus enhancing renal excretory function. 8-Aminoguanine also reduces potassium excretion by an incompletely understood mechanism independent of PNPase inhibition. Emerging evidence suggests the existence of a family of endogenous and pharmacologically active 8-aminopurines that may include not only 8-aminoguanosine and 8-aminoguanine, but also 8-aminoinosine, 8-aminohypoxanthine and 8-aminoxanthine. 8-Aminopurines have beneficial effects in animal models of systemic and pulmonary hypertension, the metabolic syndrome, chronic kidney disease, strokes, and sickle cell disease. Also, 8-aminopurines reverse age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines hold promise for treating cardiovascular and renal diseases and may “turning back the clock” on age-associated disorders.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
10
|
Duan G, Chen X, Hou Y, Jiang T, Liu H, Yang J. Combined transcriptome and metabolome analysis reveals the mechanism of high nitrite tolerance in freshwater mussel Anodonta woodiana. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101359. [PMID: 39546928 DOI: 10.1016/j.cbd.2024.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Nitrite contamination and stress on aquatic organisms are increasingly emphasized in freshwater ecosystems. Freshwater bivalves exhibit high tolerance to nitrite; however, the underlying mechanism is unknown. Accordingly, this study investigated the tolerance mechanism of the globally occurring freshwater bivalve Anodonta woodiana. A. woodiana were exposed to nominal concentrations of 0, 250, 500, 1000, 2000, and 4000 mg/L nitrite for 96 h to calculate the 96-h median lethal concentration (96-h LC50). A combined transcriptome and metabolome analysis of the hemolymph (the most vital component of the bivalve immune system) was performed after exposing A. woodiana to 300 mg/L nitrite (approximately half the 96-h LC50) for 96 h. The 96-h LC50 of nitrite in A. woodiana was 618.7 mg/L. Transcriptome analysis identified 5600 differentially expressed genes (DEGs) primarily related to ribosomes, lysosomes, DNA replication, and nucleotide excision repair. Metabolome analysis identified 216 differentially expressed metabolites (DEMs) primarily involved in biosynthesis of amino acids, 2-oxocarboxylic acid metabolism, protein digestion and absorption, aminoacyl-tRNA biosynthesis, nucleotide metabolism, ABC transporters, and valine, leucine and isoleucine degradation. Combined transcriptome and metabolome analysis revealed that DEGs and DEMs were primarily associated with nucleotide (purine and pyrimidine) and amino acid metabolism (including aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, arginine and proline metabolism, and valine, leucine and isoleucine degradation) as well as the immune system (necroptosis and glutathione metabolism). This study is the first to describe the high tolerance of A. woodiana to nitrite and elucidate the molecular mechanisms underlying high nitrite tolerance in mussels.
Collapse
Affiliation(s)
- Guochao Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiubao Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Tao Jiang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongbo Liu
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Yang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
11
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
13
|
Jackson EK, Gillespie DG, Mi Z, Birder LA, Tofovic SP. 8-Aminoguanine and its actions in the metabolic syndrome. Sci Rep 2024; 14:22652. [PMID: 39349636 PMCID: PMC11442972 DOI: 10.1038/s41598-024-73159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1β, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1β.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- Department of Pharmacology and Chemical Biology, 100 Technology Drive, Room 514, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Lori A Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| |
Collapse
|
14
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
15
|
Zhu X, Zhang D, Wang Y, Wang C, Liu X, Niu Y. Study on the signaling pathways involved in the anti-hyperglycemic effect of raspberry ketone on zebrafish using integrative transcriptome and metabolome analyses. Food Funct 2024; 15:9457-9470. [PMID: 39189875 DOI: 10.1039/d4fo01675k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Hyperglycemia leads to increased oxidative stress in mitochondria, an abnormal activation of intracellular inflammatory signals, and mediate multiple dysfunctions. Raspberry ketone (RK) is an aromatic phenolic compound found in many plants and could contribute to weight loss, restore impaired glucose tolerance, and has antioxidant properties. In our investigation, RK could greatly prevent islet, brain and other tissue damage caused by hyperglycemia in a zebrafish model with streptozotocin (STZ)-induced hyperglycemia. Body weight, insulin level, and food intake indexes were also restored by RK. Using transcriptome profiling, we found that RK administration could significantly attenuate STZ-induced insulin synthesis and pancreatic secretion as well as alter protein and carbohydrate metabolism. Metabolomics analysis results showed that RK could also prevent STZ-induced metabolic disorders, such as adenosine and sphingolipid metabolism. Integrative analysis of metabolome and transcriptome data and qRT-PCR validation of key metabolic regulatory genes (glut1, glut2, ctrb1, ccka, gck, pklr) confirmed that the purine pathway was the most enriched metabolic pathway, in which both metabolite accumulation and gene expression levels showed consistent change patterns upon RK treatment. Our study provides a new perspective for understanding the hypoglycemic mechanism of RK and may be helpful for investigating the modes of action of hypoglycemic drugs using the zebrafish hyperglycemia model.
Collapse
Affiliation(s)
- Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
- Department of Scientific Research, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Dengcai Zhang
- Department of Pathology, Gansu Provincial Maternity and Health Care Hospital, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Chuangxin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, Gansu Province, China
| | - Yicong Niu
- The First Hospital of Lanzhou University, Department of General Surgery, Lanzhou 730000, Gansu, China.
| |
Collapse
|
16
|
Cardoza S, Singh A, Sur S, Singh M, Dubey KD, Samanta SK, Mandal A, Tandon V. Computational investigation of novel synthetic analogs of C-1'β substituted remdesivir against RNA-dependent RNA-polymerase of SARS-CoV-2. Heliyon 2024; 10:e36786. [PMID: 39286185 PMCID: PMC11402944 DOI: 10.1016/j.heliyon.2024.e36786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Remdesivir, a C-nucleotide prodrug binds to the viral RNA-dependent-RNA polymerase (RdRp) and inhibits the viral replication by terminating RNA transcription prematurely. It is reported in literature that interaction between the C-1'β-CN moiety of Remdesivir (RDV) and the Ser861 residue in RdRp enzyme, causes a delayed chain termination during the RNA replication process and is one of the important aspect of its mechanism of action. In the pursuance of increasing the biological activity of RDV and enhancing the SAR studies, against RNA viruses, we have designed its fourteen C1'β substituted analogs, 10 -23 bearing 4/5-membered heterocyclic rings. The docking and 100 ns molecular dynamics (MD) simulations of 10-23 to the RdRp protein (PDB ID: 7L1F) revealed important interactions between 2',3'-diol, oxo group of phosphoramidate, nitrogen residues of heterocyclic rings of synthetic molecules with Arg555, Arg553, Ser759, Cys622, Asn691, Asp623 amino acid residues of protein. The docking score of 2-ethylbutyl ((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(1H-1,2,3-triazol-4-yl)tetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)-L-alaninate, 11 was found to be the higher than RDV among 14 new compounds i.e. -5.20 kcal/mol. Out of 3 compounds, 10, 12 and 13 submitted for MD simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis, trifluoro-oxadiazole derivative, 13 showed higher binding energy as compared to Remdesivir. The predicted ADMET properties of 14 compounds showed their potential for being drug candidates. The present study suggests that substitution at the C1'β position by 4/5-membered rings plays an important role in the interactions between nucleoside/tide and target protein.
Collapse
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211012, Uttar Pradesh, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 240001, India
| | - Mintu Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kshatresh D Dubey
- Department of Chemistry, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211012, Uttar Pradesh, India
| | - Ajay Mandal
- Symbol Discovery Ltd, ASPIRE-TBI, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- CSIR- Indian Institute of Chemical Biology (IICB), 4, Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
17
|
Bychek IA, Zenchenko AA, Kostromina MA, Khisamov MM, Solyev PN, Esipov RS, Mikhailov SN, Varizhuk IV. Bacterial Purine Nucleoside Phosphorylases from Mesophilic and Thermophilic Sources: Characterization of Their Interaction with Natural Nucleosides and Modified Arabinofuranoside Analogues. Biomolecules 2024; 14:1069. [PMID: 39334837 PMCID: PMC11430614 DOI: 10.3390/biom14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The enzymatic synthesis of nucleoside derivatives is an important alternative to multi-step chemical methods traditionally used for this purpose. Despite several undeniable advantages of the enzymatic approach, there are a number of factors limiting its application, such as the limited substrate specificity of enzymes, the need to work at fairly low concentrations, and the physicochemical properties of substrates-for example, low solubility. This research conducted by our group is dedicated to the advantages and limitations of using purine nucleoside phosphorylases (PNPs), the main enzymes for the metabolic reutilization of purines, in the synthesis of modified nucleoside analogues. In our work, the substrate specificity of PNP from various bacterial sources (mesophilic and thermophilic) was studied, and the effect of substrate, increased temperature, and the presence of organic solvents on the conversion rate was investigated.
Collapse
Affiliation(s)
- Irina A. Bychek
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria A. Kostromina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Marat M. Khisamov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman S. Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V. Varizhuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Yan L, Ye B, Yang M, Shan Y, Yan D, Fang D, Zhang K, Yu Y. Gut microbiota and metabolic changes in children with idiopathic short stature. BMC Pediatr 2024; 24:468. [PMID: 39039462 PMCID: PMC11265363 DOI: 10.1186/s12887-024-04944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown. METHODS We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individuals. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shotgun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome and metabolites. RESULTS We detected marked differences in the composition of fecal metabolites in the ISS group, particularly a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when compared to those of controls. We further identified specific groups of bacterial strains to be associated with the different metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS children from the controls (AUC = 0.933 [95%CI, 79.9-100%]) by receiver operating characteristic (ROC) analysis. CONCLUSION Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in children's growth. These findings provide a new research direction for better understanding the mechanism(s) underlying ISS.
Collapse
Affiliation(s)
- Luyan Yan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Pediatric Internal Medicine, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Min Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Shan
- Department of Pediatrics, Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Dan Yan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - DanFeng Fang
- Department of Pediatric Internal Medicine, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Kaichuang Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Eletskaya BZ, Mironov AF, Fateev IV, Berzina MY, Antonov KV, Smirnova OS, Zatsepina AB, Arnautova AO, Abramchik YA, Paramonov AS, Kayushin AL, Khandazhinskaya AL, Matyugina ES, Kochetkov SN, Miroshnikov AI, Mikhailopulo IA, Esipov RS, Konstantinova ID. Enzymatic Transglycosylation Features in Synthesis of 8-Aza-7-Deazapurine Fleximer Nucleosides by Recombinant E. coli PNP: Synthesis and Structure Determination of Minor Products. Biomolecules 2024; 14:798. [PMID: 39062512 PMCID: PMC11275124 DOI: 10.3390/biom14070798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.
Collapse
Affiliation(s)
- Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anton F. Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklukho-Maklaya St. 6, Moscow 117198, Russia
| | - Ilya V. Fateev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Maria Ya. Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Konstantin V. Antonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Olga S. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra B. Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra O. Arnautova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Yulia A. Abramchik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexey L. Kayushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Anatoly I. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Igor A. Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus;
| | - Roman S. Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Irina D. Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| |
Collapse
|
20
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
21
|
El-Saghier AM, Enaili SS, Abdou A, Hamed AM, Kadry AM. Synthesis, docking and biological evaluation of purine-5- N-isosteresas anti-inflammatory agents. RSC Adv 2024; 14:17785-17800. [PMID: 38832248 PMCID: PMC11146149 DOI: 10.1039/d4ra02970d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
An operationally simple one-pot three-component and convenient synthesis method for a series of diverse purine analogues of 5-amino-7-(substituted)-N-(4-sulfamoylphenyl)-4,7-dihydro-[1,2,4]-triazolo[1,5-a][1,3,5]triazine-2-carboxamide derivatives generated in situ via the reaction of 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide, cyanoguanidine and a variety of aldehydes was achieved under green conditions. This experiment was conducted to evaluate the anti-inflammatory effect of the newly synthesized compounds using indomethacin as a reference medication; all compounds were tested for in vitro anti-inflammatory activity using the inhibition of albumin denaturation, RBC hemolysis technique and COX inhibition assay. The results showed that all evaluated compounds exhibited significant in vitro anti-inflammatory efficacy leading to excellently effective RBC membrane stabilization, inhibition of protein denaturation, and inhibition of COX enzymes when compared to those of indomethacin. At concentrations of 50, 100, 200, and 300 μg ml-1, these compounds decreased COX-1 and COX-2 activities more than indomethacin and have IC50 values in the range of 40.04-87.29 μg ml-1 for COX-1 and 27.76-42.3 μg ml-1 for COX-2 while indomethacin showed IC50 = 91.57 for COX-1 and 42.66 μg ml-1 for COX-2. The anti-inflammatory findings show the need for more investigation to define the properties underlying the evaluated compounds' anti-inflammatory abilities. The enzyme cyclooxygenase-2 (COX 2) (PDB ID: 5IKT) was docked with ten synthetic substances. With docking scores (S) of -8.82, -7.82, and -7.76 kcal mol-1, 7-furan triazolo-triazine (4), 7-(2-hydroxy phenyl) triazolo-triazine (11), and 7-(4-dimethylamino phenyl) triazolo-triazine (12) had the greatest binding affinities, respectively. Therefore, these substances have COX-2 (PDB ID: 5IKT) inhibitory capabilities and hence may be investigated for COX 2 targeting development. Furthermore, both the top-ranked compounds (4 and 11) and the standard indomethacin were subjected to DFT analysis. The HOMO - LUMO energy difference (ΔE) of the mentioned compounds was found to be less than that of indomethacin.
Collapse
Affiliation(s)
- Ahmed M El-Saghier
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Souhaila S Enaili
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
- Chemistry Department, Faculty of Science, Al Zawiya University Al Zawiya Libya
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Amany M Hamed
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Asmaa M Kadry
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| |
Collapse
|
22
|
Chen YJ, Li HF, Zhao FR, Yu M, Pan SY, Sun WZ, Yin YY, Zhu TT. Spermidine attenuates monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting purine metabolism and polyamine synthesis-associated vascular remodeling. Int Immunopharmacol 2024; 132:111946. [PMID: 38552292 DOI: 10.1016/j.intimp.2024.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 μM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.
Collapse
Affiliation(s)
- Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Wen-Ze Sun
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Yan-Yan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China.
| |
Collapse
|
23
|
Chen Y, Vats A, Xi Y, Wolf-Johnston A, Clinger O, Arbuckle R, Dermond C, Li J, Stolze D, Sahel JA, Jackson E, Birder L. Oral 8-aminoguanine against age-related retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-4022389. [PMID: 38765984 PMCID: PMC11100887 DOI: 10.21203/rs.3.rs-4022389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Visual decline in the elderly is often attributed to retinal aging, which predisposes the tissue to pathologies such as age-related macular degeneration. Currently, effective oral pharmacological interventions for retinal degeneration are limited. We present a novel oral intervention, 8-aminoguanine (8-AG), targeting age-related retinal degeneration, utilizing the aged Fischer 344 rat model. A low-dose 8-AG regimen (5 mg/kg body weight) via drinking water, beginning at 22 months for 8 weeks, demonstrated significant retinal preservation. This was evidenced by increased retinal thickness, improved photoreceptor integrity, and enhanced electroretinogram responses. 8-AG effectively reduced apoptosis, oxidative damage, and microglial/macrophage activation associated with aging retinae. Age-induced alterations in the retinal purine metabolome, characterized by elevated levels of inosine, hypoxanthine, and xanthine, were partially mitigated by 8-AG. Transcriptomics highlighted 8-AG's anti-inflammatory effects on innate and adaptive immune responses. Extended treatment to 17 weeks further amplified the retinal protective effects. Moreover, 8-AG showed temporary protective effects in the RhoP23H/+ mouse model of retinitis pigmentosa, reducing active microglia/macrophages. Our study positions 8-AG as a promising oral agent against retinal aging. Coupled with previous findings in diverse disease models, 8-AG emerges as a promising anti-aging compound with the capability to reverse common aging hallmarks.
Collapse
|
24
|
Chen Y, Li Y, Gao J, Yu Q, Zhang Y, Zhang J. Perspectives and challenges in developing small molecules targeting purine nucleoside phosphorylase. Eur J Med Chem 2024; 271:116437. [PMID: 38701712 DOI: 10.1016/j.ejmech.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Gao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quanwei Yu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Westarp S, Brandt F, Neumair L, Betz C, Dagane A, Kemper S, Jacob CR, Neubauer P, Kurreck A, Kaspar F. Nucleoside Phosphorylases make N7-xanthosine. Nat Commun 2024; 15:3625. [PMID: 38684649 PMCID: PMC11058261 DOI: 10.1038/s41467-024-47287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Modern, highly evolved nucleoside-processing enzymes are known to exhibit perfect regioselectivity over the glycosylation of purine nucleobases at N9. We herein report an exception to this paradigm. Wild-type nucleoside phosphorylases also furnish N7-xanthosine, a "non-native" ribosylation regioisomer of xanthosine. This unusual nucleoside possesses several atypical physicochemical properties such as redshifted absorption spectra, a high equilibrium constant of phosphorolysis and low acidity. Ultimately, the biosynthesis of this previously unknown natural product illustrates how even highly evolved, essential enzymes from primary metabolism are imperfect catalysts.
Collapse
Affiliation(s)
- Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Lena Neumair
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany
| | - Christina Betz
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany
| | - Amin Dagane
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany
| | - Sebastian Kemper
- Institute for Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstrasse 76, 13355, Berlin, Germany.
- BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany.
| | - Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| |
Collapse
|
26
|
Song G, Zhang D, Zhu J, Wang A, Zhou X, Han TL, Zhang H. The metabolic role of the CD73/adenosine signaling pathway in HTR-8/SVneo cells: A Double-Edged Sword? Heliyon 2024; 10:e25252. [PMID: 38322906 PMCID: PMC10845923 DOI: 10.1016/j.heliyon.2024.e25252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The ecto-5'-nucleotidase (CD73)/adenosine signaling pathway has been reported to regulate tumor epithelial-mesenchymal transition (EMT), migration and proliferation. However, little is known about the metabolic mechanisms underlying its role in trophoblast proliferation and migration. In this study, we aimed to investigate the metabolic role of the CD73/adenosine signaling pathway on the proliferation and migration of trophoblast. We found that CD73 levels were upregulated in preeclamptic placentas compared with the placentas of normotensive pregnant women. EMT and migration of HTR-8/SVneo cells were enhanced when treated with a CD73 inhibitor (100 μM) in vitro. Conversely, excessive adenosine (25 or 50 μM) suppressed trophoblast cell EMT, migration and proliferation. RNA-seq, metabolomics and seahorse findings showed that adenosine treatment resulted in increased expression of PDK1, suppression of aerobic respiration, glycolysis and amino acids synthesis, as well as increased utilization of short-chain fatty acids (SCFAs). Furthermore, the 13C-adenosine isotope tracking experiment demonstrated that adenosine served as a carbon source for the tricarboxylic acid (TCA) cycle. Our results reveal the role of adenosine in regulating trophoblast energy metabolism is like a double-edged sword - either inhibiting aerobic respiration or supplementing carbon sources into metabolic flux. CD73/adenosine signaling regulated trophoblast EMT, migration, and proliferation by modulating energy metabolism. This study indicates that CD73/adenosine signaling potentially plays a role in the occurrence of placenta-derived diseases, including preeclampsia.
Collapse
Affiliation(s)
- Guangmin Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Jianan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Andi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Chongqing, 400010, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
27
|
Shakartalla SB, Ashmawy NS, Semreen MH, Fayed B, Al Shareef ZM, Jayakumar MN, Ibrahim S, Rahmani M, Hamdy R, Soliman SSM. 1H-NMR metabolomics analysis identifies hypoxanthine as a novel metastasis-associated metabolite in breast cancer. Sci Rep 2024; 14:253. [PMID: 38167685 PMCID: PMC10762038 DOI: 10.1038/s41598-023-50866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is one of the leading causes of death in females, mainly because of metastasis. Oncometabolites, produced via metabolic reprogramming, can influence metastatic signaling cascades. Accordingly, and based on our previous results, we propose that metabolites from highly metastatic breast cancer cells behave differently from less-metastatic cells and may play a significant role in metastasis. For instance, we aim to identify these metabolites and their role in breast cancer metastasis. Less metastatic cells (MCF-7) were treated with metabolites secreted from highly metastatic cells (MDA-MB-231) and the gene expression of three epithelial-to-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin and vimentin were examined. Some metabolites secreted from MDA-MB-231 cells significantly induced EMT activity. Specifically, hypoxanthine demonstrated a significant EMT effect and increased the migration and invasion effects of MCF-7 cells through a hypoxia-associated mechanism. Hypoxanthine exhibited pro-angiogenic effects via increasing the VEGF and PDGF gene expression and affected lipid metabolism by increasing the gene expression of PCSK-9. Notably, knockdown of purine nucleoside phosphorylase, a gene encoding for an important enzyme in the biosynthesis of hypoxanthine, and inhibition of hypoxanthine uptake caused a significant decrease in hypoxanthine-associated EMT effects. Collectively for the first time, hypoxanthine was identified as a novel metastasis-associated metabolite in breast cancer cells and represents a promising target for diagnosis and therapy.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, University of Gezira, P.O. Box. 21111, Wadmedani, Sudan
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, P.O. Box 4184, Ajman, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mohammad H Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Zainab M Al Shareef
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Manju N Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Saleh Ibrahim
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
28
|
Chung Z, Lin J, Wirjanata G, Dziekan JM, El Sahili A, Preiser PR, Bozdech Z, Lescar J. Identification and structural validation of purine nucleoside phosphorylase from Plasmodium falciparum as a target of MMV000848. J Biol Chem 2024; 300:105586. [PMID: 38141766 PMCID: PMC10911062 DOI: 10.1016/j.jbc.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 μM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 μM and an IC50 value of 21.5 ± 2.36 μM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.
Collapse
Affiliation(s)
- Zara Chung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
29
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Minnow YVT, Schramm VL, Almo SC, Ghosh A. Phosphate Binding in PNP Alters Transition-State Analogue Affinity and Subunit Cooperativity. Biochemistry 2023; 62:3116-3125. [PMID: 37812583 DOI: 10.1021/acs.biochem.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Purine nucleoside phosphorylases (PNPs) catalyze the phosphorolysis of 6-oxypurine nucleosides with an HPO42- dianion nucleophile. Nucleosides and phosphate occupy distinct pockets in the PNP active site. Evaluation of the HPO42- site by mutagenesis, cooperative binding studies, and thermodynamic and structural analysis demonstrate that alterations in the HPO42- binding site can render PNP inactive and significantly impact subunit cooperativity and binding to transition-state analogue inhibitors. Cooperative interactions between the cationic transition-state analogue and the anionic HPO42- nucleophile demonstrate the importance of reforming the transition-state ensemble for optimal inhibition with transition-state analogues. Altered phosphate binding in the catalytic site mutants helps to explain one of the known lethal PNP deficiency syndromes in humans.
Collapse
Affiliation(s)
- Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
31
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines in the Cardiovascular and Renal Systems and Beyond. Hypertension 2023; 80:2265-2279. [PMID: 37503660 PMCID: PMC10592300 DOI: 10.1161/hypertensionaha.123.20582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
32
|
Shaposhnikov LA, Savin SS, Tishkov VI, Pometun AA. Ribonucleoside Hydrolases-Structure, Functions, Physiological Role and Practical Uses. Biomolecules 2023; 13:1375. [PMID: 37759775 PMCID: PMC10526354 DOI: 10.3390/biom13091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ribonucleoside hydrolases are enzymes that catalyze the cleavage of ribonucleosides to nitrogenous bases and ribose. These enzymes are found in many organisms: bacteria, archaea, protozoa, metazoans, yeasts, fungi and plants. Despite the simple reaction catalyzed by these enzymes, their physiological role in most organisms remains unclear. In this review, we compare the structure, kinetic parameters, physiological role, and potential applications of different types of ribonucleoside hydrolases discovered and isolated from different organisms.
Collapse
Affiliation(s)
- Leonid A. Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svyatoslav S. Savin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anastasia A. Pometun
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
33
|
Cardoza S, Shrivash MK, Riva L, Chatterjee AK, Mandal A, Tandon V. Multistep Synthesis of Analogues of Remdesivir: Incorporating Heterocycles at the C-1' Position. J Org Chem 2023; 88:9105-9122. [PMID: 37276453 DOI: 10.1021/acs.joc.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies suggest that the 1'β-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'β-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 μM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 μM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.
Collapse
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Kumar Shrivash
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Laura Riva
- Calibr, Scripps Research, La Jolla, 11119 North Torrey Pines Road Suite 100, California 92037, United States
| | - Arnab K Chatterjee
- Calibr, Scripps Research, La Jolla, 11119 North Torrey Pines Road Suite 100, California 92037, United States
| | - Ajay Mandal
- Symbol Discovery Ltd, ASPIRE-TBI, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
34
|
Bolz SN, Schroeder M. Promiscuity in drug discovery on the verge of the structural revolution: recent advances and future chances. Expert Opin Drug Discov 2023; 18:973-985. [PMID: 37489516 DOI: 10.1080/17460441.2023.2239700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Promiscuity denotes the ability of ligands and targets to specifically interact with multiple binding partners. Despite negative aspects like side effects, promiscuity is receiving increasing attention in drug discovery as it can enhance drug efficacy and provides a molecular basis for drug repositioning. The three-dimensional structure of ligand-target complexes delivers exclusive insights into the molecular mechanisms of promiscuity and structure-based methods enable the identification of promiscuous interactions. With the recent breakthrough in protein structure prediction, novel possibilities open up to reveal unknown connections in ligand-target interaction networks. AREAS COVERED This review highlights the significance of structure in the identification and characterization of promiscuity and evaluates the potential of protein structure prediction to advance our knowledge of drug-target interaction networks. It discusses the definition and relevance of promiscuity in drug discovery and explores different approaches to detecting promiscuous ligands and targets. EXPERT OPINION Examination of structural data is essential for understanding and quantifying promiscuity. The recent advancements in structure prediction have resulted in an abundance of targets that are well-suited for structure-based methods like docking. In silico approaches may eventually completely transform our understanding of drug-target networks by complementing the millions of predicted protein structures with billions of predicted drug-target interactions.
Collapse
Affiliation(s)
- Sarah Naomi Bolz
- Biotechnology Center (BIOTEC), CMCB, Technische Universität Dresden, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), CMCB, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
36
|
Thiele I, Yehia H, Krausch N, Birkholz M, Cruz Bournazou MN, Sitanggang AB, Kraume M, Neubauer P, Kurreck A. Production of Modified Nucleosides in a Continuous Enzyme Membrane Reactor. Int J Mol Sci 2023; 24:ijms24076081. [PMID: 37047056 PMCID: PMC10094030 DOI: 10.3390/ijms24076081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2′-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2′-deoxyribonucleoside and 6-chloro-2-fluoro-2′-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2′-deoxyadenosine, 2,6-dichloropurine-2′-deoxyribonucleoside, and 6-chloro-2-fluoro-2′-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.
Collapse
|
37
|
Tofovic SP. Purine Nucleoside Phosphorylase: A New Pharmacological Target in Sickle Cell Disease and Hemolytic Vasculopathy. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
38
|
Bubić A, Narczyk M, Petek A, Wojtyś MI, Maksymiuk W, Wielgus-Kutrowska B, Winiewska-Szajewska M, Pavkov-Keller T, Bertoša B, Štefanić Z, Luić M, Bzowska A, Leščić Ašler I. The pursuit of new alternative ways to eradicate Helicobacter pylori continues: Detailed characterization of interactions in the adenylosuccinate synthetase active site. Int J Biol Macromol 2023; 226:37-50. [PMID: 36470440 DOI: 10.1016/j.ijbiomac.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Purine nucleotide synthesis is realised only through the salvage pathway in pathogenic bacterium Helicobacter pylori. Therefore, the enzymes of this pathway, among them also the adenylosuccinate synthetase (AdSS), present potential new drug targets. This paper describes characterization of His6-tagged AdSS from H. pylori. Thorough analysis of 3D-structures of fully ligated AdSS (in a complex with guanosine diphosphate, 6-phosphoryl-inosine monophosphate, hadacidin and Mg2+) and AdSS in a complex with inosine monophosphate (IMP) only, enabled identification of active site interactions crucial for ligand binding and enzyme activity. Combination of experimental and molecular dynamics (MD) simulations data, particularly emphasized the importance of hydrogen bond Arg135-IMP for enzyme dimerization and active site formation. The synergistic effect of substrates (IMP and guanosine triphosphate) binding was suggested by MD simulations. Several flexible elements of the structure (loops) are stabilized by the presence of IMP alone, however loops comprising residues 287-293 and 40-44 occupy different positions in two solved H. pylori AdSS structures. MD simulations discovered the hydrogen bond network that stabilizes the closed conformation of the residues 40-50 loop, only in the presence of IMP. Presented findings provide a solid basis for the design of new AdSS inhibitors as potential drugs against H. pylori.
Collapse
Affiliation(s)
- Ante Bubić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ana Petek
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Marta Ilona Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Weronika Maksymiuk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maria Winiewska-Szajewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria; BioHealth Field of Excellence, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Zoran Štefanić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Marija Luić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Ivana Leščić Ašler
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
39
|
Dyzma A, Wielgus-Kutrowska B, Girstun A, Matošević ZJ, Staroń K, Bertoša B, Trylska J, Bzowska A. Trimeric Architecture Ensures the Stability and Biological Activity of the Calf Purine Nucleoside Phosphorylase: In Silico and In Vitro Studies of Monomeric and Trimeric Forms of the Enzyme. Int J Mol Sci 2023; 24:ijms24032157. [PMID: 36768477 PMCID: PMC9916683 DOI: 10.3390/ijms24032157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.
Collapse
Affiliation(s)
- Alicja Dyzma
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Correspondence: (B.W.-K.); (A.B.)
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Krzysztof Staroń
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Correspondence: (B.W.-K.); (A.B.)
| |
Collapse
|
40
|
Frost CF, Balasubramani SG, Antoniou D, Schwartz SD. Connecting Conformational Motions to Rapid Dynamics in Human Purine Nucleoside Phosphorylase. J Phys Chem B 2023; 127:144-150. [PMID: 36538016 PMCID: PMC9873402 DOI: 10.1021/acs.jpcb.2c07243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influence of protein motions on enzyme catalysis remains a topic of active discussion. Protein motions occur across a variety of time scales, from vibrational fluctuations in femtoseconds, to collective motions in milliseconds. There have been numerous studies that show conformational motions may assist in catalysis, protein folding, and substrate specificity. It is also known through transition path sampling studies that rapid promoting vibrations contribute to enzyme catalysis. Human purine nucleoside phosphorylase (PNP) is one enzyme that contains both an important conformational motion and a rapid promoting vibration. The slower motion in this enzyme is associated with a loop motion, that when open allows substrate entry and product release but closes over the active site during catalysis. We examine the differences between an unconstrained PNP structure and a PNP structure with constraints on the loop motion. To investigate possible coupling between the slow and fast protein dynamics, we employed transition path sampling, reaction coordinate identification, electric field calculations, and free energy calculations reported here.
Collapse
Affiliation(s)
- Clara F Frost
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| | | | - Dimitri Antoniou
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| | - Steven D Schwartz
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| |
Collapse
|
41
|
Overactive Bladder and Cognitive Impairment: The American Urogynecologic Society and Pelvic Floor Disorders Research Foundation State-of-the-Science Conference Summary Report. UROGYNECOLOGY (HAGERSTOWN, MD.) 2023; 29:S1-S19. [PMID: 36548636 DOI: 10.1097/spv.0000000000001272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Overactive bladder (OAB) is prevalent in older adults in whom management is complicated by comorbidities and greater vulnerability to the cognitive effects of antimuscarinic medications. OBJECTIVES The aim of this study is to provide a comprehensive evidence-based summary of the 2021 State-of-the-Science (SOS) conference and a multidisciplinary expert literature review on OAB and cognitive impairment. STUDY DESIGN The American Urogynecologic Society and the Pelvic Floor Disorders Research Foundation convened a 3-day collaborative conference. Experts from multidisciplinary fields examined cognitive function, higher neural control of the OAB patient, risk factors for cognitive impairment in older patients, cognitive effects of antimuscarinic medications for OAB treatment, OAB phenotyping, conservative and advanced OAB therapies, and the need for a multidisciplinary approach to person-centered treatment. Translational topics included the blood-brain barrier, purine metabolome, mechanotransduction, and gene therapy for OAB targets. RESULTS Research surrounding OAB treatment efficacy in cognitively impaired individuals is limited. Short- and long-term outcomes regarding antimuscarinic effects on cognition are mixed; however, greater anticholinergic burden and duration of use influence risk. Oxybutynin is most consistently associated with negative cognitive effects in short-term, prospective studies. Although data are limited, beta-adrenergic agonists do not appear to confer the same cognitive risk. CONCLUSIONS The 2021 SOS summary report provides a comprehensive review of the fundamental, translational, and clinical research on OAB with emphasis on cognitive impairment risks to antimuscarinic medications. Duration of use and antimuscarinic type, specifically oxybutynin when examining OAB treatments, appears to have the most cognitive impact; however, conclusions are limited by the primarily cognitively intact population studied. Given current evidence, it appears prudent to minimize anticholinergic burden by emphasizing nonantimuscarinic therapeutic regimens in the older population and/or those with cognitive impairment.
Collapse
|
42
|
Given FM, Moran F, Johns AS, Titterington JA, Allison TM, Crittenden DL, Johnston JM. The structure of His-tagged Geobacillus stearothermophilus purine nucleoside phosphorylase reveals a `spanner in the works'. Acta Crystallogr F Struct Biol Commun 2022; 78:416-422. [PMID: 36458621 PMCID: PMC9716568 DOI: 10.1107/s2053230x22011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
The 1.72 Å resolution structure of purine nucleoside phosphorylase from Geobacillus stearothermophilus, a thermostable protein of potential interest for the biocatalytic synthesis of antiviral nucleoside compounds, is reported. The structure of the N-terminally His-tagged enzyme is a hexamer, as is typical of bacterial homologues, with a trimer-of-dimers arrangement. Unexpectedly, several residues of the recombinant tobacco etch virus protease (rTEV) cleavage site from the N-terminal tag are located in the active site of the neighbouring subunit in the dimer. Key to this interaction is a tyrosine residue, which sits where the nucleoside ring of the substrate would normally be located. Tag binding appears to be driven by a combination of enthalpic, entropic and proximity effects, which convey a particularly high affinity in the crystallized form. Attempts to cleave the tag in solution yielded only a small fraction of untagged protein, suggesting that the enzyme predominantly exists in the tag-bound form in solution, preventing rTEV from accessing the cleavage site. However, the tagged protein retained some activity in solution, suggesting that the tag does not completely block the active site, but may act as a competitive inhibitor. This serves as a warning that it is prudent to establish how affinity tags may affect protein structure and function, especially for industrial biocatalytic applications that rely on the efficiency and convenience of one-pot purifications and in cases where tag removal is difficult.
Collapse
Affiliation(s)
- Fiona M. Given
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - Fuchsia Moran
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - Ashleigh S. Johns
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - James A. Titterington
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - Deborah L. Crittenden
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand
| | - Jodie M. Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, New Zealand,Correspondence e-mail:
| |
Collapse
|
43
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Kropotov A, Kulikova V, Solovjeva L, Yakimov A, Nerinovski K, Svetlova M, Sudnitsyna J, Plusnina A, Antipova M, Khodorkovskiy M, Migaud ME, Gambaryan S, Ziegler M, Nikiforov A. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells. J Biol Chem 2022; 298:102615. [PMID: 36265580 PMCID: PMC9667316 DOI: 10.1016/j.jbc.2022.102615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.
Collapse
Affiliation(s)
- Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Veronika Kulikova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexander Yakimov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Kirill Nerinovski
- Department of Nuclear Physics Research Methods, St Petersburg State University, St Petersburg, Russia
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Alena Plusnina
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Maria Antipova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Mikhail Khodorkovskiy
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway,For correspondence: Andrey Nikiforov; Mathias Ziegler
| | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,For correspondence: Andrey Nikiforov; Mathias Ziegler
| |
Collapse
|
45
|
Jackson EK, Kitsios GD, Lu MY, Schaefer CM, Kessinger CJ, McVerry BJ, Morris A, Macatangay BJC. Suppressed renoprotective purines in COVID-19 patients with acute kidney injury. Sci Rep 2022; 12:17353. [PMID: 36253495 PMCID: PMC9574168 DOI: 10.1038/s41598-022-22349-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Acute kidney injury (AKI) is common in patients hospitalized for COVID-19, complicating their clinical course and contributing to worse outcomes. Animal studies show that adenosine, inosine and guanosine protect the kidney against some types of AKI. However, until now there was no evidence in patients supporting the possibility that abnormally low kidney levels of adenosine, inosine and guanosine contribute to AKI. Here, we addressed the question as to whether these renoprotective purines are altered in the urine of COVID-19 patients with AKI. Purines were measured by employing ultra-high-performance liquid chromatography-tandem mass spectrometry with stable-isotope-labeled internal standards for each purine of interest. Compared with COVID-19 patients without AKI (n = 23), COVID-19 patients with AKI (n = 20) had significantly lower urine levels of adenosine (P < 0.0001), inosine (P = 0.0008), and guanosine (P = 0.0008) (medians reduced by 85%, 48% and 61%, respectively) and lower levels (P = 0.0003; median reduced by 67%) of the 2nd messenger for A2A and A2B adenosine receptors, i.e., 3',5'-cAMP. Moreover, in COVID-19 patients with AKI, urine levels of 8-aminoguanine (endogenous inhibitor of inosine and guanosine metabolism) were nearly abolished (P < 0.0001). In contrast, the "upstream" precursors of renoprotective purines, namely 5'-AMP and 5'-GMP, were not significantly altered in COVID-19 patients with AKI, suggesting defective conversion of these precursors by CD73 (converts 5'-AMP to adenosine and 5'-GMP to guanosine). These findings imply that an imbalance in renoprotective purines may contribute to AKI in COVID-19 patients and that pharmacotherapy targeted to restore levels of renoprotective purines may attenuate the risk of AKI in susceptible patients with COVID-19.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Y Lu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caitlin M Schaefer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cathy J Kessinger
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J C Macatangay
- Department of Medicine, Division of Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Zhang Y, Geng H, Zhang J, He K. An update mini-review on the progress of azanucleoside analogues. Chem Pharm Bull (Tokyo) 2022; 70:469-476. [PMID: 35753803 DOI: 10.1248/cpb.c22-00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of structurally novel nucleoside analogues is an active area in medicinal chemistry, since these drugs have proven clinical efficacy for decades. Azanucleosides are nucleoside analogues in which the sugar moieties are composed of nitrogen-containing rings or chains. In recent years, many azanucleosides have demonstrated therapeutic potential. In this short review, we describe recent advancements in azanucleosides, which may translate in a better understanding of the molecular design, biological activity, structure-activity relationship, and their related mechanism of action. The information summarized in this paper should encourage medicinal chemists in their future efforts to create more potent and effective chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Hao Geng
- College of Science, Xichang University
| | | | - Kehan He
- College of Science, Xichang University
| |
Collapse
|
47
|
Jackson EK, Menshikova EV, Ritov VB, Gillespie DG, Mi Z. Biochemical Pathways of 8-Aminoguanine Production In Sprague-Dawley and Dahl Salt-Sensitive Rats. Biochem Pharmacol 2022; 201:115076. [PMID: 35551915 DOI: 10.1016/j.bcp.2022.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine→8-aminoguanosine→8-aminoguanine; and pathway 2, 8-nitroguanosine→8-nitroguanine→8-aminoguanine. METHODS 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
48
|
Khandazhinskaya A, Fateev I, Konstantinova I, Esipov R, Polyakov K, Seley-Radtke K, Kochetkov S, Matyugina E. Synthesis of New 5′-Norcarbocyclic Aza/Deaza Purine Fleximers - Noncompetitive Inhibitors of E.coli Purine Nucleoside Phosphorylase. Front Chem 2022; 10:867587. [PMID: 35601551 PMCID: PMC9114674 DOI: 10.3389/fchem.2022.867587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
A new series of flexible 5′-norcarbocyclic aza/deaza-purine nucleoside analogs were synthesized from 6-oxybicyclo[3.1.0.]hex-2-ene and pyrazole-containing fleximer analogs of heterocyclic bases using the Trost procedure. The compounds were evaluated as potential inhibitors of E. coli purine nucleoside phosphorylase. Analog 1-3 were found to be noncompetitive inhibitors with inhibition constants of 14–24 mM. From the data obtained, it can be assumed that the new 5′-norcarbocyclic nucleoside analogs interact with the active site of the PNP like natural heterocyclic bases. But at the same time the presence of a cyclopentyl moiety with 2′ and 3′ hydroxyls is necessary for the inhibitory properties, since compounds 8–10, without those groups did not exhibit an inhibitory effect under the experimental conditions.
Collapse
Affiliation(s)
| | - Ilja Fateev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Polyakov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Katherine Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Elena Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Elena Matyugina,
| |
Collapse
|
49
|
Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 2022; 15:45. [PMID: 35477416 PMCID: PMC9044757 DOI: 10.1186/s13045-022-01263-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Targeting nucleotide metabolism can not only inhibit tumor initiation and progression but also exert serious side effects. With in-depth studies of nucleotide metabolism, our understanding of nucleotide metabolism in tumors has revealed their non-proliferative effects on immune escape, indicating the potential effectiveness of nucleotide antimetabolites for enhancing immunotherapy. A growing body of evidence now supports the concept that targeting nucleotide metabolism can increase the antitumor immune response by (1) activating host immune systems via maintaining the concentrations of several important metabolites, such as adenosine and ATP, (2) promoting immunogenicity caused by increased mutability and genomic instability by disrupting the purine and pyrimidine pool, and (3) releasing nucleoside analogs via microbes to regulate immunity. Therapeutic approaches targeting nucleotide metabolism combined with immunotherapy have achieved exciting success in preclinical animal models. Here, we review how dysregulated nucleotide metabolism can promote tumor growth and interact with the host immune system, and we provide future insights into targeting nucleotide metabolism for immunotherapeutic treatment of various malignancies.
Collapse
|
50
|
Saveljeva S, Sewell GW, Ramshorn K, Cader MZ, West JA, Clare S, Haag LM, de Almeida Rodrigues RP, Unger LW, Iglesias-Romero AB, Holland LM, Bourges C, Md-Ibrahim MN, Jones JO, Blumberg RS, Lee JC, Kaneider NC, Lawley TD, Bradley A, Dougan G, Kaser A. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab 2022; 34:106-124.e10. [PMID: 34986329 PMCID: PMC8730334 DOI: 10.1016/j.cmet.2021.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katharina Ramshorn
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lea-Maxie Haag
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rodrigo Pereira de Almeida Rodrigues
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ana Belén Iglesias-Romero
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lorraine M Holland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Christophe Bourges
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Muhammad N Md-Ibrahim
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James O Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Trevor D Lawley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|