1
|
Ferramola FF, Marrassini C, Alonso MR, Mattar Dominguez MA, Vega AE, Anesini C. Origanum vulgare: peroxidase-, superoxide dismutase- and immunomodulatory activities on macrophages activated with Helicobacter pylori derivatives. Nat Prod Res 2024; 38:3941-3949. [PMID: 37830772 DOI: 10.1080/14786419.2023.2269593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Helicobacter pylori, invades the gastric mucosa and is one of the causative agents of stomach cancer and peptic ulcers. Origanum vulgare, is a flavouring herb used worldwide. But little is known about the effects of extracts prepared by maceration in cold PBS. This study was aimed at determining the superoxide dismutase (SOD)- and peroxidase (Px)-like antioxidant activities as well as the immunomodulatory activity (anti-inflammatory/pro-inflammatory) of an aqueous extract of O. vulgare by evaluating the production of nitric oxide (NO) in macrophages stimulated with H. pylori derivatives. The cold extract presented SOD-like and Px-like activities with effective concentration 50 (EC50) values of Px = 489.7 ± 48 µg/ml and SOD= 384.7 ± 30 µg/ml. The extract was also capable of modulating the production of NO in macrophages stimulated by H. pylori derivatives by exerting a pro-inflammatory activity at high concentrations and an anti-inflammatory activity at low concentrations.
Collapse
Affiliation(s)
- Florencia Fátima Ferramola
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Carla Marrassini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Rosario Alonso
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Aida Mattar Dominguez
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Alba Edith Vega
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Claudia Anesini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Phongphithakchai A, Maeda A, Hikasa Y, Spano S, Pattamin N, Chaba A, Eastwood G, Young H, Peck L, Bellomo R. Methemoglobin in critically ill septic patients. Biomark Med 2024; 18:823-830. [PMID: 39269846 PMCID: PMC11497947 DOI: 10.1080/17520363.2024.2395246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Aim: Higher nitric oxide (NO) levels correlate with adverse sepsis outcomes but are challenging to measure. Methemoglobin (MetHb), a measurable product of NO, has not been utilized for risk stratification.Methodology: All patients with sepsis admitted to the intensive care unit (ICU) that had at least one MetHb measurement within 24 h of ICU admission were retrospectively analyzed. We assessed the epidemiology and associations of MetHb with hospital mortality.Results: Among 7724 patients, 1046 qualified. Those with MetHb ≥1.6% showed significantly higher mortality and fewer days alive outside the hospital by day 28. MetHb levels ≥1.6% independently predicted increased 28-day mortality.Conclusion: Our findings suggest MetHb, easily obtainable from arterial blood gases, can significantly enhance sepsis risk stratification.
Collapse
Affiliation(s)
- Atthaphong Phongphithakchai
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Yukiko Hikasa
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Sofia Spano
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Nuttapol Pattamin
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Australian & New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Helen Young
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Leah Peck
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Australian & New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research & Evaluation Centre, Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
3
|
Yue L, Luo J, Zhao C, Zhao J, Ye J, He K, Zou J. Oleanane triterpenoids with C-14 carboxyl group from Astilbe grandis inhibited LPS-induced macrophages activation by suppressing the NF- κB signaling pathway. Front Pharmacol 2024; 15:1413876. [PMID: 39148539 PMCID: PMC11324442 DOI: 10.3389/fphar.2024.1413876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background Excessive inflammation poses significant risks to human physical and mental health. Astilbe grandis, a traditional Miao medicine, is renowned for its anti-inflammatory properties. However, the specific anti-inflammatory effects and mechanisms of many compounds within this plant remain unclear. This study aims to investigate the anti-inflammatory effects and mechanisms of two characteristic oleanane triterpenoids, 3α-acetoxyolean-12-en-27-oic acid (1) and 3β-acetoxyolean-12-en-27-oic acid (2), isolated from Astilbe grandis, using lipopolysaccharide (LPS)-induced Macrophages. Methods The anti-inflammatory effects and mechanisms of compounds 1 and 2 were investigated by establishing an LPS-induced inflammation model in RAW 264.7 cells and THP-1 cells. Nitric oxide (NO) levels were assessed using the Griess method. The concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) were measured via enzyme-linked immunosorbent assay (ELISA). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was determined using western blotting and quantitative real-time PCR (qRT-PCR). Additionally, the phosphorylation level of p65 in nuclear factor-kappa B (NF-κB) was assessed through western blotting. The nuclear translocation of NF-κB p65 was assessed through immunofluorescence staining. Finally, the binding affinity of the compounds to NF-κB p65 target was validated through molecular docking. Results Compounds 1 and 2 significantly inhibited the expression of NO, TNF-α, IL-6, IL-1β, COX-2, and iNOS in LPS-induced Macrophages. Mechanistically, they attenuated the activation of the NF-κB signaling pathway by downregulating the phosphorylation level and nuclear translocation of p65. Conclusion This study elucidates the anti-inflammatory activities and potential mechanism of the characteristic oleanane triterpenoids with C-14 carboxyl group, compounds 1 and 2, in LPS-induced Macrophages by inhibiting the NF-κB signaling pathway for the first time. These findings suggest that these two compounds hold promise as potential candidates for anti-inflammatory interventions in the future.
Collapse
Affiliation(s)
- Lan Yue
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinfang Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenliang Zhao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinfeng Zhao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kang He
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Zou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Winkler MS, Bahls M, Böger RH, Ittermann T, Dörr M, Friedrich N, Schwedhelm E. Association of Asymmetric and Symmetric Dimethylarginine with Inflammation in the Population-Based Study of Health in Pomerania. Biomolecules 2023; 13:1612. [PMID: 38002294 PMCID: PMC10669713 DOI: 10.3390/biom13111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The amino acids arginine (Arg), asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are related to nitric oxide (NO) metabolism and potential markers of two different disease entities: cardiovascular disease such as atherosclerosis and systemic inflammation in critically ill patients with sepsis. Although very different in their pathophysiological genesis, both entities involve the functional integrity of blood vessels. In this context, large population-based data associating NO metabolites with proinflammatory markers, e.g., white blood cell count (WBC), high-sensitivity C-reactive protein (hsCRP), and fibrinogen, or cytokines are sparse. We investigated the association of Arg, ADMA and SDMA with WBC, hsCRP, and fibrinogen in 3556 participants of the Study of Health in Pomerania (SHIP)-TREND study. Furthermore, in a subcohort of 456 subjects, 31 inflammatory markers and cytokines were analyzed. We identified Arg and SDMA to be positively associated with hsCRP (β coefficient 0.010, standard error (SE) 0.002 and 0.298, 0.137, respectively) as well as fibrinogen (β 5.23 × 10-3, SE 4.75 × 10-4 and 0.083, 0.031, respectively). ADMA was not associated with WBC, hsCRP, or fibrinogen. Furthermore, in the subcohort, Arg was inversely related to a proliferation-inducing ligand (APRIL). SDMA was positively associated with osteocalcin, tumor necrosis factor receptor 1 and 2, and soluble cluster of differentiation 30. Our findings provide new insights into the involvement of Arg, ADMA, and SDMA in subclinical inflammation in the general population.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, 37075 Göttingen, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Rainer H. Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany (E.S.)
| | - Till Ittermann
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Nele Friedrich
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany (E.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Fraga CG, Trostchansky A, Rocha BS, Laranjinha J, Rubbo H, Galleano M. (Poly)phenols and nitrolipids: Relevant participants in nitric oxide metabolism. Mol Aspects Med 2023; 89:101158. [PMID: 36517273 DOI: 10.1016/j.mam.2022.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.
Collapse
Affiliation(s)
- César G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA, USA
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Monica Galleano
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Singh J, Lee Y, Kellum JA. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 2022; 26:246. [PMID: 35962414 PMCID: PMC9373887 DOI: 10.1186/s13054-022-04075-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The nitric oxide pathway plays a critical role in vascular homeostasis. Increased levels of systemic nitric oxide (NO) are observed in preclinical models of sepsis and endotoxemia. This has led to the postulation that vasodilation by inducible nitric oxide synthase (iNOS) generated NO may be a mechanism of hypotension in sepsis. However, contrary to the expected pharmacological action of a nitric oxide synthase (NOS) inhibitor, clinical studies with L-NAME produced adverse cardiac and pulmonary events, and higher mortality in sepsis patients. Thus, the potential adverse effects of NO in human sepsis and shock have not been fully established. In recent years, the emerging new understanding of the NO pathway has shown that an endogenously produced inhibitor of NOS, asymmetric dimethylarginine (ADMA), a host response to infection, may play an important role in the pathophysiology of sepsis as well as organ damage during ischemia–reperfusion. ADMA induces microvascular dysfunction, proinflammatory and prothrombotic state in endothelium, release of inflammatory cytokines, oxidative stress and mitochondrial dysfunction. High levels of ADMA exist in sepsis patients, which may produce adverse effects like those observed with L-NAME. Several studies have demonstrated the association of plasma ADMA levels with mortality in sepsis patients. Preclinical studies in sepsis and ischemia–reperfusion animal models have shown that lowering of ADMA reduced organ damage and improved survival. The clinical finding with L-NAME and the preclinical research on ADMA “bed to bench” suggest that ADMA lowering could be a potential therapeutic approach to attenuate progressive organ damage and mortality in sepsis. Testing of this approach is now feasible by using the pharmacological molecules that specifically lower ADMA.
Collapse
|
8
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
9
|
Park KH, Chung EY, Choi YN, Jang HY, Kim JS, Kim GB. Oral administration of Ulmus davidiana extract suppresses interleukin-1β expression in LPS-induced immune responses and lung injury. Genes Genomics 2019; 42:87-95. [PMID: 31736005 DOI: 10.1007/s13258-019-00883-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ulmus davidiana (UD) is a traditional Korean herb medicine that is used to treat inflammatory disorders. UD has been shown to modulate a number of inflammatory processes in vitro or in vivo studies. However, the molecular mechanisms of UD on lipopolysaccharide (LPS)-induced acute lung injury remain to be understood. OBJECTIVE The primary objective of this study is to determine the effect of UD bark water extract on LPS-induced immune responses and lung injury using both in vitro and in vivo models. METHODS RAW 264.7 cells and a rat model of acute lung injury (ALI) were used to study the effects of UD on several parameters. Nitrite level, lactate dehydrogenase (LDH) level, and superoxide dismutase (SOD) activities were measured. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and plasma transaminase activities in blood were also determined. Pathological investigations were also performed. RESULTS LPS infusion resulted in elevated IL-1β mRNA expression, nitrite levels, TNF-α expression, and IL-1β expression in RAW 264.7 cells. LPS infusion also increased levels of nitrite/nitrate, total protein, LDH, and TNF-α in bronchoalveolar lavage fluid, but reduced SOD levels in ex vivo and in vivo models. UD administration ameliorated all these inflammatory markers. In particular, treatment with UD reduced LPS-induced nitrite production in RAW 264.7 cells in a dose-dependent manner. UD treatment also counteracted the LPS-induced increase in alanine aminotransferase (ALT) and aspartate transaminase (AST) activity in rat plasma, leading to a significant reduction in ALT and AST activity. CONCLUSIONS The results revealed that UD treatment reduces LPS-induced nitrite production, IL-1β mRNA expression, and TNF-α expression. In addition, LPS-induced decrease in SOD level is significantly elevated by UD administration. These results indicate that UD extract merits consideration as a potential drug for treating and/or preventing ALI.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Department of Oriental Pharmaceutical Development, Nambu University, Gwangju, 62271, Republic of Korea.,Department of Emergency Medical Rescue, Nambu University, Gwangju, 62271, Republic of Korea
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary's Hospital, Catholic University of Korea, Bucheon, 14647, Republic of Korea
| | - Yu-Na Choi
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary's Hospital, Catholic University of Korea, Bucheon, 14647, Republic of Korea
| | - Hye-Yeon Jang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| | - Gi-Beum Kim
- Eouidang Agricultural Company, Wanju, 55360, Republic of Korea.
| |
Collapse
|
10
|
Xie C, Li X, Zhu J, Wu J, Geng S, Zhong C. Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells. Bioorg Med Chem 2018; 27:516-524. [PMID: 30617018 DOI: 10.1016/j.bmc.2018.12.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianyun Zhu
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Affiliation(s)
- A.S. Bredan
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - A. Cauwels
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Abstract
Nitric oxide has been implicated in numerous biological processes, particularly those involved with the cardiovascular system. Nitric oxide production is closely regulated and influenced by a number of factors in both health and disease. Nitric oxide is involved in maintaining the vascular system in its healthy, nondiseased state by producing vasorelaxation which enhances blood flow and prevents both leukocyte and platelet adhesion to the vascular wall. Dysfunctional endothelial cell nitric oxide production has been implicated in a number of disease states, including hypertension and atherosclerosis, and has been associated with adverse cardiac events. Various recent therapies may exert their beneficial effects in part by enhancing endothelial nitric oxide bloavallability. Nitric oxide has been used therapeutically in a number of cardiorespiratory disease states. An improved understanding of the pathologic processes underlying these diseases has resulted in several alternative agents being investigated and used clinically.
Collapse
Affiliation(s)
- Stuart M. Lowson
- Department of Anesthesiology and Surgical-Trauma ICU Co-Director, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
13
|
Fernando CD, Karunaratne DT, Gunasinghe SD, Cooray MCD, Kanchana P, Udawatte C, Perera PK. Inhibitory action on the production of advanced glycation end products (AGEs) and suppression of free radicals in vitro by a Sri Lankan polyherbal formulation Nawarathne Kalka. Altern Ther Health Med 2016; 16:197. [PMID: 27391698 PMCID: PMC4939025 DOI: 10.1186/s12906-016-1178-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
Background Advanced glycation end products (AGEs) and free radicals are inflammatory mediators and are implicated in many diseases such as diabetes, cancer, rheumatoid arthritis etc. Multi targeted poly herbal drug systems like Nawarathne Kalka (NK) are able to quench the overall effect of these mediators as they contain good combinations of phytochemicals that have least side effects in contrast to modern medicinal drugs. The objectives of this study were to evaluate phytochemical composition, free radical scavenging activity, cytotoxicity and the inhibitory action on the formation of AGEs by aqueous extract of NK. Methods Total phenolic content (TPC) and total flavonoid content (TFC) were determined using Folin ciocalteu method and aluminium chloride assay respectively. Free radical scavenging activity was assessed by DPPH radical scavenging assay (DRSA), phosphomolybdenum reduction antioxidant assay (PRAA) and nitric oxide (NO) scavenging assay. Brine Shrimp Lethality (BSL) bioassay was performed as preliminary screening for cytotoxic activity. Inhibitory action on AGE formation was evaluated using fructose mediated glycation of bovine serum albumin using fluorescence spectroscopic method. Results The TPC and TFC were 75.1 ± 3.0 mg/g gallic acid equivalents and 68.7 ± 7.8 mg/g epigallocatechin gallate equivalents. The DRSA yielded EC50 of 19.15 ± 2.24 μg mL−1 for NK. DRSA of NK extract was greater than butylated hydroxy toluene (EC50 = 96.50 ± 4.51 μg mL−1) but lesser than L-ascorbic acid (EC50 = 5.60 ± 0.51 μg mL−1). The total antioxidant capacity of NK as evidenced by PRAA was 106.4 ± 8.2 mg/g L-ascorbic acid equivalents. NK showed EC50 value of 99.3 ± 8.4 μg mL−1 in the NO scavenging assay compared to the standard ascorbic acid (EC50 = 7.3 ± 0.3 μg mL−1). The extract indicated moderate cytotoxic activity in the BSL bioassay. The extract showed effective inhibitory action on the formation of AGEs with EC50 values of 116 ± 19 μg mL−1, 125 ± 35 μg mL−1 and 84 ± 28 μg mL−1 in data obtained over three consecutive weeks respectively. Comparatively the reference standard, aminoguanidine at a concentration of 500 μg mL−1 demonstrated 65 % inhibition on the formation of AGE after one week of sample incubation. Conclusions The results proved the potential of NK as a free radical scavenger, moderate cytotoxic agent and an inhibitor on the formation of advanced glycation end-products.
Collapse
|
14
|
Lambden S, Martin D, Vanezis K, Lee B, Tomlinson J, Piper S, Boruc O, Mythen M, Leiper J. Hypoxia causes increased monocyte nitric oxide synthesis which is mediated by changes in dimethylarginine dimethylaminohydrolase 2 expression in animal and human models of normobaric hypoxia. Nitric Oxide 2016; 58:59-66. [PMID: 27319282 DOI: 10.1016/j.niox.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tissue hypoxia is a cardinal feature of inflammatory diseases and modulates monocyte function. Nitric oxide is a crucial component of the immune cell response. This study explored the metabolism of the endogenous inhibitor of nitric oxide production asymmetric dimethylarginine(ADMA) by monocyte dimethylarginine dimethylaminohydrolase 2(DDAH2), and the role of this pathway in the regulation of the cellular response and the local environment during hypoxia. METHODS Peritoneal macrophages were isolated from a macrophage-specific DDAH2 knockout mouse that we developed and compared with appropriate controls. Cells were exposed to 3% oxygen followed by reoxygenation at 21%. Healthy volunteers underwent an 8 h exposure to normobaric hypoxia with an inspired oxygen percentage of 12%. Peripheral blood mononuclear cells were isolated from blood samples taken before and at the end of this exposure. RESULTS Intracellular nitrate plus nitrite(NOx) concentration was higher in wild-type murine monocytes after hypoxia and reoxygenation than in normoxia-treated cells (mean(SD) 13·2(2·4) vs 8·1(1·7) pmols/mg protein, p = 0·009). DDAH2 protein was 4·5-fold (SD 1·3) higher than in control cells (p = 0·03). This increase led to a 24% reduction in ADMA concentration, 0·33(0.04) pmols/mg to 0·24(0·03), p = 0·002). DDAH2-deficient murine monocytes demonstrated no increase in nitric oxide production after hypoxic challenge. These findings were recapitulated in a human observational study. Mean plasma NOx concentration was elevated after hypoxic exposure (3·6(1.8)μM vs 6·4(3·2), p = 0·01), which was associated with a reduction in intracellular ADMA in paired samples from 3·6(0.27) pmols/mg protein to 3·15(0·3) (p < 0·01). This finding was associated with a 1·9-fold(0·6) increase in DDAH2 expression over baseline(p = 0·03). DISCUSSION This study shows that in both human and murine models of acute hypoxia, increased DDAH2 expression mediates a reduction in intracellular ADMA concentration which in turn leads to elevated nitric oxide concentrations both within the cell and in the local environment. Cells deficient in DDAH2 were unable to mount this response.
Collapse
Affiliation(s)
- S Lambden
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - D Martin
- Centre for Altitude, Space and Extreme Environment Medicine, UCL, London, UK
| | - K Vanezis
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - B Lee
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - J Tomlinson
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - S Piper
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - O Boruc
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK
| | - M Mythen
- Centre for Altitude, Space and Extreme Environment Medicine, UCL, London, UK
| | - J Leiper
- Nitric Oxide Signalling Group, Clinical Sciences Centre, MRC, Hammersmith Hospital, London, UK.
| |
Collapse
|
15
|
Liu Q, Wang Z, Liu LL, Li P, Liu EH. Discovery of anti-inflammatory components from Guge Fengtong tablet based on inflammatory markers and exploration of its molecular mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra17737a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work, we discovered GGFTT and its bioactive combinatorial components (10C) could significantly decrease the production of TNF-α, IL-1β, IL-6. 10C exert comparable anti-inflammatory effect through NF-κB and MAPKs signaling pathways as GGFTT.
Collapse
Affiliation(s)
- Qun Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Le-Le Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
16
|
LPS-induced oxidative inflammation and hyperlipidemia in male rats: The protective role of Origanum majorana extract. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2015. [DOI: 10.1016/j.bjbas.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Idelman G, Smith DLH, Zucker SD. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol 2015; 5:398-408. [PMID: 26163808 PMCID: PMC4506991 DOI: 10.1016/j.redox.2015.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.
Collapse
Affiliation(s)
- Gila Idelman
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA
| | - Darcey L H Smith
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA
| | - Stephen D Zucker
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA.
| |
Collapse
|
18
|
Hiller S, DeKroon R, Xu L, Robinette J, Winnik W, Alzate O, Simington S, Maeda N, Yi X. α-Lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice. Free Radic Biol Med 2014; 71:362-367. [PMID: 24675228 PMCID: PMC5293729 DOI: 10.1016/j.freeradbiomed.2014.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 01/13/2023]
Abstract
Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanism and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production leads to a reduction in energy production in wild-type mice. However, mice lacking inducible nitric oxide synthase did not suffer from LPS-induced hypothermia, suggesting that hypothermia is associated with excess NO production during sepsis. This observation is supported by the treatment of wild-type mice with α-lipoic acid (LA) in that it effectively attenuates LPS-induced hypothermia with decreased NO production. We also found that LA partially restored ATP production, and activities of the mitochondrial enzymes involved in energy metabolism, which were inhibited during sepsis. These data suggest that hypothermia is related to mitochondrial dysfunction, which is probably compromised by excess NO production and that LA administration attenuates hypothermia mainly by protecting mitochondrial enzymes from NO damage.
Collapse
Affiliation(s)
- Sylvia Hiller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Robert DeKroon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Longquan Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Jennifer Robinette
- Program of Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Witold Winnik
- Proteomic Research Core Unit, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Oscar Alzate
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Stephen Simington
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Xianwen Yi
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
19
|
Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode. Life Sci 2014; 102:127-33. [PMID: 24641950 DOI: 10.1016/j.lfs.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/23/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022]
Abstract
AIMS Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. MAIN METHODS Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. KEY FINDINGS An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. SIGNIFICANCE The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide.
Collapse
|
20
|
|
21
|
De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev Respir Med 2014; 3:511-21. [DOI: 10.1586/ers.09.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Hsu CC, Chen LF, Lin MT, Tian YF. Honokiol Protected against Heatstroke-Induced Oxidative Stress and Inflammation in Diabetic Rats. Int J Endocrinol 2014; 2014:134575. [PMID: 24693284 PMCID: PMC3947704 DOI: 10.1155/2014/134575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 01/01/2014] [Indexed: 11/17/2022] Open
Abstract
We aimed at investigating the effect of honokiol on heatstroke in an experimental rat model. Sprogue-Dawley rats were divided into 3 groups: normothermic diabetic rats treated with vehicle solution (NTDR+V), heatstroke-diabetic rats treated with vehicle (HSDR+V), and heatstroke rats treated with konokiol (0.5-5 mg/ml/kg) (HSDR+H). Sixty minutes before the start of heat stress, honokiol or vehicle solution was administered. (HSDR+H) significantly (a) attenuated hyperthermia, hypotension and hypothalamic ischemia, hypoxia, and neuronal apoptosis; (b) reduced the plasma index of the toxic oxidizing radicals; (c) diminished the indices of hepatic and renal dysfunction; (d) attenuated the plasma systemic inflammatory response molecules; (e) promoted plasma levels of an anti-inflammatory cytokine; (f) reduced the index of infiltration of polymorphonuclear neutrophils in the serum; and (g) promoted the survival time fourfold compared with the (HSDR+V) group. In conclusion, honokiol protected against the outcome of heatstroke by reducing inflammation and oxidative stress-mediated multiple organ dysfunction in diabetic rats.
Collapse
Affiliation(s)
- Chuan-Chih Hsu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 112, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 112, Taiwan
| | - Li-Fan Chen
- Nursing Department, Cheng Kung University Hospital, Tainan 701, Taiwan
- Department of Nursing, Chang Jung Christian University, Tainan 712, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Feng Tian
- Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 712, Taiwan
- *Yu-Feng Tian:
| |
Collapse
|
23
|
Zhong X, Shi Y, Chen J, Xu J, Wang L, Beier RC, Hou X, Liu F. Polyphenol Extracts from Punica granatum and Terminalia chebula Are Anti-inflammatory and Increase the Survival Rate of Chickens Challenged with Escherichia coli. Biol Pharm Bull 2014; 37:1575-82. [DOI: 10.1248/bpb.b14-00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xinlu Zhong
- College of Animal Science, Beijing University of Agriculture
| | - Yaran Shi
- College of Animal Science, Beijing University of Agriculture
| | - Jiajia Chen
- College of Animal Science, Beijing University of Agriculture
| | - Jianqing Xu
- College of Veterinary Medicine, China Agricultural University
| | - Lei Wang
- College of Animal Science, Beijing University of Agriculture
| | - Ross C Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Xiaolin Hou
- College of Animal Science, Beijing University of Agriculture
| | - Fenghua Liu
- College of Animal Science, Beijing University of Agriculture
| |
Collapse
|
24
|
Anavi S, Hahn-Obercyger M, Margalit R, Madar Z, Tirosh O. A novel antihypoglycemic role of inducible nitric oxide synthase in liver inflammatory response induced by dietary cholesterol and endotoxemia. Antioxid Redox Signal 2013; 19:1889-901. [PMID: 23697659 PMCID: PMC3852347 DOI: 10.1089/ars.2012.5157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS The current study aim was to elucidate the antihypoglycemic role and mechanism of inducible nitric oxide synthase (iNOS) under inflammatory stress. METHODS Liver inflammatory stress was induced in wild-type (WT) and iNOS-knockout (iNOS(-/-)) mice by lipopolysaccharide (LPS) (5 mg/kg) with and without the background of nonalcoholic steatohepatitis (NASH)-Induced by high cholesterol diet (HCD, 6 weeks). RESULTS HCD led to steatohepatitis in WT and iNOS(-/-) mice. LPS administration caused marked liver inflammatory damage only in cholesterol-fed mice, which was further exacerbated in the absence of iNOS. Glucose homeostasis was significantly impaired and included fatal hypoglycemia and inhibition of glycogen decomposition. In iNOS(-/-) hypoxia-inducible factor-1 (HIF1), signaling was impaired compared to control WT. Using hydrodynamic gene transfer method HIF1α was expressed in the livers of iNOS(-/-) mice, and significantly ameliorated cholesterol and LPS-induced liver damage. WT mice overexpressing HIF1α exhibited higher blood glucose levels and lower glycogen contents after LPS injection. Conversely, induction of HIF1α was not effective in preventing LPS-induced glucose lowering effect in iNOS(-/-) mice. The critical role of NO signaling in hepatocytes glucose output mediated by HIF1 pathway was also confirmed in vitro. Results also demonstrated increased oxidative stress and reduced heme oxygenase-1 mRNA in the livers of iNOS(-/-) mice. Furthermore, the amounts of plasma tumor necrosis factor-α (TNFα) and intrahepatic TNFα mRNA were significantly elevated in the absence of iNOS. INNOVATION AND CONCLUSION These data highlight the essential role of iNOS in the glycemic response to LPS in NASH conditions and argues for the beneficial effects of iNOS.
Collapse
Affiliation(s)
- Sarit Anavi
- 1 The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem , Rehovot, Israel
| | | | | | | | | |
Collapse
|
25
|
Cauwels A, Vandendriessche B, Bultinck J, Descamps B, Rogge E, Van Nieuwenhuysen T, Sips M, Vanhove C, Brouckaert P. TLR2 activation causes no morbidity or cardiovascular failure, despite excessive systemic nitric oxide production. Cardiovasc Res 2013; 100:28-35. [PMID: 23787001 DOI: 10.1093/cvr/cvt168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Septic shock is the leading cause of death in intensive care units worldwide, resulting from a progressive systemic inflammatory reaction causing cardiovascular and organ failure. Nitric oxide (NO) is a potent vasodilator and inhibition of NO synthases (NOS) can increase blood pressure in septic shock. However, NOS inhibition does not improve outcome, on the contrary, and certain NO donors may even provide protection. In addition, NOS produce superoxide in case of substrate or cofactor deficiency or oxidation. We hypothesized that excessive systemic iNOS-derived NO production is insufficient to trigger cardiovascular failure and shock. METHODS AND RESULTS We found that the systemic injection with various synthetic Toll-like receptor-2 (TLR2), TLR3, or TLR9 agonists triggered systemic NO production identical to that of lipopolysaccharide (LPS) or tumour necrosis factor. In contrast to the latter, however, these agonists did not cause hypothermia or any other signs of discomfort or morbidity, and inflammatory cytokine production was low. TLR2 stimulation with the triacylated lipopeptide Pam3CSK4 not only caused identical NO levels in circulation, but also identical iNOS expression patterns as LPS. Nevertheless, Pam3CSK4 did not cause hypotension, bradycardia, reduced blood flow, or inadequate tissue perfusion in the kidney or the liver. CONCLUSION We demonstrate that excessive iNOS-derived NO in circulation is not necessarily linked to concomitant cardiovascular collapse, morbidity, or mortality. As such, our data indicate that the central role of iNOS-derived NO in inflammation-associated cardiovascular failure may be overestimated.
Collapse
Affiliation(s)
- Anje Cauwels
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, Ghent B-9052, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Z, Feng K, Yue M, Lu X, Zheng Q, Zhang H, Zhai Y, Li P, Yu L, Cai M, Zhang X, Kang X, Shi W, Xia X, Chen X, Cao P, Li Y, Chen H, Ling Y, Li Y, He F, Zhou G. A non-synonymous SNP in the NOS2 associated with septic shock in patients with sepsis in Chinese populations. Hum Genet 2012. [PMID: 23192595 DOI: 10.1007/s00439-012-1253-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis represents a systemic inflammatory response to infection and its sequelae include severe sepsis, septic shock, multiple organ dysfunction syndrome (MODS) and death. Studies in mice and humans indicate that the inducible nitric oxide synthase (iNOS, NOS2) plays an important role in the development of sepsis and its sequelae. It was reported that several single nucleotide polymorphisms (SNPs) within NOS2 could influence the production or activity of NOS2. In this study, we assessed whether SNPs within NOS2 gene were associated with severity of sepsis in Chinese populations. A case-control study was conducted, which included 299 and 280 unrelated patients with sepsis recruited from Liaoning and Jiangsu provinces in China, respectively. Six SNPs within NOS2 were genotyped using Sequenom MassARRAY system. The associations between the SNPs and risk of sepsis complications were estimated by a binary logistic regression model adjusted for confounding factors. Functional assay was performed to assess the biological significance. The GA + AA genotype of a non-synonymous SNP in the exon 16 of NOS2 (rs2297518: G>A) was significantly associated with increased susceptibility to septic shock compared with GG genotype in Liaoning population (OR = 3.29, 95% CI = 1.40-7.72, P = 0.0047). This association was confirmed in the Jiangsu population (OR = 3.49, 95% CI = 1.57-7.79, P = 0.0019). Furthermore, the functional assay performed in the immortalized lymphocyte cell lines indicated that the at-risk GA genotype had a tendency of higher NOS2 activity than the GG genotype (P = 0.32). Our findings suggest that the NOS2 rs2297518 may play a role in mediating the susceptibility to septic shock in patients with sepsis in Chinese populations.
Collapse
Affiliation(s)
- Zhifu Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Mike Grocott
- Director, Xtreme Everest Hypoxia Research Consortium Professor of Anaesthesia and Critical Care Medicine Head, Integrative Physiology and Critical Illness Group, University of Southampton
| |
Collapse
|
28
|
Suborov EV, Smetkin AA, Kondratiev TV, Valkov AY, Kuzkov VV, Kirov MY, Bjertnaes LJ. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy. BMC Anesthesiol 2012; 12:10. [PMID: 22720843 PMCID: PMC3441363 DOI: 10.1186/1471-2253-12-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. METHODS Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). RESULTS Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. CONCLUSION Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following injurious ventilation after pneumonectomy in sheep.
Collapse
Affiliation(s)
- Evgeny V Suborov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Alexey A Smetkin
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Timofey V Kondratiev
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Andrey Y Valkov
- Department of Clinical Pathology, University Hospital of Northern Norway, 9038, Tromsø, Norway
- Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Vsevolod V Kuzkov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Mikhail Y Kirov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Lars J Bjertnaes
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| |
Collapse
|
29
|
Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta Pharmacol Sin 2012; 33:775-82. [PMID: 22609835 DOI: 10.1038/aps.2012.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM To assess the therapeutic effect of melatonin on heat-induced acute lung inflammation and injury in rats. METHODS Heatstroke was induced by exposing anesthetized rats to heat stress (36 °C, 100 min). Rats were treated with vehicle or melatonin (0.2, 1, 5 mg/kg) by intravenous administration 100 min after the initiatioin of heatstroke and were allowed to recover at room temperature (26 °C). The acute lung injury was quantified by morphological examination and by determination of the volume of pleural exudates, the number of polymorphonuclear (PMN) cells, and the myeloperoxidase (MPO) activity. The concentrations of tumor necrosis factor, interleukin (IL)-1β, IL-6, and IL-10 in bronchoalveolar fluid (BALF) were measured by ELISA. Nitric oxide (NO) level was determined by Griess method. The levels of glutamate and lactate-to-pyruvate ratio were analyzed by CMA600 microdialysis analyzer. The concentrations of hydroxyl radicals were measured by a procedure based on the hydroxylation of sodium salicylates leading to the production of 2,3-dihydroxybenzoic acid (DHBA). RESULTS Melatonin (1 and 5 mg/kg) significantly (i) prolonged the survival time of heartstroke rats (117 and 186 min vs 59 min); (ii) attenuated heatstroke-induced hyperthermia and hypotension; (iii) attenuated acute lung injury, including edema, neutrophil infiltration, and hemorrhage scores; (iv) down-regulated exudate volume, BALF PMN cell number, and MPO activity; (v) decreased the BALF levels of lung inflammation response cytokines like TNF-alpha, interleukin (IL)-1β, and IL-6 but further increased the level of an anti-inflammatory cytokine IL-10; (vi) reduced BALF levels of glutamate, lactate-to-pyruvate ratio, NO, 2,3-DHBA, and lactate dehydrogenase. CONCLUSION Melatonin may improve the outcome of heatstroke in rats by attenuating acute lung inflammation and injury.
Collapse
|
30
|
Lin CY, Hsu CC, Lin MT, Chen SH. Flutamide, an androgen receptor antagonist, improves heatstroke outcomes in mice. Eur J Pharmacol 2012; 688:62-7. [PMID: 22609231 DOI: 10.1016/j.ejphar.2012.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/20/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Flutamide has been used as an adjunct for decreasing the mortality from subsequent sepsis. Heatstroke resembles septic shock in many aspects. We hypothesized that heat-induced multiple organ dysfunction syndromes and lethality could be reduced by flutamide therapy. In heatstroke groups, mice were exposed to whole body heating (41.2°C, for 1h) in a controlled-environment chamber. The heat-stressed mice were returned to normal room temperature (24°C) after whole body heating. Mice still alive on day 4 of WBH treatment were considered survivors. Physiological and biochemical parameters were monitored for 2.5h post-WBH. Heatstroke mice were subcutaneously treated with flutamide (12.5-50mg/kg body weight in 0.05 ml) or vehicle solution (0.05 ml/kg body weight) once daily for 3 consecutive days post-WBH. We evaluated the effect of flutamide in heatstroke mice and showed that flutamide significantly (i) attenuated hypothermia, (ii) reduced the number of apoptotic cells in the hypothalamus, the spleen, the liver, and the kidney, (iii) attenuated the plasma index of toxic oxidizing radicals (e.g., nitric oxide metabolites and hydroxyl radicals), (iv) diminished the plasma index of the organ injury index (e.g., lactate dehydrogenase), (v) attenuated plasma systemic inflammation response molecules (e.g., tumor necrosis factor-α and interleukin-6), (vi) reduced the index of infiltration of polymorphonuclear neutrophils in the lung (e.g., myeloperoxidase activity), and (vii) allowed three times the fractional survival compared with vehicle. Thus, flutamide appears to be a novel agent for the treatment of mice with heatstroke or patients in the early stage of heatstroke.
Collapse
Affiliation(s)
- Chian-Yuh Lin
- The Institute of Basic Medical Sciences, National Cheng Kung University School of Medicine, Tainan, Taiwan
| | | | | | | |
Collapse
|
31
|
MEKATA H, KONNAI S, MINGALA CN, ABES NS, GUTIERREZ CA, DARGANTES AP, WITOLA WH, INOUE N, ONUMA M, MURATA S, OHASHI K. Kinetics of regulatory dendritic cells in inflammatory responses during Trypanosoma evansi infection. Parasite Immunol 2012; 34:318-29. [DOI: 10.1111/j.1365-3024.2012.01362.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
ETS-GS, a New Anti-Oxidative Drug, Protects Against Lipopolysaccharide-Induced Acute Lung and Liver Injury. J Surg Res 2011; 171:734-41. [DOI: 10.1016/j.jss.2010.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/17/2010] [Accepted: 04/06/2010] [Indexed: 02/03/2023]
|
33
|
Shingu C, Hagiwara S, Iwasaka H, Matsumoto S, Koga H, Yokoi I, Noguchi T. EPCK1, a Vitamin C and E Analogue, Reduces Endotoxin-Induced Systemic Inflammation in Mice. J Surg Res 2011; 171:719-25. [DOI: 10.1016/j.jss.2010.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/16/2010] [Accepted: 03/17/2010] [Indexed: 01/25/2023]
|
34
|
Motawi TK, Darwish HA, Abd El Tawab AM. The relative efficacy of aminoguanidine and pentoxifylline in modulating endotoxin-induced cardiac stress. Cell Biochem Funct 2011; 29:694-702. [PMID: 21976268 DOI: 10.1002/cbf.1809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 12/22/2022]
Abstract
This study investigates the effect of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor, and pentoxifylline (PTX), a tumour necrosis factor-alpha (TNF-α) inhibitor, on lipopolysaccharide (LPS)-induced cardiac stress. Rats were divided into four groups: group I served as a control, group II (LPS) received a single intraperitoneal injection of LPS (10 mg·kg(-1) ), group III (LPS+AG) and group IV (LPS+PTX) were injected with either AG (100 mg·kg(-1) ) or PTX (150 mg·kg(-1) ) intraperitoneally 10 days prior to LPS administration. Normalization of cardiac levels of nitrite/nitrate (NO(X) ), malondialdehyde (MDA), glutathione (GSH), heme oxygenase-1 (HO-1), glutathione peroxidase (GPx) and Na(+) , K(+) -ATPase activities was evident in the AG group. Both AG and PTX decreased the elevated serum TNF-α levels, the activities of lactate dehydrogenase (LDH), creatine kinase (CK) and cardiac myeloperoxidase (MPO). The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and phosphocreatine (PCr) were enhanced following AG and PTX pretreatments. Calcium (Ca(2+) ) levels were altered, and the histopathological observations supported the described results. Conclusively, the study highlights the cardioprotective potential of AG and PTX with superior results from AG. These findings reveal the relative contribution of nitric oxide and TNF-α to oxidative stress and energy failure during endotoxemia.
Collapse
|
35
|
Hou CC, Lin H, Chang CP, Huang WT, Lin MT. Oxidative stress and pyrogenic fever pathogenesis. Eur J Pharmacol 2011; 667:6-12. [DOI: 10.1016/j.ejphar.2011.05.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
36
|
Aguila FA, Oliveira-Pelegrin GR, Yao ST, Murphy D, Rocha MJA. Anteroventral third ventricle (AV3V) lesion affects hypothalamic neuronal nitric oxide synthase (nNOS) expression following water deprivation. Brain Res Bull 2011; 86:239-45. [PMID: 21840380 DOI: 10.1016/j.brainresbull.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Departamento de Morfologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
37
|
Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011; 51:576-93. [PMID: 21619929 PMCID: PMC4414241 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one-electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability, which is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO-based therapeutic agent through the unique action of sodium nitrite as an NO prodrug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities for nitrite-based therapies.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
38
|
Saia RS, Oliveira-Pelegrin GR, da Silva MENB, Aguila FA, Antunes-Rodrigues J, Rocha MJA, Cárnio EC. Neonatal endotoxin exposure changes neuroendocrine, cardiovascular function and mortality during polymicrobial sepsis in adult rats. ACTA ACUST UNITED AC 2011; 169:21-30. [DOI: 10.1016/j.regpep.2011.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 04/16/2011] [Indexed: 01/09/2023]
|
39
|
Lin XJ, Mei GP, Liu J, Li YL, Zuo D, Liu SJ, Zhao TB, Lin MT. Therapeutic effects of melatonin on heatstroke-induced multiple organ dysfunction syndrome in rats. J Pineal Res 2011; 50:436-44. [PMID: 21392091 DOI: 10.1111/j.1600-079x.2011.00863.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin reportedly exerts beneficial effects to attenuate multiple organ dysfunction syndrome (MODS) in septic shock. Heatstroke resembles septic shock in many aspects. Thus, this study was performed on the anesthetized rats by using heat exposure to induce heatstroke-associated MODS. We evaluated the effect of melatonin, a versatile molecule synthesized in the pineal gland and in many organs, in heatstroke rats and showed that melatonin (0.2-5.0 mg/kg of body weight, i.v., immediately after the start of heat stress) significantly (i) attenuated hyperthermia, hypotension and hypothalamic ischemia and hypoxia, (ii) reduced plasma index of the toxic oxidizing radicals like nitric oxide metabolites and hydroxyl radicals, (iii) diminished plasma index of hepatic and renal dysfunction like creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase, (iv) attenuated plasma systemic inflammation response molecules like soluble intercellular and lesion molecule-1, E-selectin, tumor necrosis factor-alpha, interleukin (IL)-1β, and IL-6, (v) promoted plasma levels of an anti-inflammatory cytokine IL-10, (vi) reduced an index of infiltration of polymorphonuclear neutrophils in the lung like myeloperoxidase activity, and (vii) promoted the survival time to fourfold compared with the heatstroke alone group. Thus, melatonin could be a novel agent for the treatment of heatstroke animals or patients in the early stage.
Collapse
Affiliation(s)
- Xiao-Jing Lin
- Rehabilitation Department of Spinal Cord Injury, General Hospital Jinan Military, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Oliveira-Pelegrin GR, Branco LGS, Rocha MJA. Central NO-cGMP pathway in thermoregulation and survival rate during polymicrobial sepsis. Can J Physiol Pharmacol 2010; 88:113-20. [PMID: 20237585 DOI: 10.1139/y09-116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis induces production of inflammatory mediators such as nitric oxide (NO) and causes physiological alterations, including changes in body temperature (Tb). We evaluated the involvement of the central NO-cGMP pathway in thermoregulation during sepsis induced by cecal ligation and puncture (CLP), and analyzed its effect on survival rate. Male Wistar rats with a Tb probe inserted in their abdomen were intracerebroventricularly injected with 1 microL NG-nitro-L-arginine methyl ester (L-NAME, 250 microg), a nonselective NO synthase (NOS) inhibitor; or aminoguanidine (250 microg), an inducible NOS inhibitor; or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 0.25 microg), a guanylate cyclase inhibitor. Thirty minutes after injection, sepsis was induced by cecal ligation and puncture (CLP), or the rats were sham operated. The animals were divided into 2 groups for determination of Tb for 24 h and assessment of survival during 3 days. The drop in Tb seen in the CLP group was attenuated by pretreatment with the NOS inhibitors (p < 0.05) and blocked with ODQ. CLP rats pretreated with either of the inhibitors showed higher survival rates than vehicle injected groups (p < 0.05), and were even higher in the ODQ pretreated group. Our results showed that the effect of NOS inhibition on the hypothermic response to CLP is consistent with the role of nitrergic pathways in thermoregulation.
Collapse
Affiliation(s)
- G R Oliveira-Pelegrin
- Biociências Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-904, Brasil
| | | | | |
Collapse
|
42
|
Zhang T, Feng Q. Nitric oxide and calcium signaling regulate myocardial tumor necrosis factor-α expression and cardiac function in sepsis. Can J Physiol Pharmacol 2010; 88:92-104. [PMID: 20237583 DOI: 10.1139/y09-097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myocardial tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, is a critical inducer of myocardial dysfunction in sepsis. The purpose of this review is to summarize the mechanisms through which TNF-alpha production is regulated in cardiomyocytes in response to lipopolysaccharide (LPS), a key pathogen-associated molecular pattern (PAMP) in sepsis. These mechanisms include Nox2-containing NAD(P)H oxidase, phospholipase C (PLC)gamma1, and Ca2+ signaling pathways. Activation of these pathways increases TNF-alpha expression via activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Conversely, activation of c-Jun NH2-terminal kinase 1 (JNK1) negatively regulates TNF-alpha production through inhibition of ERK1/2 and p38 MAPK activity. Interestingly, endothelial nitric oxide synthase (eNOS) promotes TNF-alpha expression by enhancing p38 MAPK activation, whereas neuronal NOS (nNOS) inhibits TNF-alpha production by reducing Ca2+-dependent ERK1/2 activity. Therefore, the JNK1 and nNOS inhibitory pathways represent a "brake" that limits myocardial TNF-alpha expression in sepsis. Further understanding of these signal transduction mechanisms may lead to novel pharmacological therapies in sepsis.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | | |
Collapse
|
43
|
Oliveira-Pelegrin GR, Aguila FA, Basso PJ, Rocha MJA. Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides 2010; 31:1847-52. [PMID: 20621145 DOI: 10.1016/j.peptides.2010.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 11/17/2022]
Abstract
Sepsis induces massive production of inflammatory mediators, such as nitric oxide (NO), and causes neuroendocrine and cardiovascular alterations. This study investigates the involvement of the central NO-cGMP pathway in arginine vasopressin (AVP) and oxytocin (OXY) gene expression during sepsis induced by cecal ligation and puncture (CLP). Male Wistar rats received an i.c.v. injection of ODQ (0.25 μg/μL), a selective inhibitor of the heme site of soluble guanylate cyclase, or of 1% dymethilsulfoxide (DMSO), as vehicle. Thirty minutes after the injections, sepsis was induced by cecal ligation and puncture or the animals were sham operated. The ODQ pre-treatment did not alter the progressive NO increase observed after CLP. In the supraoptic nucleus (SON), this pretreatment increased the relative gene expression ratio of AVP and OXY in the initial phase of sepsis, but in the late phase, the gene expression of both hormones was reduced. In the paraventricular nucleus (PVN), soluble guanylate cyclase inhibition caused an even larger decrease in the relative gene expression ratio of AVP and OXY during sepsis. These results are indicative of a role of the NO-cGMP pathway in hormonal synthesis in the SON and PVN of the hypothalamus during polymicrobial sepsis.
Collapse
Affiliation(s)
- Gabriela Ravanelli Oliveira-Pelegrin
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
44
|
|
45
|
Oliveira-Pelegrin GR, de Azevedo SV, Yao ST, Murphy D, Rocha MJA. Central NOS inhibition differentially affects vasopressin gene expression in hypothalamic nuclei in septic rats. J Neuroimmunol 2010; 227:80-6. [PMID: 20643487 DOI: 10.1016/j.jneuroim.2010.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022]
Abstract
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min, sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVPp) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVPp at all time points, except 24h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVPp remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis.
Collapse
Affiliation(s)
- Gabriela Ravanelli Oliveira-Pelegrin
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
46
|
Eyenga P, Lhuillier F, Morel J, Roussel D, Sibille B, Letexier D, Cespuglio R, Duchamp C, Goudable J, Bricca G, Viale JP. Time course of liver nitric oxide concentration in early septic shock by cecal ligation and puncture in rats. Nitric Oxide 2010; 23:194-8. [PMID: 20547233 DOI: 10.1016/j.niox.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 05/26/2010] [Accepted: 06/07/2010] [Indexed: 01/09/2023]
Abstract
An overwhelming nitric oxide (NO) production is a crucial step in the circulatory events as well as in the cellular alterations taking place in septic shock. However, evidences of this role arise from studies assessing the NO production on an intermittent basis precluding any clear evaluation of temporal relationship between NO production and circulatory alterations. We evaluated this relationship by using a NO specific electrode allowing a continuous measurement of NO production. Septic shock was induced by a cecal ligation and puncture (CLP) in a first group of anesthetized rats. After the same CLP, a second group received a selective iNOS inhibitor (L-NIL). Control rats were sham operated or sham operated with L-NIL administration. While NO concentration was measured every 2 min by a NO-sensitive electrode over 7h following CLP, the liver microcirculation was recorded by a laser-Doppler flowmeter. CLP induced a severe septic shock with hypotension occurring at a mean time of 240 min after CLP. At the same time, an increase in liver NO concentration was observed, whereas a decrease in microvascular liver perfusion was noted. In the septic shock group, L-NIL administration induced an increase in arterial pressure whereas the liver NO concentration returned to baseline values. In addition, shock groups experienced an increase in iNOS mRNA. These data showed a close temporal relationship between the increase in liver NO concentration and the microvascular alteration taking place in the early period of septic shock induced by CLP. The iNOS isoform is involved in this NO increase.
Collapse
Affiliation(s)
- P Eyenga
- Inserm, EA4173 ERI 22, Agression vasculaire et réponses tissulaires, UCBLyon1, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Smoke inhalation injury is often complicated with pneumonia, which frequently leads to subsequent development of sepsis. Excessive NO has been shown to mediate many sepsis-related pathological responses. In the present study, we used our well-established ovine smoke inhalation and pneumonia/sepsis model to examine the hypothesis that neuronal NO synthase (NOS) may be primarily responsible for these pathological alterations. We report the beneficial effects of the specific neuronal NOS (nNOS) inhibitor ZK234238. Adult female sheep were surgically prepared for the study. After 5 to 7 days' recovery, sheep were anesthetized and given double injury: insufflation of 48 breaths of cotton smoke (<40 degrees C) into the airway of each animal and subsequent instillation of live Pseudomonas aeruginosa (5 x 10(11) colony-forming units) into each sheep's lung via tracheostomy tube. All sheep were mechanically ventilated and fluid resuscitated by lactated Ringer's solution. Sheep were randomly allocated into groups: control (injured not treated, n = 6) and treated (injured, but treated with ZK234238, n = 4). Continuous infusion of ZK234238 (100 microg x kg(-1) x h(-1)) was started 1 h after insult. ZK234238 attenuated the hypotension (at 18 and 24 h) and fall in systemic vascular resistance (at 24 h) seen in control animals. ZK234238 significantly inhibited increased fluid accumulation as well as increased plasma nitrate/nitrite 24 h after injury. Neuronal NOS inhibition significantly reduced lung water content and attenuated inflammatory indices such as lung tissue myeloperoxidase activity, IL-6 mRNA, and reactive nitrogen species. The above results suggest that the nNOS-derived NO may be involved in the pathophysiology of sepsis-related multiorgan dysfunction.
Collapse
|
48
|
COMP-Angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney Int 2009; 76:1180-91. [DOI: 10.1038/ki.2009.387] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. ACTA ACUST UNITED AC 2009; 206:2915-24. [PMID: 19934018 PMCID: PMC2806477 DOI: 10.1084/jem.20091236] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitrite (NO2−), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.
Collapse
Affiliation(s)
- Anje Cauwels
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
50
|
cIAP-1 controls innate immunity to C. pneumoniae pulmonary infection. PLoS One 2009; 4:e6519. [PMID: 19657383 PMCID: PMC2716518 DOI: 10.1371/journal.pone.0006519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/08/2009] [Indexed: 01/14/2023] Open
Abstract
The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs). The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1) in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO) mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-γ) was increased whereas that of Tumor Necrosis Factor (TNF-α) was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection.
Collapse
|