1
|
Barry CM, Kestell G, Gillan M, Haberberger RV, Gibbins IL. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience 2015; 291:106-17. [PMID: 25681518 DOI: 10.1016/j.neuroscience.2015.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Chronic pain is a significant burden and much is attributed to back muscles. Back muscles and their associated fasciae make important and distinct contributions to back pain. Peptidergic nociceptors innervating these structures contribute to central transmission and pain modulation by peripheral and central actions. Plastic changes that augment and prolong pain are exhibited by neurons containing calcitonin gene-related peptide (CGRP) following muscle injury. Subpopulations of neurons containing this peptide have been identified in dorsal root ganglia but the distribution of their fibers in skeletal muscles and associated fasciae has not been fully documented. This study used multiple-labeling immunofluorescence and retrograde axonal tracing to identify dorsal root ganglion cells associated with muscle, and to characterize the distribution and density of their nerve fibers in mouse gastrocnemius and back muscles and in the thoracolumbar fascia. Most nerve fibers in these tissues contained CGRP and two major subpopulations of neurons were found: those containing CGRP and substance P (SP) and those containing CGRP but not SP. Innervation density was three times higher in the thoracolumbar fascia than in muscles of the back. These studies show mouse back and leg muscles are predominantly innervated by neurons containing CGRP, an important modulator of pain signal transmission. There are two distinct populations of neurons containing this peptide and their fibers were three times more densely distributed in the thoracolumbar fascia than back muscles.
Collapse
Affiliation(s)
- C M Barry
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia.
| | - G Kestell
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - M Gillan
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - R V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - I L Gibbins
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| |
Collapse
|
2
|
Itoh K, Takaki Y, Ando K, Soh T, Ichinomiya Y, Kusaba H. Colocalization of nitric oxide synthase, vasoactive intestinal polypeptide and tyrosine hydroxylase immunoreactivities in postganglionic neurons of the quail superior cervical ganglion. J Vet Med Sci 2013; 75:439-43. [PMID: 23171690 DOI: 10.1292/jvms.12-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The colocalization of immunoreactivity to nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP) and tyrosine hydroxylase (TH) in the superior cervical ganglion (SCG) was investigated in the quail. In this bird, a substantial amount of NOS-immunoreactive (IR) cells were consistently found in the SCG without colchicine treatment or nerve ligation. The finding worthy of pointing out was that three-fourths of these NOS-IR cells were positive for TH. VIP-IR cells appeared with markedly low frequency than NOS-IR cells. They were generally small in size and often located in the ganglion peripheral. There were no VIP-IR cells positive for TH or negative for NOS: VIP immunoreactivity always appears in NOS-IR cells negative for TH. Thus, the results of the present study clearly showed the existence of two distinct subpopulations of postganglionic NOS-IR neurons (one is catecholaminergic and negative for VIP, and the other is non-catecholaminergic and positive for VIP). This suggests that nitric oxide (NO) and possibly VIP act as postganglionic neurotransmitters or neuromodulators in the quail SCG. The predominant appearance of the former category of NOS-IR cells must be considered in relation to some specific NO-induced controlling mechanisms of SCG neurons.
Collapse
Affiliation(s)
- Katsuhito Itoh
- Biological Laboratory, Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
3
|
The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013; 32:1613-25. [PMID: 23591430 DOI: 10.1038/emboj.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 01/17/2023] Open
Abstract
The sympathetic nervous system relies on distinct populations of neurons that use noradrenaline or acetylcholine as neurotransmitter. We show that fating of the sympathetic lineage at early stages results in hybrid precursors from which, genetic cell-lineage tracing reveals, all types progressively emerge by principal mechanisms of maintenance, repression and induction of phenotypes. The homeobox transcription factor HMX1 represses Tlx3 and Ret, induces TrkA and maintains tyrosine hydroxylase (Th) expression in precursors, thus driving segregation of the noradrenergic sympathetic fate. Cholinergic sympathetic neurons develop through cross-regulatory interactions between TRKC and RET in precursors, which lead to Hmx1 repression and sustained Tlx3 expression, thereby resulting in failure of TrkA induction and loss of maintenance of Th expression. Our results provide direct evidence for a model in which diversification of noradrenergic and cholinergic sympathetic neurons is based on a principle of cross-repressive functions in which the specific cell fates are directed by an active suppression of the expression of transcription factors and receptors that direct the alternative fate.
Collapse
|
4
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
5
|
Anderson CR, Bergner A, Murphy SM. How many types of cholinergic sympathetic neuron are there in the rat stellate ganglion? Neuroscience 2006; 140:567-76. [PMID: 16600516 DOI: 10.1016/j.neuroscience.2006.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/21/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Sympathetic cholinergic postganglionic neurons are present in many sympathetic ganglia. Three classes of sympathetic cholinergic neuron have been reported in mammals; sudomotor neurons, vasodilator neurons and neurons innervating the periosteum. We have examined thoracic sympathetic ganglia in rats to determine if any other classes of cholinergic neurons exist. We could identify cholinergic sudomotor neurons and neurons innervating the rib periosteum, but confirmed that cholinergic sympathetic vasodilator neurons are absent in this species. Sudomotor neurons contained vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) and always lacked calbindin. Cholinergic neurons innervating the periosteum contained VIP and sometimes calbindin, but always lacked CGRP. Cholinergic neurons innervating the periosteum were usually surrounded by terminals immunoreactive for CGRP. We conclude that if any undiscovered populations of cholinergic neurons exist in the rat thoracic sympathetic chain, then they are indistinguishable in size, neurochemistry and inputs from sudomotor or cholinergic neurons innervating the periosteum. It may be that the latter two populations account for all cholinergic neurons in the rat thoracic sympathetic chain ganglia.
Collapse
Affiliation(s)
- C R Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
6
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
7
|
Sequeira IM, Haberberger RV, Kummer W. Atrial and ventricular rat coronary arteries are differently supplied by noradrenergic, cholinergic and nitrergic, but not sensory nerve fibres. Ann Anat 2005; 187:345-55. [PMID: 16163847 DOI: 10.1016/j.aanat.2005.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present immunohistochemical study set out to determine the extent of perivascular innervation in the rat heart, using markers for noradrenergic sympathetic fibres (tyrosine hydroxylase = TH), cholinergic parasympathetic fibres (vesicular acetylcholine transporter = VAChT), nitrergic fibres (neuronal NO synthase = nNOS), and peptidergic sensory fibres (calcitonin gene-related peptide = CGRP). For each of these antigens, the vascular innervation density was assessed separately in the atria, the basal and the apical parts of the ventricles, and was correlated to the inner vascular diameter. The four major findings are: (1) Each of these neurochemically defined populations shows an individual distribution pattern significantly different from the others with respect to correlation with vascular diameter and occurrence along atrial versus ventricular vessels. (2) Among autonomic efferent axons, nNOS-containing fibres are far less numerous than cholinergic and noradrenergic fibres. (3) Autonomic efferent axons (noradrenergic, cholinergic, nitrergic) are much more abundant around atrial than ventricular vessels, whereas perivascular CGRP-immunoreactive sensory nerve fibres are equally distributed in the various parts of the heart. (4) Noradrenergic and cholinergic axons preferentially innervate small-diameter vessels (negative linear correlation between index of innervation and vascular diameter), whereas the supply with CGRP-immunoreactive sensory nerve fibres does not change with vascular diameter. Collectively, the present study shows individual distribution patterns for each of the neurochemically defined populations of perivascular axons along the atrial and ventricular coronary arteries, indicating a highly differentiated nervous regulation of atrial versus ventricular, and large-diameter versus resistance vessels.
Collapse
Affiliation(s)
- Indira M Sequeira
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany.
| | | | | |
Collapse
|
8
|
Morris JL, Gibbins IL, Jobling P. Post-stimulus potentiation of transmission in pelvic ganglia enhances sympathetic dilatation of guinea-pig uterine artery in vitro. J Physiol 2005; 566:189-203. [PMID: 15802294 PMCID: PMC1464727 DOI: 10.1113/jphysiol.2005.083493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/29/2005] [Indexed: 01/20/2023] Open
Abstract
Vasodilatation produced by stimulation of preganglionic neurones in lumbar and sacral pathways to pelvic ganglia was studied using an in vitro preparation of guinea-pig uterine artery and associated nerves in a partitioned bath allowing selective drug application to the ganglia or artery. Arterial diameter was monitored using real time video imaging. Vasodilatations produced by hypogastric nerve stimulation (HN; 300 pulses, 10 Hz) were significantly larger and longer in duration than with pelvic nerve stimulation (N = 18). Stimulation of ipsilateral lumbar splanchnic nerves or ipsilateral third lumbar ventral roots also produced prolonged vasodilatations. Blockade of ganglionic nicotinic receptors (0.1-1 mM hexamethonium) delayed the onset and sometimes reduced the peak amplitude of dilatations, but slow dilatations persisted in 16 of 18 preparations. These dilatations were not reduced further by 3 microM capsaicin applied to the artery and ganglia, or ganglionic application of 1 microM hyoscine, 30-100 microM suramin or 10 microM CNQX. Dilatations were reduced slightly by ganglionic application of NK1 and NK3 receptor antagonists (SR140333, SR142801; 1 microM), but were reduced significantly by bathing the ganglia in 0.5 mM Ca2+ and 10 mM Mg2+. Intracellular recordings of paracervical ganglion neurones revealed fast excitatory postsynaptic potentials (EPSPs) in all neurones on HN stimulation (300 pulses, 10 Hz), and slow EPSPs (3-12 mV amplitude) in 25 of 37 neurones. Post-stimulus action potential discharge associated with slow EPSPs occurred in 16 of 37 neurones (firing rate 9.4 +/- 1.5 Hz). Hexamethonium (0.1-1 mM) abolished fast EPSPs. Hexamethonium and hyoscine (1 microM) did not reduce slow EPSPs and associated post-stimulus firing in identified vasodilator neurones (with VIP immunoreactivity) or non-vasodilator paracervical neurones. These results demonstrate a predominantly sympathetic origin of autonomic pathways producing pelvic vasodilatation in females. Non-cholinergic mediators of slow transmission in pelvic ganglia produce prolonged firing of postganglionic neurones and long-lasting dilatations of the uterine artery. This mechanism would facilitate maintenance of pelvic vasodilatation on stimulation of preganglionic neurones during sexual activity.
Collapse
Affiliation(s)
- Judy L Morris
- Department of Anatomy & Histology, Center for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
9
|
Heikki P, Timo W, Nureddin A, Sampsa V. Degeneration and regeneration of perivascular innervation in arterial grafts. J Craniofac Surg 2004; 15:570-81; discussion 582-4. [PMID: 15213532 DOI: 10.1097/00001665-200407000-00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Because the understanding of postoperative changes in arterial graft innervation is limited, this study was performed to characterize neuronal degeneration and regeneration events immunohistochemically in femoral arterial grafts transplanted to carotid arteries in rats. Specimens taken 1 day, 3 days, 7 days, 1 month, 3 months, and 5 months after surgery were assessed for vasoactive intestinal peptide, neurofilaments, growth-associated protein 43, tyrosine hydroxylase, and nitric oxide synthase isoenzymes. During neuronal degeneration, vasoactive intestinal peptide disappeared within 1 day, transmitter-synthesizing enzymes (nitric oxide synthase and tyrosine hydroxylase) had vanished by day 7, and neurofilaments (cytoskeletal markers) had essentially disappeared after 1 week. In the regeneration phase, the most robust axonal growth, as visualized by growth-associated protein 43, was observed at 1 month, followed by a gradual increase in neurotransmitter markers at 1 and 3 months, whereas the neurofilaments increased gradually up to the end of the 5-month observation period. Reinnervation proceeded from the proximal carotid (host) trunk distally to the graft. Axonal re-growth occurred mainly in arterial adventitia. Innervation density, as visually assessed, was denser in the graft than in the host. These findings suggest that 1) the main sequence of degeneration and regeneration follows that reported in other models of neuronal degeneration; 2) reinnervation of the arterial grafts comes mainly from the host arteries; and 3) the innervation density in the graft may differ from that in the host, which may suggest target-derived regulation of innervation. The latter finding may have clinical implications. It suggests that for a good outcome it would be beneficial to choose a sparsely innervated graft rather than a densely innervated one.
Collapse
Affiliation(s)
- Penttilä Heikki
- Department of Oral and Maxillofacial Diseases, Surgical Hospital, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
10
|
Masliukov PM, Timmermans JP. Immunocytochemical properties of stellate ganglion neurons during early postnatal development. Histochem Cell Biol 2004; 122:201-9. [PMID: 15338227 DOI: 10.1007/s00418-004-0692-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2004] [Indexed: 12/21/2022]
Abstract
Neurotransmitter features in sympathetic neurons are subject to change during development. To better understand the neuroplasticity of sympathetic neurons during early postnatal ontogenesis, this study was set up to immunocytochemically investigate the development of the catecholaminergic, cholinergic, and peptidergic phenotypes in the stellate ganglion of mice and rats. The present study was performed on Wistar rats and Swiss mice of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, and 60-day-old). To this end, double labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), vasoactive intestinal (poly)peptide (VIP), neuropeptide Y (NPY), galanin (GAL), and somatostatin (SOM) was applied. The results obtained indicate that the majority of the neurons in the stellate ganglion of both species were TH-positive from birth onward and that a large part of these neurons also contained NPY. The percentage of neurons containing TH and NPY invariably increased with age up to 60 days postnatally. A smaller portion of the stellate ganglion neurons contained other types of neuropeptides and showed a distinct chronological pattern. The proportion of VIP- and ChAT-positive neurons was maximal in 10-day-old animals and then decreased up to 60 days of age, whereas the number of SOM-positive cells in rats significantly decreased from birth onward. In newborn rats, VIP-, ChAT- and SOM-positive neurons were largely TH-positive, while their proportions decreased in 10-day-old and older rats. Accordingly, the largest part of VIP-positive neurons also expressed SOM immunoreactivity at birth, after which the number of neurons containing both peptides diminished. The VIP- and SOM-positive cells did not contain NPY in any of the age groups studied. In rats up to 10 days of life, GAL-immunoreactive (-IR) neurons were scarce, after which their number increased to reach a maximal value in 30-day-old animals and then declined again. The SOM-reactive cells had the smallest size in all rats, while the largest neurons were those containing ChAT. In the mouse stellate ganglion, VIP- and ChAT-IR neurons were larger in comparison to NPY- and TH-IR cells. Our study further revealed some species differences: compared to mice the proportion of neurons containing TH and NPY was higher in rats at all ages under study. Furthermore, no GAL-immunostained neurons were found in mice and the number of SOM-positive cells in mice was limited compared to that observed in rats. In conclusion, the development of neurotransmitter composition is complete in rats and mice by their second month of life. At this age, the percentages of immunopositive cells have become similar to those reported in adult animals.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical Academy, Revoliucionnaya 5, 150000, Russia.
| | | |
Collapse
|
11
|
Masliukov PM, Shilkin VV, Nozdrachev AD, Timmermans JP. Histochemical features of neurons in the cat stellate ganglion during postnatal ontogenesis. Auton Neurosci 2003; 106:84-90. [PMID: 12878076 DOI: 10.1016/s1566-0702(03)00051-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the distribution of NADPH-diaphorase (NADPH-d) and acetylcholinesterase (AChE) were studied in neurons of the stellate ganglion in newborn, 10-, 20-day-old, 1-, 2-, 4- and 6-month-old kittens. AChE-positive neurons were revealed in the stellate ganglion (SG) from birth onwards. The number of these neurons increased until 20 days of postnatal life and then declined in 1- and 2-month-old kittens. A small number of weakly stained, NADPH-d-positive cells were found in newborn kittens, while intensely stained neurons first appeared in 10-day-old animals and increased in number up to the second month of life. The size of AChE-positive neurons was larger in comparison with NADPH-d-positive cells in the stellate ganglion of all animals under study. We suggest that putative vasodilator neurons or cells innervating sweat glands exhibit different development patterns from the moment of birth.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical Academy, Revoliucionnaya 5, Yaroslavl, 150000, Russia.
| | | | | | | |
Collapse
|
12
|
Henrich M, Haberberger RV, Hempelmann G, Kummer W. Quantitative immunohistochemical investigation of the intrinsic vasodilator innervation of the guinea pig lingual artery. Auton Neurosci 2003; 103:72-82. [PMID: 12531400 DOI: 10.1016/s1566-0702(02)00258-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vasculature of the guinea pig tongue is supplied by parasympathetic vasodilator nerve fibres of intrinsic origin. Here, we investigated first to what extent neuropeptides and the synthesizing enzymes of NO, CO and acetylcholine are contained and colocalized within periarterial lingual vasodilator axons of intrinsic origin. Then it was determined whether perivascular innervation by these fibre types changes with vascular diameter, in particular in comparison with the sensory substance P (SP)-positive and sympathetic noradrenergic vascular innervation. To this end, single, double and triple labelling histochemical techniques were performed on control tongues and tongues kept in short-term organotypic culture to induce degeneration of extrinsically originating nerve fibres. Cell bodies of intrinsic microganglia and their periarterial axons contained, simultaneously, NO synthase, vasoactive intestinal peptide and the acetylcholine-synthesizing enzyme choline acetyltransferase. Additionally, neuropeptide Y (NPY) was observed in a small percentage (12%) of neurons that increased to 39% after 36 h of organotypic culture. The CO synthesizing enzyme heme oxygenase-2 was detected only in perikarya but not in periarterial axons. Intrinsic vasodilator fibres were invariably present at arteries down to a luminal diameter of 150 microm, and reached 65% of section profiles of smallest arterioles, while noradrenergic and substance P-positive axons reached 80% of arteriolar profiles. These findings show that the intrinsic lingual vasodilator innervation of the guinea pig is far extending although slightly less developed than that by sensory and sympathetic axons, and differs both in this aspect and in patterns of colocalization from that reported for other organs, e.g. lung and pelvic organs.
Collapse
Affiliation(s)
- Michael Henrich
- Department of Anaesthesiology and Intensive Care, Justus-Liebig-University, Rudolf-Buchheim-Str 7, D-35385 Giessen, Germany.
| | | | | | | |
Collapse
|
13
|
Salem N, Dunbar JC. The insulin-mediated vascular and blood pressure responses are suppressed in CGRP-deficient normal and diabetic rats. Diabetes Metab Res Rev 2002; 18:238-44. [PMID: 12112942 DOI: 10.1002/dmrr.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is extensively localized in the perivascular or periadventitia nerves throughout the body. CGRP is a potent vasodilator and its release is associated with dilation of these blood vessels. The present study investigated the contribution of the CGRP-mediated vasodilation to the insulin-induced vasodilatory response. METHODS Male Wistar rats were treated with capsaicin (50 mg/kg) at 1-3 days of age to ablate the CGRP-containing neurons. After 8 weeks some animals were made diabetic using streptozotocin. Vehicle-treated animals were used as controls. At 12-13 weeks the animals were fasted, anesthetized with chloralose/urethane and instrumented for recording of cardiovascular dynamics. RESULTS Body weights and basal, insulin, glucose, mean arterial pressure (MAP), heart rate (HR), and vascular flows were not different in CGRP-deficient rats versus controls. Insulin infusion significantly decreased the MAP in vehicle-treated controls but this response was completely attenuated in CGRP-deficient rats. The decreased response to insulin was associated with a diminished vascular dilatory response in the iliac, renal, and superior mesenteric vessel beds. When insulin was infused in CGRP-deficient diabetic animals there was also a diminished response. Diabetes resulted in an increased renal vascular flow in response to insulin. CONCLUSIONS From the present studies we conclude that the insulin-mediated vasodilation was due, in part, to the stimulation of perivascular nerves to release CGRP, and the action of CGRP on vascular smooth muscle enhanced directly or indirectly the vasodilatory response to insulin.
Collapse
Affiliation(s)
- Nahla Salem
- Department of Physiology, Wayne State University School of Medicine, 540 E Canfield, Detroit, MI 48201-1928, USA
| | | |
Collapse
|
14
|
Takeuchi Y, Tino S, Asamoto K, Nojyo Y. Differences in the density of sympathetic nerve fibers in the arteriolar walls of the rat extensor digitorum longus muscle. Anat Sci Int 2002; 77:51-7. [PMID: 12418084 DOI: 10.1046/j.0022-7722.2002.00005.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we electron-microscopically investigated a number of sympathetic axons in the arteriolar walls of the extensor digitorum longus muscles of the rat rear leg. Arterioles in the muscle were divided into two groups: (i) one group consisted of arterioles with accompanying muscle spindles, and (ii) the other consisted of arterioles without accompanying muscle spindles. The number of sympathetic axons present in the arteriolar walls and the ratios to the total number of sympathetic and non-sympathetic axons were compared between the groups. For electron-microscopic identification of sympathetic axons, 5-hydroxydopamine, a pseudotransmitter agent, was used. The number and ratio of sympathetic axons were significantly higher in arterioles with accompanying muscle spindles than arterioles possibly unrelated to muscle spindles. Additionally, amine- and immunohistochemistry were used to confirm the above observation.
Collapse
Affiliation(s)
- Yoshitaka Takeuchi
- Department of Orthopaedic Surgery, Teikyo University, School of Medicine, 359 Otsuka, Hachioji-shi, Tokyo 192-0395, Japan.
| | | | | | | |
Collapse
|
15
|
Anderson RL, Jobling P, Gibbins IL. Development of electrophysiological and morphological diversity in autonomic neurons. J Neurophysiol 2001; 86:1237-51. [PMID: 11535673 DOI: 10.1152/jn.2001.86.3.1237] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The generation of neuronal diversity requires the coordinated development of differential patterns of ion channel expression along with characteristic differences in dendritic geometry, but the relations between these phenotypic features are not well known. We have used a combination of intracellular recordings, morphological analysis of dye-filled neurons, and stereological analysis of immunohistochemically labeled sections to investigate the development of characteristic electrical and morphological properties of functionally distinct populations of sympathetic neurons that project from the celiac ganglion to the splanchnic vasculature or the gastrointestinal tract of guinea pigs. At early fetal stages, neurons were significantly more depolarized at rest compared with neurons at later stages, and they generally fired only a single action potential. By mid fetal stages, rapidly and slowly adapting neurons could be distinguished with a topographic distribution matching that found in adult ganglia. Most rapidly adapting neurons (phasic neurons) at this age had a long afterhyperpolarization (LAH) characteristic of mature vasomotor neurons and were preferentially located in the lateral poles of the ganglion, where most neurons contained neuropeptide Y. Most early and mid fetal neurons showed a weak M current, which was later expressed only by rapidly-adapting and LAH neurons. Two different A currents were present in a subset of early fetal neurons and may indicate neurons destined to develop a slowly adapting phenotype (tonic neurons). The size of neuronal cell bodies increased at a similar rate throughout development regardless of their electrical or neurochemical phenotype or their topographical location. In contrast, the rate of dendritic growth of neurons in medial regions of the ganglion was significantly higher than that of neurons in lateral regions. The apparent cell capacitance was highly correlated with the surface area of the soma but not the dendritic tree of the developing neurons. These results demonstrate that the well-defined functional populations of neurons in the celiac ganglion develop their characteristic electrophysiological and morphological properties during early fetal stages of development. This is after the neuronal populations can be recognized by their neurochemical and topographical characteristics but long before the neurons have finished growing. Our data provide strong circumstantial evidence that the development of the full phenotype of different functional classes of autonomic final motor neurons is a multi-step process likely to involve a regulated sequence of trophic interactions.
Collapse
Affiliation(s)
- R L Anderson
- Centre for Neuroscience, Department of Anatomy and Histology, Flinders University, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
16
|
Abstract
The control and maintenance of vascular tone is due to a balance between vasoconstrictor and vasodilator pathways. Vasomotor responses to neural, metabolic and physical factors vary between vessels in different vascular beds, as well as along the same bed, particularly as vessels become smaller. These differences result from variation in the composition of neurotransmitters released by perivascular nerves, variation in the array and activation of receptor subtypes expressed in different vascular beds and variation in the signal transduction pathways activated in either the vascular smooth muscle or endothelial cells. As the study of vasomotor responses often requires pre-existing tone, some of the reported heterogeneity in the relative contributions of different vasodilator mechanisms may be compounded by different experimental conditions. Biochemical variations, such as the expression of ion channels, connexin subtypes and other important components of second messenger cascades, have been documented in the smooth muscle and endothelial cells in different parts of the body. Anatomical variations, in the presence and prevalence of gap junctions between smooth muscle cells, between endothelial cells and at myoendothelial gap junctions, between the two cell layers, have also been described. These factors will contribute further to the heterogeneity in local and conducted responses.
Collapse
Affiliation(s)
- C E Hill
- Autonomic Synapse Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200 ACT, Australia.
| | | | | |
Collapse
|
17
|
Masliukov PM, Pankov VA, Strelkov AA, Masliukova EA, Shilkin VV, Nozdrachev AD. Morphological features of neurons innervating different viscera in the cat stellate ganglion in postnatal ontogenesis. Auton Neurosci 2000; 84:169-75. [PMID: 11111849 DOI: 10.1016/s1566-0702(00)00208-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Retrograde axonal transport of horseradish peroxidase (HRP) was used in this study to determine morphological parameters in the stellate ganglion (SG) in newborn, 10-, 20-day- and 1-month-old kittens. Neurons with the largest average size participated in innervation of the heart in newborn kittens and in innervation of the sternocleidomastoid muscle in other animals. The number of neurons sending their axons to target-organs also changed in postnatal ontogenesis. Regardless of the site of HRP injection at animals of all ages labeled neurons in the SG were located in certain zones on a topographical basis. Thus, it is concluded that in postnatal ontogenesis the neuronal organization of the SG changes in parallel to the increase of neuronal sizes and ganglion cross section area and practically finishes at 1 month of age.
Collapse
Affiliation(s)
- P M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical Academy, Russia.
| | | | | | | | | | | |
Collapse
|
18
|
Gibbins IL, Morris JL. Pathway specific expression of neuropeptides and autonomic control of the vasculature. REGULATORY PEPTIDES 2000; 93:93-107. [PMID: 11033057 DOI: 10.1016/s0167-0115(00)00181-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this article, we review the immunohistochemical evidence for the pathway-specific expression of co-existing neuropeptides in autonomic vasomotor neurons, and examine the functional significance of these expression patterns for the autonomic regulation of the vasculature. Most final motor neurons in autonomic vasomotor pathways contain neuropeptides in addition to non-peptide co-transmitters such as catecholamines, acetylcholine and nitric oxide. Neuropeptides also occur in preganglionic vasomotor neurons. The precise combinations of neuropeptides expressed by neurons in vasomotor pathways vary with species, vascular bed, and the level within the vascular bed. This applies to both vasoconstrictor and vasodilator pathways. There is a similar degree of variation in the expression of neuropeptide receptors in the vasculature. Consequently, the contributions of different peptides to autonomic vasomotor control are closely matched to the functional requirements of specific vascular beds. This arrangement allows for a high degree of precision in vascular control in normal conditions and has the potential for considerable plasticity under pathophysiological conditions.
Collapse
Affiliation(s)
- I L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, School of Medicine, Flinders University, GPO Box 2100, S.A. 5001, Adelaide, Australia.
| | | |
Collapse
|
19
|
Guidry G, Landis SC. Absence of cholinergic sympathetic innervation from limb muscle vasculature in rats and mice. Auton Neurosci 2000; 82:97-108. [PMID: 11023615 DOI: 10.1016/s0165-1838(00)00094-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the existence of cholinergic sympathetic vasodilatory innervation in limb muscle vasculature is well established for some species, previous pharmacological studies have failed to reveal the presence of such innervation in rats. Recently, Schafer and colleagues [Schafer, M.K., Eiden, L.E., Weihe, E., 1998. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84(2), 361-376] reported that vesicular acetylcholine transporter immunoreactivity (VAChT-IR), a marker for cholinergic terminals, is present in the innervation of the microvasculature of rat hindlimb skeletal muscle and concluded that rats possess cholinergic sympathetic innervation of limb muscle vasculature. Because of our interest in identifying targets of cholinergic sympathetic neurons, we have analyzed the transmitter properties of the innervation of muscle vessels in rat and mouse limbs. We found that the innervation of vasculature in muscle is noradrenergic, exhibiting robust catecholamine histofluorescence and immunoreactivity for tyrosine hydroxylase (TH) and the peptide transmitters, neuropeptide Y (NPY) and occasionally vasoactive intestinal peptide (VIP). In contrast, cholinergic phenotypic markers,VAChT-IR and acetylcholinesterase (AChE) activity, are absent. Neuron cell bodies in sympathetic ganglia, retrogradely labeled with injections of tracer into limb muscles, also lacked VAChT but contained TH-IR. The innervation of large extramuscular feed arteries in hindlimbs was also devoid of cholinergic markers, as were the cell bodies of sympathetic neurons innervating extramuscular femoral arteries. These results, like those of previous physiological studies, provide no evidence for the presence of cholinergic sympathetic innervation of muscle vasculature in rats or mice.
Collapse
Affiliation(s)
- G Guidry
- Neural Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4062, USA.
| | | |
Collapse
|
20
|
Stanke M, Geissen M, Götz R, Ernsberger U, Rohrer H. The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFRbeta or CNTFRalpha. Mech Dev 2000; 91:91-6. [PMID: 10704834 DOI: 10.1016/s0925-4773(99)00275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors.
Collapse
Affiliation(s)
- M Stanke
- Max-Planck-Institut für Hirnforschung, Abt. Neurochemie, Deutschordenstrasse 46, 60528, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
21
|
Jobling P, Gibbins IL. Electrophysiological and morphological diversity of mouse sympathetic neurons. J Neurophysiol 1999; 82:2747-64. [PMID: 10561442 DOI: 10.1152/jn.1999.82.5.2747] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used multiple-labeling immunohistochemistry, intracellular dye-filling, and intracellular microelectrode recordings to characterize the morphological and electrical properties of sympathetic neurons in the superior cervical, thoracic, and celiac ganglia of mice. Neurochemical and morphological characteristics of neurons varied between ganglia. Thoracic sympathetic ganglia contained three main populations of neurons based on differential patterns of expression of immunoreactivity to tyrosine hydroxylase, neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). In the celiac ganglion, nearly all neurons contained immunoreactivity to both tyrosine hydroxylase and NPY. Both the overall size of the dendritic tree and the number of primary dendrites were greater in neurons from the thoracic and celiac ganglia compared with those from the superior cervical ganglion. The electrophysiological properties of sympathetic neurons depended more on their ganglion of origin rather than their probable targets. All neurons in the superior cervical ganglion had phasic firing properties and large afterhyperpolarizations (AHPs). In addition, 34% of these neurons displayed an afterdepolarization preceding the AHP. Superior cervical ganglion neurons had prominent I(M), I(A), and I(H) currents and a linear current-voltage relationship between -60 and -110 mV. Neurons from the thoracic ganglia had significantly smaller action potentials, AHPs, and apparent cell capacitance compared with superior cervical ganglion neurons, and only 18% showed an afterdepolarization. All neurons in superior cervical ganglia and most neurons in celiac ganglia received at least one strong preganglionic input. Nearly one-half the neurons in the celiac ganglion had tonic firing properties, and another 15% had firing properties intermediate between those of tonic and phasic neurons. Most celiac neurons showed significant inward rectification below -90 mV. They also expressed I(A), but with slower inactivation kinetics than that of superior cervical or thoracic neurons. Both phasic and tonic celiac ganglion neurons received synaptic inputs via the celiac nerves in addition to strong inputs via the splanchnic nerves. Multivariate statistical analysis revealed that the properties of the action potential, the AHP, and the apparent cell capacitance together were sufficient to correctly classify 80% of neurons according to their ganglion of origin. These results indicate that there is considerable heterogeneity in the morphological, neurochemical, and electrical properties of sympathetic neurons in mice. Although the morphological and neurochemical characteristics of the neurons are likely to be related to their peripheral projections, the expression of particular electrophysiological traits seems to be more closely related to the ganglia within which the neurons occur.
Collapse
Affiliation(s)
- P Jobling
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, South Australia 5001, Australia
| | | |
Collapse
|
22
|
Morris JL, Zhu BS, Gibbins IL, Blessing WW. Subpopulations of sympathetic neurons project to specific vascular targets in the pinna of the rabbit ear. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990913)412:1<147::aid-cne11>3.0.co;2-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Geissen M, Heller S, Pennica D, Ernsberger U, Rohrer H. The specification of sympathetic neurotransmitter phenotype depends on gp130 cytokine receptor signaling. Development 1998; 125:4791-801. [PMID: 9806927 DOI: 10.1242/dev.125.23.4791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. The differentiation of cholinergic sympathetic neurons is characterized by the expression of choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP), induced in vitro by a subfamily of cytokines, including LIF, CNTF, GPA, OSM and cardiotrophin-1 (CT-1). To interfere with the function of these neuropoietic cytokines in vivo, antisense RNA for gp130, the common signal-transducing receptor subunit for neuropoietic cytokines, was expressed in chick sympathetic neurons, using retroviral vectors. A strong reduction in the number of VIP-expressing cells, but not of cells expressing ChAT or the adrenergic marker tyrosine hydroxylase (TH), was observed. These results reveal a physiological role of neuropoietic cytokines for the control of VIP expression during the development of cholinergic sympathetic neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Cells, Cultured
- Chick Embryo
- Choline O-Acetyltransferase/genetics
- Cytokine Receptor gp130
- Cytokines/physiology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/embryology
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Neurons/classification
- Neurons/cytology
- Neurons/physiology
- Phenotype
- RNA, Antisense
- Receptors, Cytokine/physiology
- Recombinant Proteins/biosynthesis
- Retroviridae
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Transfection
- Tyrosine 3-Monooxygenase/genetics
- Vasoactive Intestinal Peptide/genetics
Collapse
Affiliation(s)
- M Geissen
- Max-Planck-Institut für Hirnforschung, Abt. Neurochemie, Deutschordenstr. 46, Germany
| | | | | | | | | |
Collapse
|