1
|
Novák J, Takács T, Tilajka Á, László L, Oravecz O, Farkas E, Than NG, Buday L, Balogh A, Vas V. The sweet and the bitter sides of galectin-1 in immunity: its role in immune cell functions, apoptosis, and immunotherapies for cancer with a focus on T cells. Semin Immunopathol 2025; 47:24. [PMID: 40178639 PMCID: PMC11968517 DOI: 10.1007/s00281-025-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025]
Abstract
Galectin-1 (Gal-1), a member of the β-galactoside-binding soluble lectin family, is a double-edged sword in immunity. On one hand, it plays a crucial role in regulating diverse immune cell functions, including the apoptosis of activated T cells. These processes are key in resolving inflammation and preventing autoimmune diseases. On the other hand, Gal-1 has significant implications in cancer, where tumor cells and the tumor microenvironment (TME) (e.g., tumor-associated fibroblasts, myeloid-derived suppressor cells) secrete Gal-1 to evade immune surveillance and promote cancer cell growth. Within the TME, Gal-1 enhances the differentiation of tolerogenic dendritic cells, induces the apoptosis of effector T cells, and enhances the proliferation of regulatory T cells, collectively facilitating tumor immune escape. Therefore, targeting Gal-1 holds the potential to boost anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review provides insights into the intricate role of Gal-1 in immune cell regulation, with an emphasis on T cells, and elucidates how tumors exploit Gal-1 for immune evasion and growth. Furthermore, we discuss the potential of Gal-1 as a therapeutic target to augment current immunotherapies across various cancer types.
Collapse
Affiliation(s)
- Julianna Novák
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Takács
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Álmos Tilajka
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Loretta László
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Orsolya Oravecz
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Emese Farkas
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Károly Rácz Conservative Medicine Division, Doctoral College, Semmelweis University, Budapest, 1091, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, 1088, Hungary
| | - László Buday
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - Virág Vas
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Szabó E, Faragó A, Bodor G, Gémes N, Puskás LG, Kovács L, Szebeni GJ. Identification of immune subsets with distinct lectin binding signatures using multi-parameter flow cytometry: correlations with disease activity in systemic lupus erythematosus. Front Immunol 2024; 15:1380481. [PMID: 38774868 PMCID: PMC11106380 DOI: 10.3389/fimmu.2024.1380481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives Cell surface glycosylation can influence protein-protein interactions with particular relevance to changes in core fucosylation and terminal sialylation. Glycans are ligands for immune regulatory lectin families like galectins (Gals) or sialic acid immunoglobulin-like lectins (Siglecs). This study delves into the glycan alterations within immune subsets of systemic lupus erythematosus (SLE). Methods Evaluation of binding affinities of Galectin-1, Galectin-3, Siglec-1, Aleuria aurantia lectin (AAL, recognizing core fucosylation), and Sambucus nigra agglutinin (SNA, specific for α-2,6-sialylation) was conducted on various immune subsets in peripheral blood mononuclear cells (PBMCs) from control and SLE subjects. Lectin binding was measured by multi-parameter flow cytometry in 18 manually gated subsets of T-cells, NK-cells, NKT-cells, B-cells, and monocytes in unstimulated resting state and also after 3-day activation. Stimulated pre-gated populations were subsequently clustered by FlowSOM algorithm based on lectin binding and activation markers, CD25 or HLA-DR. Results Elevated AAL, SNA and CD25+/CD25- SNA binding ratio in certain stimulated SLE T-cell subsets correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores. The significantly increased frequencies of activated AALlow Siglec-1low NK metaclusters in SLE also correlated with SLEDAI-2K indices. In SLE, activated double negative NKTs displayed significantly lower core fucosylation and CD25+/CD25- Siglec-1 binding ratio, negatively correlating with disease activity. The significantly enhanced AAL binding in resting SLE plasmablasts positively correlated with SLEDAI-2K scores. Conclusion Alterations in the glycosylation of immune cells in SLE correlate with disease severity, which might represent potential implications in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Enikő Szabó
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Anna Faragó
- Astridbio Technologies Ltd, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely Bodor
- Department of Rheumatology and Immunology, Albert Szent-Gyorgyi Medical School and Health Center, University of Szeged, Szeged, Hungary
| | - Nikolett Gémes
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László G. Puskás
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Kovács
- Department of Rheumatology and Immunology, Albert Szent-Gyorgyi Medical School and Health Center, University of Szeged, Szeged, Hungary
| | - Gábor J. Szebeni
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
- Astridbio Technologies Ltd, Szeged, Hungary
- Department of Internal Medicine, Hematology Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:5475. [PMID: 36428567 PMCID: PMC9688059 DOI: 10.3390/cancers14225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is highly immune tolerant. Although there is immune cell infiltration in PDAC tissues, most of the immune cells do not function properly and, therefore, the prognosis of PDAC is very poor. Galectins are carbohydrate-binding proteins that are intimately involved in the proliferation and metastasis of tumor cells and, in particular, play a crucial role in the immune evasion of tumor cells. Galectins induce abnormal functions and reduce numbers of tumor-associated macrophages (TAM), natural killer cells (NK), T cells and B cells. It further promotes fibrosis of tissues surrounding PDAC, enhances local cellular metabolism, and ultimately constructs tumor immune privileged areas to induce immune evasion behavior of tumor cells. Here, we summarize the respective mechanisms of action played by different Galectins in the process of immune escape from PDAC, focusing on the mechanism of action of Galectin-1. Galectins cause imbalance between tumor immunity and anti-tumor immunity by coordinating the function and number of immune cells, which leads to the development and progression of PDAC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| |
Collapse
|
4
|
Imbery JF, Heinzelbecker J, Jebsen JK, McGowan M, Myklebust C, Bottini N, Stanford SM, Skånland SS, Tveita A, Tjønnfjord GE, Munthe LA, Szodoray P, Nakken B. T‐helper cell regulation of
CD45
phosphatase activity by galectin‐1 and
CD43
governs chronic lymphocytic leukaemia proliferation. Br J Haematol 2022; 198:556-573. [PMID: 35655388 PMCID: PMC9329260 DOI: 10.1111/bjh.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by malignant mature‐like B cells. Supportive to CLL cell survival is chronic B‐cell receptor (BCR) signalling; however, emerging evidence demonstrates CLL cells proliferate in response to T‐helper (Th) cells in a CD40L‐dependent manner. We showed provision of Th stimulation via CD40L upregulated CD45 phosphatase activity and BCR signalling in non‐malignant B cells. Consequently, we hypothesised Th cell upregulation of CLL cell CD45 activity may be an important regulator of CLL BCR signalling and proliferation. Using patient‐derived CLL cells in a culture system with activated autologous Th cells, results revealed increases in both Th and CLL cell CD45 activity, which correlated with enhanced downstream antigen receptor signalling and proliferation. Concomitantly increased was the surface expression of Galectin‐1, a CD45 ligand, and CD43, a CLL immunophenotypic marker. Galectin‐1/CD43 double expression defined a proliferative CLL cell population with enhanced CD45 activity. Targeting either Galectin‐1 or CD43 using silencing, pharmacology, or monoclonal antibody strategies dampened CD45 activity and CLL cell proliferation. These results highlight a mechanism where activated Th cells drive CLL cell BCR signalling and proliferation via Galectin‐1 and CD43‐mediated regulation of CD45 activity, identifying modulation of CD45 phosphatase activity as a potential therapeutic target in CLL.
Collapse
Affiliation(s)
- John F. Imbery
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Julia Heinzelbecker
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jenny K. Jebsen
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Marc McGowan
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Camilla Myklebust
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine University of California, San Diego La Jolla California USA
| | - Stephanie M. Stanford
- Division of Rheumatology, Allergy and Immunology, Department of Medicine University of California, San Diego La Jolla California USA
| | - Sigrid S. Skånland
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo University Hospital Oslo Norway
| | - Anders Tveita
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Geir E. Tjønnfjord
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
- Department of Haematology Oslo University Hospital Oslo Norway
| | - Ludvig A. Munthe
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Peter Szodoray
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Britt Nakken
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| |
Collapse
|
5
|
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26:339-347. [PMID: 28100106 DOI: 10.1177/0961203316686846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.
Collapse
Affiliation(s)
- Á Hornung
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| | - É Monostori
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - L Kovács
- 2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| |
Collapse
|
6
|
|
7
|
Labrie M, Vladoiu MC, Grosset AA, Gaboury L, St-Pierre Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget 2015; 5:7705-21. [PMID: 25277199 PMCID: PMC4202155 DOI: 10.18632/oncotarget.2299] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a critical need to develop effective new strategies for diagnosis and treatment of ovarian cancer. In the present work, we investigated the expression of galectin-7 (gal-7) in epithelial ovarian cancer (EOC) cells and studied its functional relevance. Immunohistochemical analysis of gal-7 expression in tissue microarrays showed that while gal-7 was not detected in normal ovarian tissues, positive cytoplasmic staining of gal-7 was detected in epithelial cells in all EOC histological subtypes but was more frequent in high grade tumors and metastatic samples. Gal-7 expression correlated with a significant difference in the overall survival of patients with ovarian serous cystadenocarcinoma. Furthermore, using human EOC cell lines, we found that gal-7 expression was induced by mutant p53. Mechanistically, Matrigel invasion assays and live cell imaging showed that gal-7 increased the invasive behavior of ovarian cancer cells by inducing MMP-9 and increasing cell motility. EOC cells can also secrete gal-7. Recombinant human gal-7 kills Jurkat T cells and human peripheral T cells, suggesting that gal-7 also has immunosuppressive properties. Taken together, our study validates the clinical significance of gal-7 overexpression in ovarian cancer and provides a rationale for targeting gal-7 to improve the outcome of patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer, P.O. Box 6128, Downtown Station, Montréal, Québec, Canada
| | | |
Collapse
|
8
|
Deák M, Hornung Á, Novák J, Demydenko D, Szabó E, Czibula Á, Fajka-Boja R, Kriston-Pál É, Monostori É, Kovács L. Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology 2015; 220:483-9. [DOI: 10.1016/j.imbio.2014.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
|
9
|
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700. [PMID: 26140242 DOI: 10.1080/2162402x.2015.1016700] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies.
Collapse
Key Words
- 1MT, 1-methyltryptophan
- COX2, cyclooxygenase-2
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GPI, glycosylphosphatidylinositol
- Gal1, galectin-1
- HDACi, histone deacetylase inhibitor
- HLA, human leukocyte antigen
- IDO, indoleamine-2,3- dioxygenase
- IL-10, interleukin-10
- IMC, immature myeloid cell
- MDSC, myeloid-derived suppressor cells
- MHC, major histocompatibility
- MICA, MHC class I related molecule A
- MICB, MHC class I related molecule B
- NO, nitric oxide
- PARP, poly ADP-ribose polymerase
- PD-1, program death receptor-1
- PD-L1, programmed death ligand 1
- PGE2, prostaglandin E2
- RCAS1, receptor-binding cancer antigen expressed on Siso cells 1
- RCC, renal cell carcinoma
- SOCS, suppressor of cytokine signaling
- STAT3, signal transducer and activator of transcription 3
- SVV, survivin
- T cells
- TCR, T-cell receptor
- TGF-β, transforming growth factor β
- TRAIL, TNF-related apoptosis-inducing ligand
- VCAM-1, vascular cell adhesion molecule-1
- XIAP, X-linked inhibitor of apoptosis protein
- iNOS, inducible nitric-oxide synthase
- immunosuppression
- immunosuppressive factors
- immunotherapy
- tumor microenvironment
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| | - Virginia Drake
- School of Medicine; University of Maryland ; Baltimore, MD USA
| | | | - ShihChi Chiu
- College of Medicine; National Taiwan University ; Taipei, Taiwan
| | - Lei Zheng
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| |
Collapse
|
10
|
GM1 controlled lateral segregation of tyrosine kinase Lck predispose T-cells to cell-derived galectin-1-induced apoptosis. Mol Immunol 2014; 57:302-9. [DOI: 10.1016/j.molimm.2013.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
|
11
|
Cedeno-Laurent F, Opperman M, Barthel SR, Kuchroo VK, Dimitroff CJ. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:3127-37. [PMID: 22345665 DOI: 10.4049/jimmunol.1103433] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Galectin-1 (Gal-1), a β-galactoside-binding protein, can alter fate and effector function of Th cells; however, little is known about how Gal-1 induces Th cell differentiation. In this article, we show that both uncommitted and polarized Th cells bound by Gal-1 expressed an immunoregulatory signature defined by IL-10. IL-10 synthesis was stimulated by direct Gal-1 engagement to cell surface glycoproteins, principally CD45, on activated Th cells and enhanced by IL-21 expression through the c-Maf/aryl hydrocarbon receptor pathway, independent of APCs. Gal-1-induced IL-10(+) T cells efficiently suppressed T cell proliferation and T cell-mediated inflammation and promoted the establishment of cancer immune-privileged sites. Collectively, these findings show how Gal-1 functions as a major glycome determinant regulating Th cell development, inflammation, and tumor immunity.
Collapse
|
12
|
Blaskó A, Fajka-Boja R, Ion G, Monostori E. How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. ACTA BIOLOGICA HUNGARICA 2011; 62:106-11. [PMID: 21388924 DOI: 10.1556/abiol.61.2011.1.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Galectin-1 (Gal-1), a mammalian lectin induces apoptosis of T lymphocytes. Contradictory data have resulted in confusing knowledge regarding mechanism of Gal-1 induced T-cell apoptosis. In this paper we aimed to resolve this controversy by comparing cell death induced by low (1.8 μM, lowGal-1) and high (18 μM, highGal-1) concentration of soluble Gal-1. We show that lowGal-1 and highGal-1 trigger phosphatidylserine exposure, generation of rafts and mitochondrial membrane depolarization. In contrast, lowGal-1 but not highGal-1 is dependent on the presence of p56lck and ZAP70 and activates caspase cascade. The results allow the conclusion that the cell-death mechanism strictly depends on the concentration of Gal-1.
Collapse
Affiliation(s)
- Andrea Blaskó
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
13
|
Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis. Apoptosis 2010; 15:1-13. [PMID: 19856105 DOI: 10.1007/s10495-009-0413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.
Collapse
|
14
|
Boronkai A, Bellyei S, Szigeti A, Pozsgai E, Bognar Z, Sumegi B, Gallyas F. Potentiation of paclitaxel-induced apoptosis by galectin-13 overexpression via activation of Ask-1-p38-MAP kinase and JNK/SAPK pathways and suppression of Akt and ERK1/2 activation in U-937 human macrophage cells. Eur J Cell Biol 2009; 88:753-63. [DOI: 10.1016/j.ejcb.2009.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 01/15/2023] Open
|
15
|
Wéber E, Hetényi A, Váczi B, Szolnoki É, Fajka-Boja R, Tubak V, Monostori É, Martinek TA. Galectin-1-Asialofetuin Interaction Is Inhibited by Peptides Containing the Tyr-Xxx-Tyr Motif Acting on the Glycoprotein. Chembiochem 2009; 11:228-34. [DOI: 10.1002/cbic.200900502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szebeni GJ, Krenács L, Uher F, Tubak V, Kiss R, Monostori E. Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol Lett 2009; 127:108-18. [PMID: 19874850 DOI: 10.1016/j.imlet.2009.10.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/01/2009] [Accepted: 10/18/2009] [Indexed: 11/19/2022]
Abstract
Galectin-1 (Gal-1) has been implicated in tumor progression partly via the induction of T-cell apoptosis. However the mechanism of Gal-1 induced T-cell death was mostly studied using recombinant, soluble Gal-1 producing controversial results. To explore the true mechanism of Gal-1 and hence tumor cell-induced T-cell death, we applied co-cultures of tumor cells and T-cells thus avoiding artificial circumstances generated using recombinant protein. T-cells died when co-cultured with Gal-1-expressing but survived with Gal-1 non-expressing tumor cells. Removing tumor cell surface Gal-1 or knocking down Gal-1 expression resulted in diminution of T-cell apoptosis. Gal-1 transgenic or soluble Gal-1 treated HeLa cells became cytotoxic. Stimulation of apoptosis required interaction between the tumor and T-cells, presence of p56lck and ZAP70, decrease of mitochondrial membrane potential and caspase activation. Hence tumor cell-derived Gal-1 might efficiently contribute to tumor self-defense. Moreover this system resolves the discrepancies obtained using recombinant Gal-1 in T-cell apoptosis studies.
Collapse
Affiliation(s)
- Ferenc Kovács-Sólyom
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pang M, He J, Johnson P, Baum LG. CD45-mediated fodrin cleavage during galectin-1 T cell death promotes phagocytic clearance of dying cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7001-8. [PMID: 19454697 DOI: 10.4049/jimmunol.0804329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disassembly and phagocytic removal of dying cells is critical to maintain immune homeostasis. The factors that regulate fragmentation and uptake of dying lymphocytes are not well understood. Degradation of fodrin, a cytoskeletal linker molecule that attaches CD45 to the actin cytoskeleton, has been described in apoptotic cells, although no specific initiator of fodrin degradation has been identified. CD45 is a glycoprotein receptor for galectin-1, an endogenous lectin that can trigger lymphocyte apoptosis, although CD45 is not required for phosphatidylserine externalization or DNA degradation during galectin-1 death. In this study, we show that fodrin degradation occurs during galectin-1 T cell death and that CD45 is essential for fodrin degradation to occur. In the absence of CD45, or if fodrin degradation is prevented, galectin-1-induced cell death is not accompanied by membrane blebbing, although phosphatidylserine externalization and DNA degradation proceed, indicating that fodrin degradation occurs via a distinct pathway compared with the pathway that leads to these other hallmarks of cell death. Moreover, there is slower phagocytic uptake by macrophages of T cells in which fodrin degradation is prevented, relative to T cells in which CD45-mediated fodrin degradation occurs. These studies identify a novel role for CD45 in regulating cellular disassembly and promoting phagocytic clearance during galectin-1-induced T cell death.
Collapse
Affiliation(s)
- Mabel Pang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
18
|
Kiss J, Kunstár A, Fajka-Boja R, Dudics V, Tóvári J, Légrádi A, Monostori E, Uher F. A novel anti-inflammatory function of human galectin-1: inhibition of hematopoietic progenitor cell mobilization. Exp Hematol 2007; 35:305-13. [PMID: 17258079 DOI: 10.1016/j.exphem.2006.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The immunosuppressive and anti-inflammatory activity of mammalian galectin-1 (Gal-1) has been well established in experimental in vivo animal models and in vitro studies. Since the proliferation and migration of leukocytes represent a necessary and important step in response to the inflammatory insult, we have investigated whether Gal-1 affects the mobilization of hematopoietic progenitor cells (HPC) induced by cyclophosphamide (CY) and granulocyte colony-stimulating factor (G-CSF). METHODS Bone marrow HPCs were mobilized with CY/G-CSF or CY/G-CSF plus human recombinant Gal-1 in BDF1 mice. Bone marrow (BM) and blood cells were taken at different time points and analyzed for their in vivo repopulating ability in lethally irradiated syngeneic animals. The number of myeloid progenitor cells in BM and blood samples was determined by colony-forming cell assay. Expression of surface markers (Sca-1, CD3epsilon, CD45R/B220, Ter-119, GR-1, and CD11b) on nucleated marrow cells was measured by flow cytometry. The lymphocytes, granulocytes, and monocytes in blood samples were counted after Giemsa staining. RESULTS Gal-1 dramatically inhibited CY/G-CSF-induced HPC migration to the periphery as well as decreased peripheral neutrophilia and monocytosis in a dose- and time-dependent manner. In contrast, Gal-1 itself stimulated HPC expansion and accumulation within the BM. The presence of the lectin for inhibition of HPC mobilization was essential during the second half of the treatment. Moreover, Gal-1 inhbited transendothelial migration of BM-derived HPCs in response to SDF-1 in vitro. CONCLUSION Gal-1 blocked BM progenitor cell migration induced by CY/G-CSF treatment, indicating a novel anti-inflammatory function of the lectin. We suggest that the inhibition of HPC mobilization occurs mainly via obstructing the transendothelial migration of BM-derived cells including primitive hematopoietic and committed myeloid progenitor cells and mature granulocytes and monocytes.
Collapse
Affiliation(s)
- Judit Kiss
- Stem Cell Biology, National Medical Center, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology 2006; 16:137R-157R. [PMID: 16840800 DOI: 10.1093/glycob/cwl025] [Citation(s) in RCA: 682] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Galectins are a family of carbohydrate-binding proteins with an affinity for beta-galactosides. Galectin-1 (Gal-1) is differentially expressed by various normal and pathological tissues and appears to be functionally polyvalent, with a wide range of biological activity. The intracellular and extracellular activity of Gal-1 has been described. Evidence points to Gal-1 and its ligands as one of the master regulators of such immune responses as T-cell homeostasis and survival, T-cell immune disorders, inflammation and allergies as well as host-pathogen interactions. Gal-1 expression or overexpression in tumors and/or the tissue surrounding them must be considered as a sign of the malignant tumor progression that is often related to the long-range dissemination of tumoral cells (metastasis), to their dissemination into the surrounding normal tissue, and to tumor immune-escape. Gal-1 in its oxidized form plays a number of important roles in the regeneration of the central nervous system after injury. The targeted overexpression (or delivery) of Gal-1 should be considered as a method of choice for the treatment of some kinds of inflammation-related diseases, neurodegenerative pathologies and muscular dystrophies. In contrast, the targeted inhibition of Gal-1 expression is what should be developed for therapeutic applications against cancer progression. Gal-1 is thus a promising molecular target for the development of new and original therapeutic tools.
Collapse
Affiliation(s)
- Isabelle Camby
- Laboratory of Toxicology, Institute of Pharmacy, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Bianco GA, Toscano MA, Ilarregui JM, Rabinovich GA. Impact of protein–glycan interactions in the regulation of autoimmunity and chronic inflammation. Autoimmun Rev 2006; 5:349-56. [PMID: 16782561 DOI: 10.1016/j.autrev.2006.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Protein-glycan interactions control essential immunological processes, including T-cell activation, differentiation and survival. Galectins, carbohydrate-binding proteins, defined by shared consensus amino acid sequences and affinity for beta-galactose-containing oligosaccharides, participate in a wide spectrum of immunological processes. These carbohydrate-binding proteins regulate the development of pathogenic T-cell responses by influencing T-cell survival, activation and cytokine secretion. Administration of recombinant galectins or their genetic delivery modulate the development and severity of chronic inflammatory responses in experimental models of autoimmunity by triggering different and potentially overlapping immunoregulatory mechanisms. Given the potential use of galectins as novel anti-inflammatory agents or targets for immunosuppressive drugs, we will summarize here recent findings on the influence of these carbohydrate-binding proteins in autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Germán A Bianco
- Division of Immunogenetics, Hospital de Clínicas "José de San Martín", Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
21
|
van der Leij J, van den Berg A, Harms G, Eschbach H, Vos H, Zwiers P, van Weeghel R, Groen H, Poppema S, Visser L. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol Immunol 2006; 44:506-13. [PMID: 16581128 DOI: 10.1016/j.molimm.2006.02.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 11/30/2022]
Abstract
Galectin-1 is the homodimeric form of a protein, which is present in a dynamic equilibrium with the beta-galactoside monomeric form and has potent anti-inflammatory and immunomodulating effects. These favorable effects are probably related to the induction of apoptosis in activated T cells and the induction of IL-10, which have been demonstrated to be characteristic for the dimeric form of the protein. Based on these findings it can be speculated that the in vivo effects of galectin-1 can be improved by the generation of stable galectin-1 homodimers (dGal). To test this hypothesis we produced leucine-zipper based stable galectin-1 homodimers and tested its apoptosis inducing effects on MOLT-4 cells and its immunomodulatory effects in vitro on PBMC of five independent donors. Phosphatidylserine exposure and a drop in mitochondrial membrane potential was strongly enhanced on MOLT-4 cells upon treatment with dGal as compared to wtGal. The minimal effective concentration was 20-fold reduced as compared to the minimal effective wtGal concentration. dGal showed enhanced induction of IL-10 on total PBMC as compared to treatment with wild-type protein (wtGal). The minimal effective dGal concentration was 100-fold lower than that of wtGal. Of the purified cell populations monocytes are the strongest IL-10 producers, whereas T cells induce IL-10 at a lower level and no induction is observed in B cells. Besides induction of IL-10, dGal caused an increase in IL-1beta production in all donors and a reduction of IL-2 production in 3 out of 5 donors, whereas no consistent changes were observed for other inflammatory cytokines. In summary, we demonstrated that dGal shows enhanced effects at strongly reduced concentrations. Application of dGal may therefore serve as an improved treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Judith van der Leij
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ion G, Fajka-Boja R, Kovács F, Szebeni G, Gombos I, Czibula A, Matkó J, Monostori E. Acid sphingomyelinase mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal 2006; 18:1887-96. [PMID: 16549336 DOI: 10.1016/j.cellsig.2006.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 02/13/2006] [Accepted: 02/13/2006] [Indexed: 01/13/2023]
Abstract
The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.
Collapse
Affiliation(s)
- Gabriela Ion
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, 62 Temesvari krt, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Elola MT, Chiesa ME, Alberti AF, Mordoh J, Fink NE. Galectin-1 receptors in different cell types. J Biomed Sci 2005; 12:13-29. [PMID: 15864736 DOI: 10.1007/s11373-004-8169-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 09/07/2004] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of animal lectins defined by two properties: shared amino acid sequences in their carbohydrate-recognizing domain, and beta-galactoside affinity. A wide variety of biological phenomena are related to galectins, i.e., development, differentiation, morphogenesis, tumor metastasis, apoptosis, RNA splicing, and immunoregulatory function. In this review, we will focus on galectin-1 receptors, and some of the mechanisms by which this lectin affects different cell types. Several galectin-1 receptors are discussed such as CD45, CD7, CD43, CD2, CD3, CD4, CD107, CEA, actin, extracellular matrix proteins such as laminin and fibronectin, glycosaminoglycans, integrins, a beta-lactosamine glycolipid, GM1 ganglioside, polypeptide HBGp82, glycoprotein 90 K/MAC-2BP, CA125 cancer antigen, and pre-B cell receptor.
Collapse
Affiliation(s)
- María T Elola
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas, 435 (1405), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Vas V, Fajka-Boja R, Ion G, Dudics V, Monostori E, Uher F. Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells 2005; 23:279-87. [PMID: 15671150 DOI: 10.1634/stemcells.2004-0084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Galectin-1 is a member of the family of beta-galactoside binding animal lectins, galectins. Its presence in the bone marrow has been detected; however, its role in the regulation of hematopoiesis is unknown. In the present study, we have evaluated the effect of recombinant human galectin-1 on the proliferation and survival of murine and human hematopoietic stem and progenitor cells. We show that low amount of galectin-1 (10 ng/ml) increases the formation of granulocyte-macrophage and erythroid colonies and the frequencies of day-7 cobblestone area-forming cells on a lactose-inhibitable fashion. In contrast, high amount of galectin-1 (10 microg/ml) dramatically reduces the growth of the committed blood-forming progenitor cells as well as the much younger, lineage-negative hematopoietic cells (day-28 to -35 cobblestone area-forming cells). This inhibition is not blocked by lactose and, therefore, is largely independent of the beta-galactoside-binding site of the lectin. Furthermore, assays to detect apoptosis render it likely that the high amount of galectin-1 acts as a classical proapoptotic factor for the premature hematopoietic cells.
Collapse
Affiliation(s)
- Virág Vas
- National Medical Center, Stem Cell Biology, Diószegi ut 64., Budapest, Hungary, H-1113
| | | | | | | | | | | |
Collapse
|
25
|
Liu FT. Regulatory Roles of Galectins in the Immune Response. Int Arch Allergy Immunol 2005; 136:385-400. [PMID: 15775687 DOI: 10.1159/000084545] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 01/12/2023] Open
Abstract
Galectins are a family of animal lectins with affinity for beta-galactosides. They are differentially expressed by various immune cells and their expression levels appear to be dependent on cell differentiation and activation. They can interact with cell-surface and extracellular matrix glycoconjugates (glycoproteins and glycolipids), through lectin-carbohydrate interactions. Through this action, they can promote cell growth, affect cell survival, modulate cell adhesions, and induce cell migration. They appear to do so by binding to different glycoconjugates decorated by suitable saccharides, rather than through specific receptors. Galectins do not have a classical signal peptide and are often localized in intracellular compartments, including the nucleus. Intracellularly, they can regulate cell growth and survival by interacting with cytoplasmic and nuclear proteins, through protein-protein interactions, thereby affecting intracellular signaling pathways. Current research indicates that galectins play important roles in the immune response through regulating the homeostasis and functions of the immune cells.
Collapse
Affiliation(s)
- Fu-Tong Liu
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, Calif., USA.
| |
Collapse
|
26
|
Kadri T, Lataillade JJ, Doucet C, Marie A, Ernou I, Bourin P, Joubert-Caron R, Caron M, Lutomski D. Proteomic Study of Galectin-1 Expression in Human Mesenchymal Stem Cells. Stem Cells Dev 2005; 14:204-12. [PMID: 15910247 DOI: 10.1089/scd.2005.14.204] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are known to interact with hematopoietic stem cells (HSCs) and immune cells, and are of potential interest to be used as therapeutic agents for enhancing allogenic hematopoietic engraftment and preventing graft-versus-host disease (GVHD). Galectin 1 (Gal1) belongs to a family of structurally related molecules expressed in many vertebrate tissues that exert their functions both by binding to glycoconjugates, and by interaction with protein partners. In this work using a proteomic approach, we looked for the presence and the localization of Gal1 in short- and long-term culture of human (h) hMSC. We first determined, that Gal1 is one of the major proteins expressed in hMSC. We futher demonstrated that its expression is maintained when hMSC are expanded through a subculturing process up to five passages. Moreover, Gal1 is secreted and found at the cell surface of MSC, participating in extra cellular matrix (ECM)-cell interactions. Given the immunomodulatory properties of Gal1, its potential involvement in immunological functions of hMSC could be suggested.
Collapse
Affiliation(s)
- T Kadri
- Laboratoire de Biochimie des Protéines et Protéomique (E.A. 3408), UFR SMBH Leonard de Vinci, Université Paris 13, 93017 Bobigny Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Galectin-1 has demonstrated a diverse range of activities in relation to cell survival and proliferation. In different circumstances, it acts as a mitogen, as an inhibitor of cell proliferation, and as a promoter of cellular apoptosis. Many of these activities, particularly the mitogenic and apoptotic responses, follow from the interaction of galectin-1 with cell-surface beta-galactoside ligands, but there is increasing evidence for protein-protein interactions involving galectin-1, and for a beta-galactoside-independent cytostatic mechanism. The bifunctional nature of galectin-1, in conjunction with other experimental variables, makes it difficult to assess the overall outcomes and significance of the growth-regulatory actions in many previous investigations. There is thus a need for well-defined experimental cross-correlation of observations, for which specific loss-of-function galectin-1 mutants will be invaluable. Unsurprisingly, in view of this background, the interpretation of the actions of galectin-1 in developmental situations, both normal and neoplastic, is often very complex.
Collapse
Affiliation(s)
- Ken Scott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
28
|
Abstract
Members of the galectin family are presently known to participate in cellular homeostasis by modulating cell growth, controlling cell cycle progression, and inducing or inhibiting apoptosis. Both intracellular and extracellular activities of galectins have been described, with the former typically independent of lectin activity, and the latter mediated by lectin activity. Galectin-1 and -3 are recognized as activators and inducers of cell stasis in extracellular capacities. Galectin-1, -7, -8, -9 and -12 are characterized as promoters or inducers of apoptosis, while galectin-3 is demonstrated as an inhibitor of apoptosis intracellularly. Localization studies of galectins have established that these proteins can segregate into multiple intracellular compartments, and the preference for segregation is dependent on the status of the cell. Localization would, therefore, likely correspond to compartmental function. While galectin-1 and -3 have been the most abundantly expressed and extensively studied, and therefore, the members best understood, expanding interest in galectins has resulted in description of new members that display more restricted expression patterns, suggesting more specific activity. Nevertheless, as demonstrated for many members, it appears that a major feature of the galectin family is the homeostatic regulation of cells.
Collapse
Affiliation(s)
- Daniel K Hsu
- Department of Dermatology, University of California-Davis, School of Medicine, Sacramento, CA 95817, USA.
| | | |
Collapse
|
29
|
Miura T, Takahashi M, Horie H, Kurushima H, Tsuchimoto D, Sakumi K, Nakabeppu Y. Galectin-1β, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Cell Death Differ 2004; 11:1076-83. [PMID: 15181456 DOI: 10.1038/sj.cdd.4401462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously identified a novel N-terminally processed form of galectin-1, galectin-1beta (Gal-1beta) whose expression was induced by DeltaFosB. In the present study, the biochemical properties and biological functions of Gal-1beta were compared with the full-length form of galectin-1 (Gal-1alpha). We first purified recombinant mouse Gal-1alpha and beta (rmGal-1alpha, beta) to near homogeneity. The rmGal-1alpha exists as a monomer under oxidized conditions and forms a dimer under reduced conditions, while the rmGal-1beta exists as a monomer regardless of redox conditions. The affinity of rmGal-1beta to beta-lactose was approximately two-fold lower than that of rmGal-1alpha under reduced conditions. The viability of Jurkat cells efficiently decreased when they were exposed to rmGal-1alpha, however, rmGal-1beta barely induced such a reduction. In contrast, both rmGal-1alpha and rmGal-1beta exhibited an equivalent capacity to promote axonal regeneration from the dorsal root ganglion explants. Our results suggest that the biochemical properties of rmGal-1beta determine its biological functions.
Collapse
Affiliation(s)
- T Miura
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Carlow DA, Williams MJ, Ziltener HJ. Modulation of O-Glycans and N-Glycans on Murine CD8 T Cells Fails to Alter Annexin V Ligand Induction by Galectin 1. THE JOURNAL OF IMMUNOLOGY 2003; 171:5100-6. [PMID: 14607908 DOI: 10.4049/jimmunol.171.10.5100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic negative selection and contraction of responding T cell oligoclones after infection represent important cell ablation processes required for maintaining T cell homeostasis. It has been proposed that galectin 1 contributes to these processes through interaction with lactosyl sequences principally on cell surface glycoproteins bearing core 2 (C2GnT1)-branched O-glycans. According to this model, specific T cell surface proteins cross-linked by galectin 1 induce signaling, ligand redistribution, and apoptosis in both immature thymocytes and activated T cells. The influence of lactosyl residues contained in branched O-glycans or complex N-glycans on galectin 1 binding and induction of annexin V ligand in murine CD8 T cells was assessed. Neither galectin binding nor galectin-induced expression of annexin V ligand was perturbed under conditions in which: 1) C2GnT1 activity was differentially induced by CD8 T cell activation/culture with IL-2 vs IL-4; 2) activated CD8(+) T cells lacked C2GnT1 expression; or 3) complex N-glycan formation was blocked by swainsonine. The maintenance of galectin 1 binding and induced annexin V expression under conditions that alter lactosamine abundance on O- or complex N-glycans suggest that galectin 1-mediated apoptosis is neither a simple function of fluctuating C2GnT1 activity nor a general C2GnT1-dependent mechanism underlying contraction of CD8 T cells subsequent to activation.
Collapse
Affiliation(s)
- Douglas A Carlow
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|