1
|
Kimmel GJ, Dane M, Heiser LM, Altrock PM, Andor N. Integrating Mathematical Modeling with High-Throughput Imaging Explains How Polyploid Populations Behave in Nutrient-Sparse Environments. Cancer Res 2020; 80:5109-5120. [PMID: 32938640 DOI: 10.1158/0008-5472.can-20-1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer progresses in a multistep process from primary tumor growth and stroma invasion to metastasis. Nutrient-limiting environments promote chemotaxis with aggressive morphologies characteristic of invasion. It is unknown how coexisting cells differ in their response to nutrient limitations and how this impacts invasion of the metapopulation as a whole. In this study, we integrate mathematical modeling with microenvironmental perturbation data to investigate invasion in nutrient-limiting environments inhabited by one or two cancer cell subpopulations. Subpopulations were defined by their energy efficiency and chemotactic ability. Invasion distance traveled by a homogeneous population was estimated. For heterogeneous populations, results suggest that an imbalance between nutrient efficacy and chemotactic superiority accelerates invasion. Such imbalance will spatially segregate the two populations and only one type will dominate at the invasion front. Only if these two phenotypes are balanced, the two subpopulations compete for the same space, which decelerates invasion. We investigate ploidy as a candidate biomarker of this phenotypic heterogeneity and discuss its potential to inform the dose of mTOR inhibitors (mTOR-I) that can inhibit chemotaxis just enough to facilitate such competition. SIGNIFICANCE: This study identifies the double-edged sword of high ploidy as a prerequisite to personalize combination therapies with cytotoxic drugs and inhibitors of signal transduction pathways such as mTOR-Is. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/5109/F1.large.jpg.
Collapse
Affiliation(s)
- Gregory J Kimmel
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mark Dane
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Laura M Heiser
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Noemi Andor
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
2
|
Sex Chromosomes Are Severely Disrupted in Gastric Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21134598. [PMID: 32605299 PMCID: PMC7369700 DOI: 10.3390/ijms21134598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sex has not received enough attention as an important biological variable in basic research, even though the sex of cells often affects cell proliferation, differentiation, apoptosis, and response to stimulation. Knowing and considering the sex of cells used in basic research is essential as preclinical and clinical studies are planned based on basic research results. Cell lines derived from tumor have been widely used for proof-of-concept experiments. However, cell lines may have limitations in testing the effect of sex on cell level, as chromosomal abnormality is the single most characteristic feature of tumor. To examine the status of sex chromosomes in a cell line, 12 commercially available gastric carcinoma (GC) cell lines were analyzed using several different methods. Loss of Y chromosome (LOY) accompanied with X chromosome duplication was found in three (SNU-484, KATO III, and MKN-1) out of the six male-derived cell lines, while one cell line (SNU-638) showed at least partial deletion in the Y chromosome. Two (SNU-5 and MKN-28) out of six female-derived cell lines showed a loss of one X chromosome, while SNU-620 gained one extra copy of the X chromosome, resulting in an XXX karyotype. We found that simple polymerase chain reaction (PCR)-based sex determination gives a clue for LOY for male-derived cells, but it does not provide detailed information for the gain or loss of the X chromosome. Our results suggest that carefully examining the sex chromosome status of cell lines is necessary before using them to test the effect of sex on cell level.
Collapse
|
3
|
Mytar B, Stec M, Szatanek R, Węglarczyk K, Szewczyk K, Szczepanik A, Drabik G, Baran J, Siedlar M, Baj-Krzyworzeka M. Characterization of human gastric adenocarcinoma cell lines established from peritoneal ascites. Oncol Lett 2018; 15:4849-4858. [PMID: 29552124 PMCID: PMC5840753 DOI: 10.3892/ol.2018.7995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
The three cell lines, designated as gastric cancer (GC)1401, GC1415 and GC1436 were derived from peritoneal effusions from patients with gastric adenocarcinoma. Cell lines were established in tissue culture and in immunodeficient, non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. All cell lines were cultured in Dulbecco's modified Eagle's medium supplemented with 5% fetal bovine serum. These cell lines were grown as an adherent monolayer with doubling time ranging between 25 h (GC1436 cell line) and 30–34 h (GC1401 and GC1415, respectively). All cells showed morphological features of epithelial-like cells, forming sheets of polygonal cells. Chromosomal analysis showed that the modal numbers ranged from 52 (GC1401), 51–56 (GC1415) and 106 (GC1436). High heterogeneity, resulting from several structural and numerical chromosomal abnormalities were evident in all cell lines. The surface marker expression suggested a tumor origin of the cells, and indicated the intestinal phenotype of a GC (CD10+, MUC1). All three cell lines were tumorigenic but not metastatic, in vivo, in NOD/SCID mice. The lack of metastatic potential was suggested by the lack of aldehyde dehydrogenase 1A1 activity. In conclusion, these newly established GC cell lines widen the feasibility of the functional studies on biology of GC as well as drug testing for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bożenna Mytar
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Antoni Szczepanik
- First Department of General Gastrointestinal and Oncology Surgery, Jagiellonian University Medical College, 30-001 Krakow, Poland
| | - Grażyna Drabik
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
4
|
Jeong G, Lim YH, Kim NJ, Wee G, Kim YK. Knockout of miR-221 and miR-222 reveals common and specific targets for paralogous miRNAs. RNA Biol 2016; 14:197-205. [PMID: 27981894 DOI: 10.1080/15476286.2016.1269994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of mRNA through sequence-specific binding of the 3' untranslated region (UTR). The seed sequence of miRNAs is the key determinant for target site recognition. Paralogous miRNAs, which share the same seed sequences but differ in their 3' regions, are known to regulate largely overlapping groups of mRNAs. However, no study has analyzed functional differences between paralogous miRNAs with proper experimental methods. In this study, we compared the targets of paralogous miRNAs, miR-221 and miR-222. Using a nuclease-mediated genome engineering technique, we established knockout cell lines for these miRNAs, and precisely analyzed differences in target regulation. We found that miR-221 and miR-222 suppress the previously identified targets, CDKN1B and CDKN1C, differentially. Whereas both miRNAs suppressed CDKN1B, only miR-221 suppressed CDKN1C. From transcriptome analyses, we found that several different target mRNAs were regulated by each of miR-221 and miR-222 independently, although a large number of mRNAs responded commonly to miR-221 and miR-222. This is the first study to compare the mRNA regulations by paralogous miRNAs and illustrate that paralogous miRNAs with the same seed sequence also have difference in target regulation.
Collapse
Affiliation(s)
- Geon Jeong
- a Department of Biochemistry , Chonnam National University Medical School , Gwangju , Korea.,b Center for Creative Biomedical Scientists, Chonnam National University Medical School , Gwangju , Korea.,c Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School , Gwangju , Korea
| | - Yeong-Hwan Lim
- a Department of Biochemistry , Chonnam National University Medical School , Gwangju , Korea.,b Center for Creative Biomedical Scientists, Chonnam National University Medical School , Gwangju , Korea.,c Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School , Gwangju , Korea
| | - Nam Joong Kim
- a Department of Biochemistry , Chonnam National University Medical School , Gwangju , Korea.,b Center for Creative Biomedical Scientists, Chonnam National University Medical School , Gwangju , Korea.,c Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School , Gwangju , Korea
| | - Gabbine Wee
- d Daegu Gyeongbuk Medical Innovation Foundation , Daegu , Korea
| | - Young-Kook Kim
- a Department of Biochemistry , Chonnam National University Medical School , Gwangju , Korea.,b Center for Creative Biomedical Scientists, Chonnam National University Medical School , Gwangju , Korea.,c Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School , Gwangju , Korea
| |
Collapse
|
5
|
Leal MF, Martins do Nascimento JL, da Silva CEA, Vita Lamarão MF, Calcagno DQ, Khayat AS, Assumpção PP, Cabral IR, de Arruda Cardoso Smith M, Burbano RR. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines. ACTA ACUST UNITED AC 2009; 195:85-91. [DOI: 10.1016/j.cancergencyto.2009.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 12/14/2022]
|
6
|
Interrelationships among chromosome aneuploidy, promoter hypermethylation, and protein expression of the CDKN2A gene in individuals from northern Brazil with gastric adenocarcinoma. ACTA ACUST UNITED AC 2008; 179:45-51. [PMID: 17981214 DOI: 10.1016/j.cancergencyto.2007.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 12/28/2022]
Abstract
Numerical alterations of chromosome 9, the status of promoter methylation and protein expression of the CDKN2A gene (aliases include p16 and p16(INK4a)), the possible association with gain of chromosome X, and the interrelation of these findings with clinic and pathological characteristics were investigated in gastric adenocarcinomas. Fluorescence in situ hybridization analysis with centromeric DNA probes, immunohistochemical staining, and methylation-specific polymerase chain reaction assays were performed in 15 gastric adenocarcinomas samples from individuals from northern Brazil. Aneuploidies of chromosomes X and 9 were found in all samples, both intestinal and diffuse type. Monosomy of chromosome 9 and gain of a copy of chromosome X (in both sexes) were observed in 100% of cases. Hypermethylation frequency and protein expression of CDKN2A were also found in all cases analyzed. No association of genetic and epigenetic alterations with histological type, tumor aggressiveness, and invasion was found (P > 0.05), which may be attributable to small sample size. There was a high level of association between absence of p16 protein expression levels, CDKN2A gene promote hypermethylation, and chromosome 9 aneuploidy (100% of cases). Thus, in the present samples, the apparent mechanisms behind p16 silencing include loss of chromosome 9 and promoter region hypermethylation.
Collapse
|
7
|
Ma W, Stafford LJ, Li D, Luo J, Li X, Ning G, Liu M. GCIP/CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. J Cell Biochem 2007; 100:1376-86. [PMID: 17131381 DOI: 10.1002/jcb.21140] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deletions and/or loss of heterozygosity (LOH) on chromosome 15 (15q15 and 15q21) have been found in several human tumors, including carcinomas of the colorectum, breast, lung, prostate, and bladder, suggesting the presence of potential tumor suppressor gene(s) in this particular region of chromosome 15. GCIP also called CCNDBP1, DIP1, or HHM, localized at chromosome 15q15, is a recently identified helix-loop-helix leucine zipper (HLH-ZIP) protein without a basic region like the Id family of proteins. In this study, we reported that the expression of GCIP was significantly downregulated in several different human tumors, including breast tumor, prostate tumor, and colon tumors. In human colon tumors, both mRNA and protein expression levels of GCIP were decreased significantly compared to the normal tissues. Treatment of colon cancer cells SW480 with sodium butyrate (NaB), which induces colon cancer cell differentiation, can induce the upregulation of GCIP expression, suggesting that the protein functions as a negative regulator in cell proliferation. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation, while silencing of GCIP expression by siRNA can promote cell colony formation. Furthermore, overexpression of GCIP inhibited the transcriptional activity of cyclin D1 promoter and the expression of cyclin D1 protein in the cell. Finally, we demonstrate that GCIP specifically interacts with one of the class III HDAC proteins, SirT6, which is important for maintaining genome stability. Together, our data suggest a possible function of GCIP in tumor suppression.
Collapse
Affiliation(s)
- Wenbin Ma
- Institute of Biosciences and Technology, and Department of Molecular and Cellular Medicine, Texas A and M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Jacobson BA, Fink JM, Whitson BA, Ferrin LJ. High polymorphism in the trisomic portion of a gastric cancer cell line. J Gastroenterol 2007; 42:196-204. [PMID: 17380277 DOI: 10.1007/s00535-006-2001-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/12/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND Genetic instability is a hallmark of malignancy, and microsatellite instability is a widely appreciated mechanism of generating genetic changes. We have recently observed four markers clustered on chromosome 20 that showed the effects of microsatellite instability in the gastric adenocarcinoma cell line SNU-1. Each affected marker had alleles of three different sizes. The aim of this study was to investigate the origin for this high-density polymorphism on a single chromosome. METHODS The high polymorphism located on chromosome 20 was confirmed using 37 additional markers. To further evaluate this finding, 15 clones of the cell line were generated and then assayed with the triallelic markers. RESULTS All told, almost a third of the markers on chromosome 20 had triallelic patterns, but only 0.3% of the markers not on chromosome 20 showed this result. The number of clones showing allelic variation was an average of 50% greater for chromosome 20 markers than for markers elsewhere. A karyotype analysis showed that the progenitor cell line of SNU-1 was trisomic for chromosome 20, and the high polymorphism on that chromosome is almost certainly due to the trisomy. CONCLUSIONS Not only are there more chromosome copies and therefore more gene copies subject to mutation in cells containing trisomy, but also more mutations may be passed on to the progeny. This elevated polymorphism increases the repertoire of genetic changes that could affect cellular growth, and may independently increase genomic instability.
Collapse
Affiliation(s)
- Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
9
|
Assumpção PP, Ishak G, Chen ES, Takeno SS, Leal MF, Guimarães AC, Calcagno DQ, Khayat AS, Demachki S, Smith MDAC, Burbano RR. Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. ACTA ACUST UNITED AC 2006; 169:45-9. [PMID: 16875936 DOI: 10.1016/j.cancergencyto.2006.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 11/25/2022]
Abstract
Gastric cancer is the third most frequent type of neoplasia and the second most important cause of cancer-related death in the world. In northern Brazil, the state of Pará shows a high incidence of this disease and the capital ranks among cities with the highest incidence of stomach cancer in the world. To evaluate chromosomal aberrations implicated in gastric carcinogenesis, we analyzed 16 samples of gastric adenocarcinoma by fluorescence in situ hybridization using a chromosome 8 alpha-satellite probe and by direct chromosomal analysis techniques. All lesions were classified as at advanced stages according to the recommendations of the Union Internationale Contre le Cancer (UICC). Trisomy 8 was the main finding of this study, observed in all cases. There was no significant difference between chromosome 8 ploidy and localization, stage, or histological type of adenocarcinoma in our sample. The high incidence of alterations we found in chromosome 8 may be a regional characteristic, related to the high incidence of this neoplasm in Pará state and a strong influence of external factors, such as eating habits. This aberration may comprise a cytogenetic subgroup of this neoplasm. Additional investigations are necessary to confirm the involvement of chromosome 8 and to identify genes in this chromosome related to gastric carcinogenesis.
Collapse
Affiliation(s)
- Paulo Pimentel Assumpção
- Department of Pathology and Surgery Service, João de Barros Barreto University Hospital, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yamashita Y, Nishida K, Okuda T, Nomura K, Matsumoto Y, Mitsufuji S, Horiike S, Hata H, Sakakura C, Hagiwara A, Yamagishi H, Taniwaki M. Recurrent chromosomal rearrangements at bands 8q24 and 11q13 in gastric cancer as detected by multicolor spectral karyotyping. World J Gastroenterol 2005; 11:5129-35. [PMID: 16127741 PMCID: PMC4320384 DOI: 10.3748/wjg.v11.i33.5129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify chromosomal translocations specific to gastric cancer (GC), spectral karyotyping (SKY) analysis was performed on established cell lines and cancerous ascitic fluids.
METHODS: SKY analysis of 10 established cell lines and seven cancerous ascitic fluid samples identified recurrent chromosomal breakpoints and translocations in GC, several of which involved chromosomal loci of oncogenes or tumor suppressor genes.
RESULTS: A total of 630 chromosomal breaks were identified. Chromosome no.8 was the most frequently involved in rearrangements (65 breaks), followed by chromosomes no.11 (53), no. 1 (49), no. 7 (46), no. 13 (37), no. 3 (36), no. 17 (33), and no. 20 (29). Frequent breakpoints were detected in 8q24.1 (30 breaks), 11q13 (29), 13q14 (16), 20q11.2 (14), 7q32 (13), 17q11.2 (13), 18q21 (12), 17q23 (9), 18q11.2 (9). SKY analysis identified a total of 242 chromosomal rearrangements including 190 reciprocal and non-reciprocal translocations. The recurrent combinations of chromosomal bands involved in translocations were 8q24.1 and 13q14 (3 cases), 8q24.1 and 11q13 (3), 11q13 and 17q11.2 (2), and 18q11.2 and 20q11.2 (2). Our study validated the ability of SKY to characterize in detail the chromosomal rearrangements in solid tumors and derived cell lines. Moreover, fluorescence in situ hybridization helped to identify the insertions, translocations, and homogeneously staining regions of MYC and CCND1 gene loci.
CONCLUSION: The non-random co-localization of certain cytogenetic bands suggests the importance of chromosomal translocations in gastric carcinogenesis, by serving as landmarks for the cloning of GC causing genes.
Collapse
Affiliation(s)
- Yasuhide Yamashita
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis.
Collapse
Affiliation(s)
- Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Center and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
12
|
Lima EM, Rissino JD, Harada ML, Assumpção PP, Demachki S, Guimarães AC, Casartelli C, Smith MAC, Burbano RR. Conventional cytogenetic characterization of a new cell line, ACP01, established from a primary human gastric tumor. Braz J Med Biol Res 2004; 37:1831-8. [PMID: 15558189 DOI: 10.1590/s0100-879x2004001200008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.
Collapse
Affiliation(s)
- E M Lima
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim DG, Park SY, Kim H, Chun YH, Moon WS, Park SH. A comprehensive karyotypic analysis on a newly established sarcomatoid hepatocellular carcinoma cell line SH-J1 by comparative genomic hybridization and chromosome painting. CANCER GENETICS AND CYTOGENETICS 2002; 132:120-4. [PMID: 11850072 DOI: 10.1016/s0165-4608(01)00543-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We first established a sarcomatoid hepatocellular carcinoma cell line, designated as SH-J1, and applied comparative genomic hybridization and fluorescence in situ hybridization (FISH) with chromosome painting probes for the characterization of the chromosomal rearrangements. In the SH-J1 cell line, the pleomorphic spindle cells were arranged in bundles of interlacing patterns and were positive in immunohistochemical staining with hepatocyte-related markers. By G-banding and FISH, the chromosomal gains were detected at 6p and 17, whereas losses were observed at 3p21-pter, 3q27-qter, 4, 6q, 13pter-q11, 16, 18, 19p13, and Y.
Collapse
Affiliation(s)
- Dae Ghon Kim
- Research Institute of Clinical Medicine, Department of Internal Medicine, Chonbuk National University Medical School, Chonju, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Zheng YL, Herr AM, Jacobson BA, Ferrin LJ. High-density allelotype of the commonly studied gastric cancer cell lines. Genes Chromosomes Cancer 2001; 32:67-81. [PMID: 11477663 DOI: 10.1002/gcc.1168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer is one of the leading causes of death from cancer throughout the world, and studies to elucidate the genetic defects found in this type of cancer are growing in number. Increasingly sophisticated techniques and the sequencing of the human genome have had an impact on the scope of such studies. While the use of tumor specimens remains popular, more emphasis is being placed on cell lines as model systems where specific data can be directly combined with results from other studies. This article describes a genetic survey of the most widely used gastric adenocarcinoma cell lines. The allelotype at 351 polymorphic loci in 14 cell lines was obtained, and the results from the 4,900 polymerase chain reactions are displayed. In addition to confirming loss of heterozygosity on chromosome arms 6p, 7q, 17p, and 18, additional deletions on arm 5p and the pericentromeric regions of chromosomes 1 and 10 were detected. Areas that might contain homozygous deletions or amplifications also were mapped. The rate of microsatellite instability was quantified and shown to vary greatly among the different cell lines. Most important, this study serves as a genetic scaffold for the integration of past and future studies on the nature of the genetic defects in gastric cancer.
Collapse
Affiliation(s)
- Y L Zheng
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
15
|
Kim GJ, Park SY, Kim H, Chun YH, Park SH. Chromosomal aberrations in neuroblastoma cell lines identified by cross species color banding and chromosome painting. CANCER GENETICS AND CYTOGENETICS 2001; 129:10-6. [PMID: 11520559 DOI: 10.1016/s0165-4608(01)00418-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have studied cytogenetic rearrangements in karyotypes of five neuroblastoma cell lines [SK-N-AS, SK-N-SH, SH-SY5Y, SK-N-MC, SMS-KCNR] by G-banding, cross species color banding (RxFISH), and fluorescence in situ hybridization (FISH) with chromosome painting probes. Each neuroblastoma cell line had unique modal karyotypic characteristics and showed a variable number of numerical and structural clonal cytogenetic aberrations. The number of rearranged chromosomes in SK-N-AS, SK-N-SH, SH-SY5Y, SK-N-MC, and SMS-KCNR was 11, 3, 7, 14 (tetraploid, 20-21), and 6, respectively. The origins of abnormal chromosomes were effectively analyzed by RxFISH and FISH with multiple chromosome painting probes. The chromosomal origin of the homogeneously staining region in SH-SY5Y was identified as coamplification of chromosome bands 2p13 and 2p24 by chromosome microdissection and FISH. The non-random rearrangements of chromosomes were determined on 1p34 approximately p36, 6q16 approximately q21, 8q24, 9q34, 11q13 approximately q23, 16q23 approximately q24, 17q21, and 22q31. These results may provide useful information for further molecular characterization of neuroblastoma.
Collapse
Affiliation(s)
- G J Kim
- Graduate School of Biotechnology, Korea University College of Medicine, 126-1, Anam-Dong 5-Ka, Sungbuk-Ku, Seoul 136-705, South Korea
| | | | | | | | | |
Collapse
|
16
|
Kim DG, Park SY, You KR, Lee GB, Kim H, Moon WS, Chun YH, Park SH. Establishment and characterization of chromosomal aberrations in human cholangiocarcinoma cell lines by cross-species color banding. Genes Chromosomes Cancer 2001; 30:48-56. [PMID: 11107175 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1053>3.0.co;2-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CC), a malignant neoplasm of the biliary epithelium, is usually fatal because of difficulty in early diagnosis and lack of availability of effective therapy. Furthermore, little is known about the genetics and biology of CC. Only a few reports concerning cytogenetic studies of CC have been published, and few cell lines have been established. We recently established four CC cell lines, designated as SCK, JCK, Cho-CK, and Choi-CK, and report the first application of cross-species color banding (RxFISH) and multiple chromosome painting for the characterization of the chromosomal rearrangements of these CC cell lines. Each cell line had unique modal karyotypic characteristics and showed a variable number of numerical and structural clonal cytogenetic aberrations. Chromosomes 3, 6, 7, 8, 12, 14, 17, and 18 were commonly involved in structural abnormalities. Homogeneously staining regions were determined in SCK and JCK, and double minute chromosomes were found in Cho-CK. The chromosomal aberrations of the four CC cell lines were effectively analyzed by RxFISH and FISH with multiple chromosome painting probes. The nonrandom rearrangements suggest candidate regions for isolation of genes related to CC.
Collapse
Affiliation(s)
- D G Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Chonju, Korea
| | | | | | | | | | | | | | | |
Collapse
|