1
|
Xie L, Zheng L, Chen W, Zhai X, Guo Y, Zhang Y, Li Y, Yu W, Lai Z, Zhu Z, Li P. Trends in perivascular macrophages research from 1997 to 2021: A bibliometric analysis. CNS Neurosci Ther 2022; 29:816-830. [PMID: 36514189 PMCID: PMC9928555 DOI: 10.1111/cns.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Perivascular macrophages (PVMs) play pivotal roles in maintaining the physiological function of the brain. Dysfunction of PVMs is emerging as an important mechanism in various disease conditions in the brain. METHODS In this work, we analyzed recent research advances in PVMs, especially in the brain, from the Web of Science (WoS) core database using bibliometric analysis based on the search terms "perivascular macrophages" and "perivascular macrophage" on October 27, 2021. Visualization and collaboration analysis were performed by Citespace (5.8 R3 mac). RESULTS We found 2384 articles published between 1997 and 2021 in the field of PVMs, which were selected for analysis. PVMs were involved in several physio-pathological fields, in which Neurosciences and Neurology, Neuroscience, Immunology, Pathology, and Cardiovascular System and Cardiology were most reported. The research focuses on PVMs mainly in the central nervous system (CNS), inflammation, macrophage or T-cell, and disease, and highlights the related basic research regarding its activation, oxidative stress, angiotensin II, and insulin resistance. Tumor-associated macrophage, obesity, myeloid cell, and inflammation were relatively recent highlight keywords that attracted increasing attention in recent years. Harvard Univ, Vrije Univ Amsterdam, occupied important positions in the research field of PVMs. Meanwhile, PVM research in China (Peking Univ, Sun Yat Sen Univ, Shanghai Jiao Tong Univ, and Shandong Univ) is on the rise. Cluster co-citation analysis revealed that the mechanisms of CNS PVMs and related brain diseases are major specialties associated with PVMs, while PVMs in perivascular adipose tissue and vascular diseases or obesity are another big category of PVMs hotspots. CONCLUSION In conclusion, the research on PVMs continues to deepen, and the hotspots are constantly changing. Future studies of PVMs could have multiple disciplines intersecting.
Collapse
Affiliation(s)
- Lv Xie
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Zheng
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijie Chen
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Zhai
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weifeng Yu
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmeng Lai
- Department of AnesthesiologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Ziyu Zhu
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peiying Li
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
3
|
Rodríguez-Cal Y Mayor A, Castañeda-Hernández G, Favari L, Martinez-Cruz A, Guízar-Sahagún G, Cruz-Antonio L. Pharmacokinetics and anti-inflammatory effect of naproxen in rats with acute and subacute spinal cord injury. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:395-404. [PMID: 31641817 DOI: 10.1007/s00210-019-01745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 12/01/2022]
Abstract
Previous reports have warned about the influence of spinal cord injury (SCI) on the pharmacokinetics of various drugs. However, the role of SCI in the efficacy and safety of pharmacotherapy remains unknown. Thereby, our aim was to explore the role of SCI on pharmacokinetics and anti-inflammatory effect of naproxen in response to a local inflammatory challenge. Rats received a severe contusive SCI at T9 or sham injury. Pharmacokinetics of a single intravenous dose of naproxen (10 mg kg-1) was studied at days 1 and 15 post-surgery. For the anti-inflammatory assessment, carrageenan was subcutaneously injected in forelimb and hindlimb paws at the same post-surgery periods, and naproxen efficacy was evaluated measuring paw swelling. Plasma protein concentrations and body weight changes were also determined. Plasma naproxen levels and pharmacokinetic parameters were unchanged by acute injury, but subacute injury generated alterations in volume of distribution, clearance, and bioavailability, resulting in significantly reduced plasma naproxen concentrations, in the absence of changes in plasma proteins. Assessment of naproxen anti-inflammatory activity during the acute stage of injury could not be determined because of carrageenan failure to elicit swelling. During the subacute stage, naproxen anti-inflammatory effect on forelimbs (above injury) was similar to that observed in sham-injured animals, while it was almost absent in paralyzed hindlimbs. Under conditions of SCI and peripheral inflammation, pharmacokinetics and anti-inflammatory activity of naproxen vary according to post-injury timing and neurological status of the assessed region.
Collapse
Affiliation(s)
- Arianna Rodríguez-Cal Y Mayor
- Departament of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Gilberto Castañeda-Hernández
- Departament of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Favari
- Departament of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Gabriel Guízar-Sahagún
- Department of Experimental Surgery, Proyecto Camina A.C., Mexico City, Mexico. .,Research Unit for Neurological Diseases, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Tlalpan 4430, 14050, Mexico City, Mexico.
| | - Leticia Cruz-Antonio
- Departament of Pharmacy, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Cordero K, Coronel GG, Serrano-Illán M, Cruz-Bracero J, Figueroa JD, De León M. Effects of Dietary Vitamin E Supplementation in Bladder Function and Spasticity during Spinal Cord Injury. Brain Sci 2018; 8:E38. [PMID: 29495419 PMCID: PMC5870356 DOI: 10.3390/brainsci8030038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in debilitating autonomic dysfunctions, paralysis and significant sensorimotor impairments. A key component of SCI is the generation of free radicals that contributes to the high levels of oxidative stress observed. This study investigates whether dietary supplementation with the antioxidant vitamin E (alpha-tocopherol) improves functional recovery after SCI. Female adult Sprague-Dawley rats were fed either with a normal diet or a dietary regiment supplemented with vitamin E (51 IU/g) for eight weeks. The rats were subsequently exposed either to a contusive SCI or sham operation, and evaluated using standard functional behavior analysis. We report that the rats that consumed the vitamin E-enriched diet showed an accelerated bladder recovery and significant improvements in locomotor function relative to controls, as determined by residual volumes and Basso, Beatie, and Bresnaham BBB scores, respectively. Interestingly, the prophylactic dietary intervention did not preserve neurons in the ventral horn of injured rats, but it significantly increased the numbers of oligodendrocytes. Vitamin E supplementation attenuated the depression of the H-reflex (a typical functional consequence of SCI) while increasing the levels of supraspinal serotonin immunoreactivity. Our findings support the potential complementary use of vitamin E to ameliorate sensory and autonomic dysfunctions associated with spinal cord injury, and identified promising new cellular and functional targets of its neuroprotective effects.
Collapse
Affiliation(s)
- Kathia Cordero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Gemma G Coronel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Miguel Serrano-Illán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jennifer Cruz-Bracero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
5
|
Kopp MA, Liebscher T, Watzlawick R, Martus P, Laufer S, Blex C, Schindler R, Jungehulsing GJ, Knüppel S, Kreutzträger M, Ekkernkamp A, Dirnagl U, Strittmatter SM, Niedeggen A, Schwab JM. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 2016; 6:e010651. [PMID: 27466236 PMCID: PMC4964175 DOI: 10.1136/bmjopen-2015-010651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, 'small molecule'-mediated Rho inhibition after acute SCI warrants clinical investigation. METHODS AND ANALYSIS Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. ETHICS AND DISSEMINATION The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02096913; Pre-results.
Collapse
Affiliation(s)
- Marcel A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Blex
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schindler
- Division of Nephrology and Intensive Care, Department of Internal Medicine, Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany
| | - Gerhard J Jungehulsing
- Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Knüppel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany
| | - Martin Kreutzträger
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Axel Ekkernkamp
- Trauma Surgery and Orthopedics Clinic, Trauma Hospital Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, USA
| | - Andreas Niedeggen
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany Department of Neurology, Spinal Cord Injury Division, The Ohio State University, Wexner Medical Center, Columbus, USA Department of Neuroscience and Center for Brain and Spinal Cord Repair, Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, USA
| |
Collapse
|
6
|
Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:15-54. [PMID: 25890131 DOI: 10.1016/bs.pbr.2014.12.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the big challenges in neuroscience that remains to be understood is why the central nervous system is not able to regenerate to the extent that the peripheral nervous system does. This is especially problematic after traumatic injuries, like spinal cord injury (SCI), since the lack of regeneration leads to lifelong deficits and paralysis. Treatment of SCI has improved during the last several decades due to standardized protocols for emergency medical response teams and improved medical, surgical, and rehabilitative treatments. However, SCI continues to result in profound impairments for the individual. There are many processes that lead to the pathophysiology of SCI, such as ischemia, vascular disruption, neuroinflammation, oxidative stress, excitotoxicity, demyelination, and cell death. Current treatments include surgical decompression, hemodynamic control, and methylprednisolone. However, these early treatments are associated with modest functional recovery. Some treatments currently being investigated for use in SCI target neuroprotective (riluzole, minocycline, G-CSF, FGF-2, and polyethylene glycol) or neuroregenerative (chondroitinase ABC, self-assembling peptides, and rho inhibition) strategies, while many cell therapies (embryonic stem cells, neural stem cells, induced pluripotent stem cells, mesenchymal stromal cells, Schwann cells, olfactory ensheathing cells, and macrophages) have also shown promise. However, since SCI has multiple factors that determine the progress of the injury, a combinatorial therapeutic approach will most likely be required for the most effective treatment of SCI.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 2014; 258:121-129. [PMID: 25017893 PMCID: PMC4099970 DOI: 10.1016/j.expneurol.2014.04.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
Abstract
During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity.
Collapse
Affiliation(s)
- Jan M. Schwab
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
- Spinal Cord Injury Center, Trauma Hospital Berlin, D-12683 Berlin, Germany
| | - Yi Zhang
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Marcel A. Kopp
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Tzekou A, Fehlings MG. Treatment of spinal cord injury with intravenous immunoglobulin G: preliminary evidence and future perspectives. J Clin Immunol 2014; 34 Suppl 1:S132-8. [PMID: 24722853 PMCID: PMC4050295 DOI: 10.1007/s10875-014-0021-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 01/18/2023]
Abstract
Neuroinflammation plays an important role in the secondary pathophysiological mechanisms of spinal cord injury (SCI) and can exacerbate the primary trauma and thus worsen recovery. Although some aspects of the immune response are beneficial, it is thought that leukocyte recruitment and activation in the acute phase of injury results in the production of cytotoxic substances that are harmful to the nervous tissue. Therefore, suppression of excessive inflammation in the spinal cord could serve as a therapeutic strategy to attenuate tissue damage. The immunosuppressant methylprednisolone has been used in the setting of SCI, but there are complications which have attenuated the initial enthusiasm. Hence, there is interest in other immunomodulatory approaches, such as intravenous Immunoglobulin G (IVIg). Importantly, IVIg is used clinically for the treatment of several auto-immune neuropathies, such as Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuropathy (CIPD) and Kawasaki disease, with a good safety profile. Thus, it is a promising treatment candidate for SCI. Indeed, IVIg has been shown by our team to attenuate the immune response and result in improved neurobehavioral recovery following cervical SCI in rats through a mechanism that involves the attenuation of neutrophil recruitment and reduction in the levels of cytokines and cytotoxic enzymes Nguyen et al. (J Neuroinflammation 9:224, 2012). Here we review published data in the context of relevant mechanisms of action that have been proposed for IVIg in other conditions. We hope that this discussion will trigger future research to provide supporting evidence for the efficiency and detailed mechanisms of action of this promising drug in the treatment of SCI, and to facilitate its clinical translation.
Collapse
Affiliation(s)
- Apostolia Tzekou
- Toronto Western Research Institute and Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Toronto Western Research Institute and Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst St. Suite 4WW-449, Toronto, ON M5T2S8 Canada
| |
Collapse
|
9
|
Miller AD, Westmoreland SV, Evangelous NR, Graham A, Sledge J, Nesathurai S. Acute traumatic spinal cord injury induces glial activation in the cynomolgus macaque (Macaca fascicularis). J Med Primatol 2012; 41:202-9. [PMID: 22620270 DOI: 10.1111/j.1600-0684.2012.00542.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Traumatic spinal cord injury leads to direct myelin and axonal damage and leads to the recruitment of inflammatory cells to site of injury. Although rodent models have provided the greatest insight into the genesis of traumatic spinal cord injury (TSCI), recent studies have attempted to develop an appropriate non-human primate model. METHODS We explored TSCI in a cynomolgus macaque model using a balloon catheter to mimic external trauma to further evaluate the underlying mechanisms of acute TSCI. RESULTS Following 1hour of spinal cord trauma, there were focal areas of hemorrhage and necrosis at the site of trauma. Additionally, there was a marked increased expression of macrophage-related protein 8, MMP9, IBA-1, and inducible nitric oxide synthase in macrophages and microglia at the site of injury. CONCLUSIONS This data indicate that acute TSCI in the cynomolgus macaque is an appropriate model and that the earliest immunohistochemical changes noted are within macrophage and microglia populations.
Collapse
Affiliation(s)
- A D Miller
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01760, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Camara-Lemarroy CR, Gonzalez-Moreno EI, Guzman-de la Garza FJ, Fernandez-Garza NE. Arachidonic acid derivatives and their role in peripheral nerve degeneration and regeneration. ScientificWorldJournal 2012; 2012:168953. [PMID: 22997489 PMCID: PMC3446639 DOI: 10.1100/2012/168953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/10/2012] [Indexed: 01/23/2023] Open
Abstract
After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD). This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA) derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.
Collapse
Affiliation(s)
- Carlos Rodrigo Camara-Lemarroy
- Departamento de Medicina Interna, Hospital Universitario "José Eleuterio González", Universidad Autónoma de Nuevo León, School of Medicine, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico.
| | | | | | | |
Collapse
|
11
|
David S, Greenhalgh AD, López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res 2012; 349:249-67. [PMID: 22581384 DOI: 10.1007/s00441-012-1430-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Inflammation is considered to be an important contributor to secondary damage after spinal cord injury (SCI). This secondary damage leads to further exacerbation of tissue loss and functional impairments. The immune responses that are triggered by injury are complex and are mediated by a variety of factors that have both detrimental and beneficial effects. In this review, we focus on the diverse effects of the phospholipase A(2) (PLA(2)) superfamily and the downstream pathways that generate a large number of bioactive lipid mediators, some of which have pro-inflammatory and demyelinating effects, whereas others have anti-inflammatory and pro-resolution properties. For each of these lipid mediators, we provide an overview followed by a discussion of their expression and role in SCI. Where appropriate, we have compared the latter with their role in other neurological conditions. The PLA(2) pathway provides a number of targets for therapeutic intervention for the treatment of SCI and other neurological conditions.
Collapse
Affiliation(s)
- Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada, H3G 1A4,
| | | | | |
Collapse
|
12
|
Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Prüss H. Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 2011; 58:1748-56. [PMID: 20645410 DOI: 10.1002/glia.21045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Semaphorin 7A (Sema7A) is involved in the formation of the central nervous system during development by operating axon guidance and neuronal migration. We investigated the expression of the TGFβ-inducible Sema7A following spinal cord injury (SCI). After SCI, Sema7A(+) cells accumulated specifically in lesion areas resulting in significantly enhanced Sema7A expression at the injury site (P < 0.0001). During the first days lesional Sema7A expression was confined to neurons, ballooned neurite fibers/retraction bulbs, and endothelial cells. At day 7, we observed Sema7A expression by components of the glial scar, such as reactive astrocytes and pronounced extracellular Sema7A deposition. In the direct perilesional rim, Sema7A(+) astrocytes coexpressed the activation-associated intermediate filament vimentin. In the injured spinal cord, numbers of Sema7A(+) cells reached maximum levels at day 14. The restricted accumulation of Sema7A(+) reactive astrocytes and Sema7A deposition in fibronectin(+) extracellular matrix territories suggests a participation of the fibrostimulatory Sema7A in the developing and maturating scar following SCI. In addition, Sema7A appears to be marker a for astrocyte activation.
Collapse
Affiliation(s)
- Marcel A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité University Medicine Berlin, Charitéplatz 1, Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Kunori S, Matsumura S, Okuda-Ashitaka E, Katano T, Audoly LP, Urade Y, Ito S. A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Glia 2011; 59:208-18. [PMID: 21125641 DOI: 10.1002/glia.21090] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.
Collapse
Affiliation(s)
- Shunji Kunori
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7:366-77. [PMID: 20880501 PMCID: PMC2948548 DOI: 10.1016/j.nurt.2010.07.002] [Citation(s) in RCA: 497] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/26/2010] [Accepted: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Microglia are the primary mediators of the immune defense system of the CNS and are integral to the subsequent inflammatory response. The role of microglia in the injured CNS is under scrutiny, as research has begun to fully explore how postinjury inflammation contributes to secondary damage and recovery of function. Whether microglia are good or bad is under debate, with strong support for a dual role or differential activation of microglia. Microglia release a number of factors that modulate secondary injury and recovery after injury, including pro- and anti-inflammatory cytokines, chemokines, nitric oxide, prostaglandins, growth factors, and superoxide species. Here we review experimental work on the complex and varied responses of microglia in terms of both detrimental and beneficial effects. Addressed in addition are the effects of microglial activation in two examples of CNS injury: spinal cord and traumatic brain injury. Microglial activation is integral to the response of CNS tissue to injury. In that light, future research is needed to focus on clarifying the signals and mechanisms by which microglia can be guided to promote optimal functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, 21201 Baltimore, Maryland
| | - Kimberly R. Byrnes
- grid.265436.00000000104215525Room B2048, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
| |
Collapse
|
15
|
Teeling J, Cunningham C, Newman T, Perry V. The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain Behav Immun 2010; 24:409-19. [PMID: 19931610 PMCID: PMC3098384 DOI: 10.1016/j.bbi.2009.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/30/2009] [Accepted: 11/13/2009] [Indexed: 11/17/2022] Open
Abstract
Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflammatory cytokines and prostaglandin production (PGE(2)) at the blood-brain barrier. Despite numerous studies, the exact biological pathways that give rise to these changes remains elusive. This study investigated the mechanisms underlying immune-to-brain communication following systemic inflammation using various anti-inflammatory agents. Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhibitors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels of inflammatory mediators measured in serum and brain. LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6, IL-1beta and TNF-alpha, as well as PGE(2) in serum and brain. Indomethacin and ibuprofen reversed the effect of LPS on behaviour without changing peripheral or central IL-6, IL-1beta and TNF-alpha mRNA levels. In contrast, dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide, reversed the LPS-induced behavioural changes without affecting IL-6, IL-1beta and TNF-alpha protein expression levels in the periphery or mRNA levels in the hippocampus. Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1beta and TNF-alpha synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies to treat or prevent neurological diseases with an inflammatory component.
Collapse
Affiliation(s)
- J.L. Teeling
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, UK,Corresponding author. Fax: +44 2380 592701.
| | - C. Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Ireland
| | - T.A. Newman
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, UK
| | - V.H. Perry
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, UK
| |
Collapse
|
16
|
Abstract
Headache treatment has been based primarily on experiences with non-specific drugs such as analgesics, non-steroidal anti-inflammatory drugs, or drugs that were originally developed to treat other diseases, such as beta-blockers and anticonvulsant medications. A better understanding of the basic pathophysiological mechanisms of migraine and other types of headache has led to the development over the past two decades of more target-specific drugs. Since activation of the trigeminovascular system and neurogenic inflammation are thought to play important roles in migraine pathophysiology, experimental studies modeling those events successfully predicted targets for selective development of pharmacological agents to treat migraine. Basically, there are two fundamental strategies for the treatment of migraine, abortive or preventive, based to a large degree on the frequency of attacks. The triptans, which exhibit potency towards selective serotonin (5-hydroxytryptamine, 5-HT) receptors expressed on trigeminal nerves, remain the most effective drugs for the abortive treatment of migraine. However, numerous preventive medications are currently available that modulate the excitability of the nervous system, particularly the cerebral cortex. In this chapter, the pharmacology of commercially available medications as well as drugs in development that prevent or abort headache attacks will be discussed.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology, Gazi Hospital and Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey.
| | | |
Collapse
|
17
|
Cerebrovascular cyclooxygenase-1 expression, regulation, and role in hypothalamic-pituitary-adrenal axis activation by inflammatory stimuli. J Neurosci 2009; 29:12970-81. [PMID: 19828811 DOI: 10.1523/jneurosci.2373-09.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Systemic injection of lipopolysaccharide (LPS) is a widely used model of immune/inflammatory challenge, which can invoke a host of CNS responses, including activation of the hypothalamic-pituitary-adrenal (HPA) axis. Inducible vascular prostaglandin E(2) (PGE(2)) synthesis by endothelial (ECs) and/or perivascular cells (PVCs) (a macrophage-derived vascular cell type) is implicated in the engagement of HPA and other CNS responses, by virtue of their capacity to express cyclooxygenase-2 (COX-2) and microsomal PGE(2) synthase-1. Evidence from genetic and pharmacologic studies also supports a role for the constitutively expressed COX-1 in inflammation-induced activation of the HPA axis, although histochemical evidence to support relevant localization(s) and regulation of COX-1 expression is lacking. The present experiments fill this void in showing that COX-1 immunoreactivity (IR) and mRNA are detectable in identified PVCs and parenchymal microglia under basal conditions and is robustly expressed in these and ECs 1-3 h after intravenous injection of LPS (2 microg/kg). Confocal and electron microscopic analyses indicate distinct cellular/subcellular localizations of COX-1-IR in the three cell types. Interestingly, COX-1 expression is enhanced in ECs of brain PVC-depleted rats, supporting an anti-inflammatory role of the latter cell type. Functional involvement of COX-1 is indicated by the observation that central, but not systemic, pretreatment with the selective COX-1 inhibitor SC-560 attenuated the early phase of LPS-induced increases in adrenocorticotropin and corticosterone secretion. These findings support an involvement of COX-1 in bidirectional interplay between ECs and PVCs in initiating vascular PGE(2) and downstream HPA response to proinflammatory challenges.
Collapse
|
18
|
Kelso ML, Scheff SW, Pauly JR, Loftin CD. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice. BMC Neurosci 2009; 10:108. [PMID: 19719848 PMCID: PMC2751761 DOI: 10.1186/1471-2202-10-108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/31/2009] [Indexed: 12/04/2022] Open
Abstract
Background Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI). Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX) -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2. Results Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the level of microglial activation, and the capacity for functional recovery was compared between COX-1-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The deficiency of COX-2 resulted in a minor (6%), although statistically significant, increase in the sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect on cortical tissue loss following TBI. As determined by 3[H]-PK11195 autoradiography, TBI produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-type and COX-1-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased 3[H]-PK11195 binding in all brain regions that were analyzed. Following injury, 3[H]-PK11195 binding in the dentate gyrus and CA1 region of the hippocampus was greater in COX-2-deficient mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as determined by acquisition and spatial memory retention testing in a Morris water maze. Conclusion These findings suggest that the deficiency of neither COX-1 nor COX-2 is sufficient to alter cognitive outcomes following TBI in mice.
Collapse
Affiliation(s)
- Matthew L Kelso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
19
|
Titsworth WL, Liu NK, Xu XM. Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:254-69. [PMID: 18673210 PMCID: PMC2800081 DOI: 10.2174/187152708784936671] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA(2) is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA(2) have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA(2)s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA(2) activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA(2) plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA(2) may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA(2) action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA(2) in the CNS with emphasis placed on the possible roles of sPLA(2) in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord.
Collapse
Affiliation(s)
- W. Lee Titsworth
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nai-Kui Liu
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Choi SH, Langenbach R, Bosetti F. Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J 2008; 22:1491-501. [PMID: 18162486 PMCID: PMC2386977 DOI: 10.1096/fj.07-9411com] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase (COX) -1 and -2 metabolize arachidonic acid to prostanoids and reactive oxygen species, major players in the neuroinflammatory process. While most reports have focused on the inducible isoform, COX-2, the contribution of COX-1 to the inflammatory response is unclear. In the present study, the contribution of COX-1 in the neuroinflammatory response to intracerebroventricular lipopolysaccharide (LPS) was investigated using COX-1 deficient (COX-1(-/-)) mice or wild-type (COX-1(+/+)) mice pretreated with SC-560, a selective COX-1 inhibitor. Twenty-four hours after lipopolysaccharide (LPS) injection, COX-1(-/-) mice showed decreased protein oxidation and LPS-induced neuronal damage in the hippocampus compared with COX-1(+/+) mice. COX-1(-/-) mice showed a significant reduction of microglial activation, proinflammatory mediators, and expression of COX-2, inducible NOS, and NADPH oxidase. The transcriptional down-regulation of cytokines and other inflammatory markers in COX-1(-/-) mice was mediated by a reduced activation of NF-kappaB and signal transducer and activator of transcription 3. Administration of SC-560 prior to LPS injection also attenuated the neuroinflammatory response by decreasing brain levels of prostaglandin (PG)E(2), PGD(2), PGF(2alpha), and thromboxane B(2), as well as the expression of proinflammatory cytokines and chemokine. These findings suggest that COX-1 plays a previously unrecognized role in neuroinflammatory damage.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert Langenbach
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Naziroğlu M, Uğuz AC, Gokçimen A, Bülbül M, Karatopuk DU, Türker Y, Cerçi C. Tenoxicam modulates antioxidant redox system and lipid peroxidation in rat brain. Neurochem Res 2008; 33:1832-7. [PMID: 18340531 DOI: 10.1007/s11064-008-9643-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
We investigated effects of two doses of Tenoxicam, a type 2 cyclooxygenase inhibitor, administration on lipid peroxidation and antioxidant redox system in cortex of the brain in rats. Twenty-two male Wistar rats were randomly divided into three groups. First group was used as control. 10 and 20 mg/kg body weight Tenoxicam were intramuscularly administrated to rats constituting the second and third groups for 10 days, respectively. Both dose of Tenoxicam administration resulted in significant increase in the glutathione peroxidase activity, reduced glutathione and vitamins C and E of cortex of the brain. The lipid peroxidation levels in the cortex of the brain were significantly decreased by the administration. Vitamin A and beta-carotene concentration was not affected by the administration. There was no statistical difference in all values between 10 and 20 mg Tenoxicam administrated groups. In conclusion, treatment of brain with 10 and 20 mg Tenoxicam has protective effects on the oxidative stress by inhibiting free radical and supporting antioxidant redox system.
Collapse
Affiliation(s)
- Mustafa Naziroğlu
- Department of Biophysics, Medical (TIP) Faculty, Süleyman Demirel University, Cunur, Isparta, 32260, Turkey.
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Non-steroidal anti-inflammatory drugs are widely used for the treatment of pain and inflammation by inhibiting the formation of prostaglandins. However, their use is limited by their side-effects, including gastrointestinal, renal function, cardiovascular and platelet function. Cyclooxygenase activity is the principal target for the action of non-steroidal anti-inflammatory drugs. Two isoforms of cyclooxygenase have been characterized: (i) cyclooxygenase-1, which is found in many tissues and is generally constitutively expressed and synthesizes prostanoids that mediate homeostatic functions; and (ii) cyclooxygenase-2, the inducible isoform, which is mainly expressed at sites of injury or inflammation and synthesizes prostanoids that mediate inflammation, pain and fever. These findings led to the development of selective cyclooxygenase-2 inhibitors, with comparable anti-inflammatory and analgesic properties to traditional non-steroidal anti-inflammatory drugs, but with significantly fewer side-effects. However, these new selective cyclooxygenase-2 inhibitors are not risk free, and care should be taken when using these drugs, especially with elderly patients with multiple medical problems. Finally, the future is bright for the broader usage of these agents in the treatment of diseases other than inflammation and pain, such as Alzheimer's disease, colonic polyp and colon cancer, just to name a few.
Collapse
Affiliation(s)
- T Samad
- Massachusetts General Hospital and Neuroplasticity Research Group, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
|
25
|
Mohri I, Taniike M, Taniguchi H, Kanekiyo T, Aritake K, Inui T, Fukumoto N, Eguchi N, Kushi A, Sasai H, Kanaoka Y, Ozono K, Narumiya S, Suzuki K, Urade Y. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 2006; 26:4383-93. [PMID: 16624958 PMCID: PMC6673986 DOI: 10.1523/jneurosci.4531-05.2006] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prostaglandin (PG) D2 is well known as a mediator of inflammation. Hematopoietic PGD synthase (HPGDS) is responsible for the production of PGD2 involved in inflammatory responses. Microglial activation and astrogliosis are commonly observed during neuroinflammation, including that which occurs during demyelination. Using the genetic demyelination mouse twitcher, a model of human Krabbe's disease, we discovered that activated microglia expressed HPGDS and activated astrocytes expressed the DP1 receptor for PGD2 in the brain of these mice. Cultured microglia actively produced PGD2 by the action of HPGDS. Cultured astrocytes expressed two types of PGD2 receptor, DP1 and DP2, and showed enhanced GFAP production after stimulation of either receptor with its respective agonist. These results suggest that PGD2 plays an important role in microglia/astrocyte interaction. We demonstrated that the blockade of the HPGDS/PGD2/DP signaling pathway using HPGDS- or DP1-null twitcher mice, and twitcher mice treated with an HPGDS inhibitor, HQL-79 (4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine), resulted in remarkable suppression of astrogliosis and demyelination, as well as a reduction in twitching and spasticity. Furthermore, we found that the degree of oligodendroglial apoptosis was also reduced in HPGDS-null and HQL-79-treated twitcher mice. These results suggest that PGD2 is the key neuroinflammatory molecule that heightens the pathological response to demyelination in twitcher mice.
Collapse
|
26
|
Joseph SA, Lynd-Balta E, O'Banion MK, Rappold PM, Daschner J, Allen A, Padowski J. Enhanced cyclooxygenase-2 expression in olfactory-limbic forebrain following kainate-induced seizures. Neuroscience 2006; 140:1051-65. [PMID: 16677768 DOI: 10.1016/j.neuroscience.2006.02.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/16/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022]
Abstract
Cyclooxygenase-2 is expressed at low levels in a subset of neurons in CNS and is rapidly induced by a multiplicity of factors including seizure activity. A putative relationship exists between cyclooxygenase-2 induction and glutamatergic neurotransmission. Cyclooxygenase-1 is constitutively expressed in glial cells and has been specifically linked to microglia. In this study we evaluated cyclooxygenase-2 protein immunocytochemically and found markedly enhanced immunostaining primarily in olfactory-limbic regions at 2, 6 and 24 h following kainate-induced status epilepticus. Impressive enhanced cyclooxygenase-2 immunoreactivity was localized in anterior olfactory nucleus, tenia tecta, nucleus of the lateral olfactory tract, piriform cortex, lateral and basolateral amygdala, orbital frontal cortex, nucleus accumbens (shell) and associated areas of ventral striatum, entorhinal cortex, dentate gyrus granule cells and hilar neurons, hippocampal CA subfields and subiculum. Alternate sections were processed for dual immunocytochemical analysis utilizing c-Fos and cyclooxygenase-2 antiserum to examine the possibility that the neuronal induction of cyclooxygenase-2 was associated with seizure activity. Neurons that showed a timeline of cyclooxygenase-2 upregulation were found to possess c-Fos immunopositive nuclei. Additional results from all seizure groups showed cyclooxygenase-1 induction in microglia, which was confirmed by Western blot analysis of hippocampus. Western blot and real-time quantitative RT-PCR analysis showed significant upregulation of cyclooxygenase-2 expression, confirming its induction in neurons. These data indicate that cyclooxygenase-2 induction in a neuronal network can be a useful marker for pathways associated with seizure activity.
Collapse
Affiliation(s)
- S A Joseph
- Department of Neurosurgery, University of Rochester Medical Center, Box 670, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. ACTA ACUST UNITED AC 2006; 51:240-64. [PMID: 16388853 DOI: 10.1016/j.brainresrev.2005.11.004] [Citation(s) in RCA: 582] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 12/22/2022]
Abstract
Tissue damage, inflammation or injury of the nervous system may result in chronic neuropathic pain characterised by increased sensitivity to painful stimuli (hyperalgesia), the perception of innocuous stimuli as painful (allodynia) and spontaneous pain. Neuropathic pain has been described in about 1% of the US population, is often severely debilitating and largely resistant to treatment. Animal models of peripheral neuropathic pain are now available in which the mechanisms underlying hyperalgesia and allodynia due to nerve injury or nerve inflammation can be analysed. Recently, it has become clear that inflammatory and immune mechanisms both in the periphery and the central nervous system play an important role in neuropathic pain. Infiltration of inflammatory cells, as well as activation of resident immune cells in response to nervous system damage, leads to subsequent production and secretion of various inflammatory mediators. These mediators promote neuroimmune activation and can sensitise primary afferent neurones and contribute to pain hypersensitivity. Inflammatory cells such as mast cells, neutrophils, macrophages and T lymphocytes have all been implicated, as have immune-like glial cells such as microglia and astrocytes. In addition, the immune response plays an important role in demyelinating neuropathies such as multiple sclerosis (MS), in which pain is a common symptom, and an animal model of MS-related pain has recently been demonstrated. Here, we will briefly review some of the milestones in research that have led to an increased awareness of the contribution of immune and inflammatory systems to neuropathic pain and then review in more detail the role of immune cells and inflammatory mediators.
Collapse
Affiliation(s)
- Gila Moalem
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
28
|
Abstract
It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by MP therapy alone. The present paper reviews the past development of MP, naloxone, tirilazad, and GM1 for acute SCI, the ongoing MP-SCI controversy, identifies the regulatory complications involved in future SCI drug development, and suggests some promising neuroprotective approaches that could either replace or be used in combination with high-dose MP.
Collapse
Affiliation(s)
- Edward D Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
29
|
Zhang Z, Trautmann K, Schluesener HJ. Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists. J Neuroimmunol 2005; 164:154-60. [PMID: 15904976 DOI: 10.1016/j.jneuroim.2005.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
Here we describe activation of microglia in the rat spinal cord by systemic injections of toll-like receptor agonist polyinosine-polycytidylic acid (poly(I:C), a TLR3 ligand) and R848 (a TLR 7/8 ligand). A significant but transient increase of ED-1+ spinal cord microglia was observed 4 days after a single intraperitoneal (i.p.) injection. Immunostainings by different microglial markers, AIF-1, EMAPII, OX6, P2X(4) receptor (P2X4R), indicated that microglia were not fully activated and tracing of cell proliferation by 5-bromo-2 -deoxyuridine revealed that only a small fraction of proliferating cells were microglia (less than 5%). Thus, these stimulators of the innate immune system have, after peripheral administration, clearly effects on the innate immune system of the spinal cord. This should be considered in the design of clinical trials, as both TLR ligands have been used in patients. As injections of TLR ligands can be used to modulate immune activity in the spinal cord, such agents might be tools to modulate local regenerative processes in the spinal cord.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Brain Research, University of Tuebingen, Calwer Str. 3, D-72076 Tuebingen, Germany.
| | | | | |
Collapse
|
30
|
Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005; 57:217-52. [PMID: 15914468 DOI: 10.1124/pr.57.2.1] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis and release of nitric oxide (NO) and prostaglandins (PGs) share a number of similarities. Two major forms of nitric-oxide synthase (NOS) and cyclooxygenase (COX) enzymes have been identified to date. Under normal circumstances, the constitutive isoforms of these enzymes (constitutive NOS and COX-1) are found in virtually all organs. Their presence accounts for the regulation of several important physiological effects (e.g. antiplatelet activity, vasodilation, and cytoprotection). On the other hand, in inflammatory setting, the inducible isoforms of these enzymes (inducible NOS and COX-2) are detected in a variety of cells, resulting in the production of large amounts of proinflammatory and cytotoxic NO and PGs. The release of NO and PGs by the inducible isoforms of NOS and COX has been associated with the pathological roles of these mediators in disease states as evidenced by the use of selective inhibitors. An important link between the NOS and COX pathways was made in 1993 by Salvemini and coworkers when they demonstrated that the enhanced release of PGs, which follows inflammatory mechanisms, was nearly entirely driven by NO. Such studies raised the possibility that COX enzymes represent important endogenous "receptor" targets for modulating the multifaceted roles of NO. Since then, numerous papers have been published extending the observation across various cellular systems and animal models of disease. Furthermore, other studies have highlighted the importance of such interaction in physiology as well as in the mechanism of action of drugs such as organic nitrates. More importantly, mechanistic studies of how NO switches on/off the PG/COX pathway have been undertaken and additional pathways through which NO modulates prostaglandin production unraveled. On the other hand, NO donors conjugated with COX inhibitors have recently found new interest in the understanding of NO/COX reciprocal interaction and potential clinical use. The purpose of this article is to cover the advances which have occurred over the years, and in particular, to summarize experimental data that outline how the discovery that NO modulates prostaglandin production has impacted and extended our understanding of these two systems in physiopathological events.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia, Catanazaro, Italy
| | | | | | | | | |
Collapse
|
31
|
Pantović R, Draganić P, Eraković V, Blagović B, Milin C, Simonić A. Effect of indomethacin on motor activity and spinal cord free fatty acid content after experimental spinal cord injury in rabbits. Spinal Cord 2005; 43:519-26. [PMID: 15852057 DOI: 10.1038/sj.sc.3101763] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Determination of functional and biochemical parameters as well as the effect of specific therapies on these parameters, in the experimental model of neurotrauma in rabbits. OBJECTIVE To assess the effect of indomethacin (0.1-3.0 mg/kg for 9 days), a potent inhibitor of endogenous prostaglandin synthesis, on the motor activity and on the spinal cord tissue concentration of free palmitic, stearic, oleic, arachidonic and docosahexaenoic acids in an experimental model of a spinal cord injury in rabbits. SETTING Faculty of Medicine, University of Rijeka, Croatia. METHODS The animals were randomly divided into nine experimental groups, four sham and/or vehicle-treated and five indomethacin-treated (including one sham-operated and four injured groups). Laminectomy was followed by contusion of the spinal cord, using a modification of the technique of Albin. Motor activity was controlled daily during the course of the next nine postoperation days and scored using Tarlov's system. Spinal cord samples from the impact injury site were taken and frozen in liquid nitrogen. Total lipids were isolated and purified by a modification of the method of Folch. Free fatty acids (FFAs) were separated from the total lipid extract by preparative thin-layer chromatography, converted to the corresponding methyl esters and identified using gas chromatography, using nonadecanoic acid as the internal standard. RESULTS The concentrations of all analysed free fatty acids were increased in the spinal cord after neurotrauma, in comparison to control tissues. Treatment of injured rabbits with indomethacin resulted in a significant decrease in spinal cord FFAs and exerted a positive effect on neurotrauma-induced motor impairment. CONCLUSION These results indicate a mechanism whereby indomethacin protects rabbits from the sequellae of neuronal damage caused by trauma, and suggests that it may be beneficial in the therapy of neurotrauma. SPONSORSHIP This work was supported by the Croatian Ministry of Science and Technology (project 062019).
Collapse
Affiliation(s)
- R Pantović
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
32
|
Lui PW, Lee CH. Preemptive effects of intrathecal cyclooxygenase inhibitor or nitric oxide synthase inhibitor on thermal hypersensitivity following peripheral nerve injury. Life Sci 2004; 75:2527-38. [PMID: 15363658 DOI: 10.1016/j.lfs.2004.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
The present study provides an important implication for the management of chronic neuropathic pain, focusing on prostaglandin (PG) and nitric oxide (NO) in the spinal cord. To determine if spinally administered cyclooxygenase (COX) inhibitor or nitric oxide synthase (NOS) inhibitor had preemptive analgesia on thermal hypersensitivity induced by chronic constrictive nerve injury, Sprague-Dawley rats were chronically implanted with an intrathecal (i.t.) catheter. The left sciatic nerve was loosely ligated with 2-mm polyethylene tubing to produce painful mononeuropathy. Animals received tenoxicam (7.5, 15 or 30 micromol/10 microl, i.t.), NS-398 (15 or 30 micromol), or L-NAME (30, 150 or 300 micromol) immediately before the nerve injury, followed by daily injection extending into the four postoperative days. The hindpaw was immersed into a hot (42 degrees C, 44 degrees C and 46 degrees C) or cold (10 degrees C) water bath. The paw immersion test revealed significant thermal hyperalgesia and allodynia 5 day after nerve injury in vehicle control animals. Tenoxicam (7.5, 15 or 30 micromol) or L-NAME (30, 150 or 300 micromol) dose-dependently attenuated hyperalgesia and allodynia. Equimolar dose of NS-398 (15 or 30 micromol) also diminished these nociceptive behaviors. Higher dose of either drug primarily produced longer duration of inhibition. The inhibitory effect of tenoxicam (30 micromol) on hyperalgesia was more effective than that of an equimolar dose of NS-398 or L-NAME. These results demonstrated that intrathecally administered COX inhibitor or NOS inhibitor provides preemptive analgesia on thermal hypersensitivity following chronic constrictive nerve injury in rats.
Collapse
Affiliation(s)
- Ping-Wing Lui
- Department of Anesthesiology, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan.
| | | |
Collapse
|
33
|
Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 2004; 15:415-36. [PMID: 15056450 DOI: 10.1016/j.nbd.2003.11.015] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/03/2003] [Accepted: 11/14/2003] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability, and at present, there is no universally accepted treatment. The functional decline following SCI is contributed to both direct mechanical injury and secondary pathophysiological mechanisms that are induced by the initial trauma. These mechanisms initially involve widespread haemorrhage at the site of injury and necrosis of central nervous system (CNS) cellular components. At later stages of injury, the cord is observed to display reactive gliosis. The actions of astrocytes as well as numerous other cells in this response create an environment that is highly nonpermissive to axonal regrowth. Also manifesting important effects is the immune system. The early recruitment of neutrophils and at later stages, macrophages to the site of insult cause exacerbation of injury. However, at more chronic stages, macrophages and recruited T helper cells may potentially be helpful by providing trophic support for neuronal and non-neuronal components of the injured CNS. Within this sea of injurious mechanisms, the oligodendrocytes appear to be highly vulnerable. At chronic stages of SCI, a large number of oligodendrocytes undergo apoptosis at sites that are distant to the vicinity of primary injury. This leads to denudement of axons and deterioration of their conductive abilities, which adds significantly to functional decline. By indulging into the molecular mechanisms that cause oligodendrocyte apoptosis and identifying potential targets for therapeutic intervention, the prevention of this apoptotic wave will be of tremendous value to individuals living with SCI.
Collapse
Affiliation(s)
- Christos Profyris
- Motor Neuron Disease and Paralysis Laboratory, Neural Injury and Repair Group, The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord 2003; 41:610-9. [PMID: 14569262 DOI: 10.1038/sj.sc.3101512] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN In vitro study on the effects of mycophenolate mofetil (MMF) on isolated human monocytes and endothelial cells. OBJECTIVES Haematogenous macrophages play an essential role in the development of secondary damage following spinal cord injury (SCI), and there is evidence that the use of immunosuppressants such as MMF can reduce monocyte invasion and neuronal damage. SETTING University Hospital for Orthopaedic Surgery, Frankfurt am Main, Germany. METHODS The effects of MMF on the adhesion of human monocytes to human umbilical vein endothelial cells (HUVEC), monocyte binding to immobilised E-selectin, and monocyte expression of intercellular adhesion molecule (ICAM)-1, sialyl Lewis X (sLeX) and major histocompatibility complex (MHC)-II were studied. The binding of monocytes to E-selectin was examined by using purified and immobilised E-selectin fusion protein. Adhesion molecule expression was investigated by flow cytometry. RESULTS The binding of monocytes to HUVEC was significantly reduced by 30.1% after treatment of monocytes with MMF (10 microg/ml), whereas the pretreatment of HUVEC with MMF did not result in significant changes in monocyte adhesion. MMF forcefully inhibited monocyte binding to immobilised E-selectin by 55.7%. Furthermore, MMF significantly inhibited the upregulation of ICAM-1- and MHC-II-expression on monocytes stimulated with either lipopolysaccharide or interferon-gamma, whereas the expression of sLeX was not impaired. Toxic effects were excluded by propidium-iodide staining and measurement of fluorescein-diacetate metabolism. CONCLUSION MMF can downregulate important monocytic adhesion molecules and inhibits monocyte adhesion to endothelial cells, thus indicating that treatment with MMF could be beneficial after SCI. SPONSORSHIP This study was supported by the DFG (Ha 2721/1-3), the Paul und Ursula Klein-Stiftung and the Stiftung Friedrichsheim.
Collapse
Affiliation(s)
- B A Glomsda
- University Hospital for Orthopaedic Surgery Friedrichsheim, Frankfurt am Main, Germany
| | | | | |
Collapse
|
35
|
Abstract
Traumatic CNS injury is one of the most important health issues in our society and is a risk to all athletes, both in competitive and recreational sports. Our understanding of the pathophysiology has improved tremendously in the last 20 years. This progress has led to the identification of several possible treatments for improving outcome following spinal cord injury and traumatic brain injury. As no panacea exists, improvements in experimental models have empowered researchers in their search for novel therapeutic strategies.
Collapse
Affiliation(s)
- David O Okonkwo
- Department of Neuroscience, University of Virginia, PO Box 800212, Charlottesville, VA 22908-0212, USA.
| | | |
Collapse
|
36
|
Suzuki-Yamamoto T, Toida K, Watanabe K, Ishimura K. Immunocytochemical localization of prostaglandin F synthase II in the rat spinal cord. Brain Res 2003; 969:27-35. [PMID: 12676361 DOI: 10.1016/s0006-8993(02)04244-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin F synthase has at least two isozymes, i.e. prostaglandin F synthase I and II. Recently, we demonstrated immunocytochemically that prostaglandin F synthase I was localized in neuronal dendrites and somata, and in endothelial cells of blood vessels in the whole area of rat spinal cord. In the present study, we immunocytochemically localized prostaglandin F synthase II in ependymal cells and tanycytes surrounding the central canal and in endothelial cells of blood vessels, but not in any neuronal elements at all segmental levels of the rat spinal cord. Immunoelectron microscopy and confocal laser scanning microscopy confirmed these findings and further revealed that strong immunoreactivity was found in the basal processes of the tanycytes. Our present and recent studies using antibodies against the two isozymes of prostaglandin F synthase clearly indicated that they were localized differentially in ependymal (prostaglandin F synthase II) and neuronal elements (prostaglandin F synthase I), but were co-localized in blood vessels in the rat spinal cord. The distinct localization of the two isozymes suggests that prostaglandin F(2) has different transcellular biological actions via different cell groups.
Collapse
Affiliation(s)
- T Suzuki-Yamamoto
- Department of Anatomy and Cell Biology, The University of Tokushima, School of Medicine, Kuramoto, 770-8503, Tokushima, Japan.
| | | | | | | |
Collapse
|
37
|
Ju WK, Neufeld AH. Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. J Comp Neurol 2002; 452:392-9. [PMID: 12355421 DOI: 10.1002/cne.10400] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostaglandins, synthesized by cyclooxygenase (COX), regulate diverse neurophysiological actions such as regulation of autonomic responses, transmission of pain, generation of fever, control of sleep-wake cycle, synaptic signaling, and cross-talk between neurons and glia in the central nervous system. Although prostaglandins have been widely studied in the anterior segment tissues of the eye, relatively little is known about prostaglandins in the neural retina. By using immunohistochemistry, we have compared the cellular expression and localization of COX-1 and COX-2 in the normal mouse, rat, and human retina. In the normal mouse retina, COX-1 immunoreactivity is present in the outer segments of photoreceptor cells, horizontal cells, microglia, retinal ganglion cells, and displaced amacrine cells. In the normal rat retina, COX-1 immunoreactivity is present in microglia, retinal ganglion cells, and displaced amacrine cells. In the normal human retina, COX-1 immunoreactivity is present in microglia, astrocytes, retinal ganglion cells, and displaced amacrine cells. In the normal mouse and rat retina, COX-2 immunoreactivity is present in processes of the outer plexiform layer and in certain amacrine cells and retinal ganglion cells. In the normal human retina, COX-2 immunoreactivity is only present in processes of the outer plexiform layer. These results suggest that prostaglandins, synthesized by COX-1 or COX-2, may contribute to normal physiological and homeostatic functions in the retina.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine. St. Louis, Missouri 63110, USA
| | | |
Collapse
|
38
|
Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002; 8:390-6. [PMID: 12127725 DOI: 10.1016/s1471-4914(02)02383-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Advances in our understanding of the synthesis, regulation and function of prostanoids have led to a new appreciation of their actions in health and disease. Prostanoid synthesis is essential for the generation of inflammatory pain and this depends not only on prostanoid production at the site of inflammation, but also on the actions of prostanoids synthesized within the central nervous system (CNS). Moreover, central prostanoid synthesis is controlled both by neural and humoral signals, the latter being a novel form of input to the CNS. Diverse compounds that act along the pathway of prostanoid synthesis and action, both in the periphery and in the CNS, might provide increased benefit for treating inflammatory pain hypersensitivity and its associated sickness syndrome, with a reduced risk of adverse effects.
Collapse
Affiliation(s)
- Tarek A Samad
- Neural Plasticity Research Group, Dept of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | | |
Collapse
|
39
|
Ma W, Du W, Eisenach JC. Role for both spinal cord COX-1 and COX-2 in maintenance of mechanical hypersensitivity following peripheral nerve injury. Brain Res 2002; 937:94-9. [PMID: 12020867 DOI: 10.1016/s0006-8993(02)02593-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effectiveness of non-steroidal anti-inflammatory drugs (NSAIDs) in treating neuropathic pain caused by nerve injury has been controversial. In the present study, 4 weeks following partial sciatic nerve ligation, a single intrathecal injection of the cyclooxygenase (COX)-1 preferring inhibitor ketorolac (50 microg) significantly attenuated tactile allodynia for 6 days. The COX-2 preferring inhibitor, NS-398 (60 microg) significantly reversed tactile allodynia 2 h following injection but this anti-allodynic effect did not last greater than 24 h. Surprisingly, the non-selective COX inhibitor, piroxicam (60 microg) was without effect. These data agree with previous studies suggesting that spinal prostaglandin synthesis is important in the maintenance of hypersensitivity states following nerve injury. They differ from results in other models by suggesting that both COX isoenzymes are important in this spinal process, and for the first time demonstrate a remarkably long duration of action from a single intrathecal injection of ketorolac. Inhibition of spinal COX may be an important mechanism of action in treating some patients with neuropathic pain following peripheral nerve injury.
Collapse
Affiliation(s)
- Weiya Ma
- Pain Mechanisms Laboratory, Department of Anesthesiology and Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009, USA.
| | | | | |
Collapse
|
40
|
Hurley SD, Olschowka JA, O'Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 2002; 19:1-15. [PMID: 11852973 DOI: 10.1089/089771502753460196] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenase (COX) is the obligate, rate-limiting enzyme for the conversion of arachidonic acid into prostaglandins. Two COX enzymes have been identified: a constitutively expressed COX-1 and an inducible, highly regulated COX-2. Widely used to treat chronic inflammatory disorders, COX inhibitors have shown promise in attenuating inflammation associated with brain injury. However, the use of COX inhibition in the treatment of brain injury has met with mixed success. This review summarizes our current understanding of COX expression in the central nervous system and the effects of COX inhibitors on brain injury. Three major targets for COX inhibition in the treatment brain injury have been identified. These are the cerebrovasculature, COX-2 expression by vulnerable neurons, and the neuroinflammatory response. Evidence suggests that given the right treatment paradigm, COX inhibition can influence each of these three targets. Drug interactions and general considerations for administrative paradigms are also discussed. Although therapies targeted to specific prostaglandin species, such as PGE2, might prove more ameliorative for brain injury, at the present time non-specific COX inhibitors and COX-2 specific inhibitors are readily available to researchers and clinicians. We believe that COX inhibition will be a useful, ameliorative adjunct in the treatment of most forms of brain injury.
Collapse
Affiliation(s)
- Sean D Hurley
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
41
|
Olsen MK, Roberds SL, Ellerbrock BR, Fleck TJ, McKinley DK, Gurney ME. Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Ann Neurol 2001; 50:730-40. [PMID: 11761470 DOI: 10.1002/ana.1252] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations of copper,zinc-superoxide dismutase (cu,zn SOD) are found in patients with a familial form of amyotrophic lateral sclerosis. When expressed in transgenic mice, mutant human cu,zn SOD causes progressive loss of motor neurons with consequent paralysis and death. Expression profiling of gene expression in SOD1-G93A transgenic mouse spinal cords indicates extensive glial activation coincident with the onset of paralysis at 3 months of age. This is followed by activation of genes involved in metal ion regulation (metallothionein-I, metallothionein-III, ferritin-H, and ferritin-L) at 4 months of age just prior to end-stage disease, perhaps as an adaptive response to the mitochondrial destruction caused by the mutant protein. Induction of ferritin-H and -L gene expression may also limit iron catalyzed hydroxyl radical formation and consequent oxidative damage to lipids, proteins, and nucleic acids. Thus, glial activation and adaptive responses to metal ion dysregulation are features of disease in this transgenic model of familial amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M K Olsen
- Genomics Research Unit, Pharmacia Corporation, Kalamazoo, MI, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001; 24:254-64. [PMID: 11586110 DOI: 10.1097/00002826-200109000-00002] [Citation(s) in RCA: 518] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a devastating and common neurologic disorder that has profound influences on modern society from physical, psychosocial, and socioeconomic perspectives. Accordingly, the present decade has been labeled the Decade of the Spine to emphasize the importance of SCI and other spinal disorders. Spinal cord injury may be divided into both primary and secondary mechanisms of injury. The primary injury, in large part, determines a given patient's neurologic grade on admission and thereby is the strongest prognostic indicator. However, secondary mechanisms of injury can exacerbate damage and limit restorative processes, and hence, contribute to overall morbidity and mortality. A burgeoning body of evidence has facilitated our understanding of these secondary mechanisms of injury that are amenable to pharmacological interventions, unlike the primary injury itself. Secondary mechanisms of injury encompass an array of perturbances and include neurogenic shock, vascular insults such as hemorrhage and ischemia-reperfusion, excitotoxicity, calcium-mediated secondary injury and fluid-electrolyte disturbances, immunologic injury, apoptosis, disturbances in mitochondrion function, and other miscellaneous processes. Comprehension of secondary mechanisms of injury serves as a basis for the development and application of targeted pharmacological strategies to confer neuroprotection and restoration while mitigating ongoing neural injury. The first article in this series will comprehensively review the pathophysiology of SCI while emphasizing those mechanisms for which pharmacologic therapy has been developed, and the second article reviews the pharmacologic interventions for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|