1
|
Wang S, Wang K, Chen X, Chen D, Lin S. Autoimmune thyroid disease and myasthenia gravis: a study bidirectional Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1310083. [PMID: 38405140 PMCID: PMC10884276 DOI: 10.3389/fendo.2024.1310083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Background Previous studies have suggested a potential association between AITD and MG, but the evidence is limited and controversial, and the exact causal relationship remains uncertain. Objective Therefore, we employed a Mendelian randomization (MR) analysis to investigate the causal relationship between AITD and MG. Methods To explore the interplay between AITD and MG, We conducted MR studies utilizing GWAS-based summary statistics in the European ancestry. Several techniques were used to ensure the stability of the causal effect, such as random-effect inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was evaluated by calculating Cochran's Q value. Moreover, the presence of horizontal pleiotropy was investigated through MR-Egger regression and MR-PRESSO. Results The IVW method indicates a causal relationship between both GD(OR 1.31,95%CI 1.08 to 1.60,P=0.005) and autoimmune hypothyroidism (OR: 1.26, 95% CI: 1.08 to 1.47, P =0.002) with MG. However, there is no association found between FT4(OR 0.88,95%CI 0.65 to 1.18,P=0.406), TPOAb(OR: 1.34, 95% CI: 0.86 to 2.07, P =0.186), TSH(OR: 0.97, 95% CI: 0.77 to 1.23, P =0.846), and MG. The reverse MR analysis reveals a causal relationship between MG and GD(OR: 1.50, 95% CI: 1.14 to 1.98, P =3.57e-3), with stable results. On the other hand, there is a significant association with autoimmune hypothyroidism(OR: 1.29, 95% CI: 1.04 to 1.59, P =0.019), but it is considered unstable due to the influence of horizontal pleiotropy (MR PRESSO Distortion Test P < 0.001). MG has a higher prevalence of TPOAb(OR: 1.84, 95% CI: 1.39 to 2.42, P =1.47e-5) positivity and may be linked to elevated TSH levels(Beta:0.08,95% CI:0.01 to 0.14,P =0.011), while there is no correlation between MG and FT4(Beta:-9.03e-3,95% CI:-0.07 to 0.05,P =0.796). Conclusion AITD patients are more susceptible to developing MG, and MG patients also have a higher incidence of GD.
Collapse
Affiliation(s)
- Suijian Wang
- Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University, Shantou, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaohong Chen
- Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University, Shantou, China
| | - Daiyun Chen
- Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University, Shantou, China
| | - Shaoda Lin
- Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University, Shantou, China
| |
Collapse
|
2
|
Markow MB, Ren D, Andrews A, DiFazio M. Isolated Unilateral Ptosis in a 5-year-old Boy. Pediatr Rev 2022; 43:721-723. [PMID: 36450634 DOI: 10.1542/pir.2020-004176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | | | - Alex Andrews
- Division of Neurology, Children's National Hospital, Washington, DC
| | - Marc DiFazio
- Division of Neurology, Children's National Hospital, Washington, DC
| |
Collapse
|
3
|
[Thymic hyperplasia: A study of 46 cases]. Ann Pathol 2021; 41:544-548. [PMID: 34674894 DOI: 10.1016/j.annpat.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Thymic hyperplasia presents as an anterior mediastinal mass and poses important diagnostic and therapeutic challenge. Two types of thymic hyperplasia are described: true hyperplasia and follicular hyperplasie. Literature data are peculiar concerning both entities. We aimed to describe the clinical and microscopic characteristics of thymic hyperplasia through a single institution experience during an 11-year-period. METHODS Thymic hyperplasia diagnosed during the period between 2009 and 2020 were included. RESULTS In all, 46 thymic hyperplasias were diagnosed. The 46 patients consisted in 33 women and 13 men with a mean age of 30 years. Microscopic diagnosis concluded to a follicular hyperplasia in 12 cases and a true thymic hyperplasia in 34 cases. The diagnosis of true thymic hyperplasia posed a diagnostic challenge with an involuted thymus in 1 case and a thymolipoma in 1 case. The confrontation with the clinical data allowed retaining the diagnosis. CONCLUSION The diagnosis of thymic hyperplasia is based on microscopic features. The confrontation with clinical data and the measurements of the thymus according to the age allow to retain the diagnosis in most challenging cases.
Collapse
|
4
|
Weis CA, Schalke B, Ströbel P, Marx A. Challenging the current model of early-onset myasthenia gravis pathogenesis in the light of the MGTX trial and histological heterogeneity of thymectomy specimens. Ann N Y Acad Sci 2018; 1413:82-91. [DOI: 10.1111/nyas.13563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Berthold Schalke
- Department of Neurology, University Hospital Regensburg; University of Regensburg; Regensburg Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen; University of Göttingen; Göttingen Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
5
|
Ehsan S, Amirzargar A, Yekaninejad MS, Mahmoudi M, Mehravar S, Moradi B, Nafissi S. Association of HLA class II (DRB1, DQA1, DQB1) alleles and haplotypes with myasthenia gravis and its subgroups in the Iranian population. J Neurol Sci 2015; 359:335-342. [PMID: 26671138 DOI: 10.1016/j.jns.2015.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 11/20/2022]
Abstract
Heterogenic pattern of HLA associations with myasthenia gravis (MG) among different ethnicities and also among different MG subgroups has been the subject of debate in large series of many studies. One hundred and sixty Iranian MG patients were investigated for HLA class II (DRB1, DQA1, DQB1) associations compared to two hundred healthy controls from the same ethnic population. DRB1*11 DQA1*0501 DQB1*0301 haplotype was found to be protective for total (ocular plus generalized) MG (Pc=0.005, OR=0.49) and generalized MG (Pc=0.008, OR=0.49). DRB1*04 DQA1*0301 DQB1*0302 haplotype (Pc=0.03, OR=2.25) was predisposing for anti-acetylcholine receptor (AChR) antibody-positive MG, while DRB1*16 DQA1*0102 DQB1*05 (Pc=0.013, OR=4.28) was predisposing for anti-muscle specific tyrosine kinase (MuSK) antibody-positive MG. There was also a trend of positive association for DRB1*14 DQA1*0104 DQB1*05 haplotype with MuSK-positive MG (Pc=0.054, OR=3.97). Among other MG subgroups and with less significance, DRB1*0101 DQA1*0101 DQB1*05 haplotype (P=0.016, OR=3.68) had positive association with pure ocular MG, and DRB1*03 DQA1*0501 DQB1*0201 haplotype (P=0.024) had negative association with thymomatous MG. This study highlights the importance of appropriate MG subgrouping according to clinical and paraclinical characteristics in HLA studies among MG patients.
Collapse
Affiliation(s)
- Soroush Ehsan
- Iranian Center for Neurological Research, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences. Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center (RRC), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehravar
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Batoul Moradi
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences. Tehran, Iran
| | - Shahriar Nafissi
- Iranian Center for Neurological Research, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Marx A, Porubsky S, Belharazem D, Saruhan-Direskeneli G, Schalke B, Ströbel P, Weis CA. Thymoma related myasthenia gravis in humans and potential animal models. Exp Neurol 2015; 270:55-65. [PMID: 25700911 DOI: 10.1016/j.expneurol.2015.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany.
| | - Stefan Porubsky
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany
| | - Güher Saruhan-Direskeneli
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey.
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, D-93042 Regensburg, Germany.
| | - Philipp Ströbel
- Institute of Pathology, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany.
| |
Collapse
|
7
|
Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12:875-84. [DOI: 10.1016/j.autrev.2013.03.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
8
|
Thiruppathi M, Rowin J, Li Jiang Q, Sheng JR, Prabhakar BS, Meriggioli MN. Functional defect in regulatory T cells in myasthenia gravis. Ann N Y Acad Sci 2013; 1274:68-76. [PMID: 23252899 DOI: 10.1111/j.1749-6632.2012.06840.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forkhead box P3 (FOXP3) is a transcription factor necessary for the function of regulatory T cells (T(reg) cells). T(reg) cells maintain immune homeostasis and self-tolerance and play an important role in the prevention of autoimmune disease. Here, we discuss the role of T(reg) cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in T(reg) cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules, such as FOXP3 on isolated T(reg) cells, and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte macrophage-colony-stimulating factor (GM-CSF) enhanced the suppressive function of T(reg) cells and upregulated FOXP3 expression. These findings indicate a clinically relevant T(reg) cell-intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target.
Collapse
Affiliation(s)
- Muthusamy Thiruppathi
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kauling ALC, de Almeida MCS, Locks GDF, Brunharo GM. Myasthenia gravis: two case reports and review of the literature. Rev Bras Anestesiol 2011; 61:748-63. [PMID: 22063376 DOI: 10.1016/s0034-7094(11)70084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/21/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Myasthenia gravis (MG) is an autoimmune neurologic disease that affects the postsynaptic portion of the neuromuscular junction. It represents a challenge for anesthesiologists due to the diversity of disease manifestations and possibility of postoperative respiratory complications. The objective of this study was to demonstrate the importance of adequate monitoring of the neuromuscular blockade (NMB) due to the multiple presentations of MG. CONTENTS In this paper we report two cases of patients with MG. The first patient presented with the classical sensitivity to the neuromuscular blocker (NMB) and the second had a similar response to that of a normal patient. The literature review will be restricted to disease characteristics, while the description of its pathophysiology will focus on its reactions to NMB. CONCLUSIONS We suggest that, due to the multiple presentation and treatment of MG, neuromuscular transmission monitors are fundamental when using NMB.
Collapse
|
10
|
Mao ZF, Yang LX, Mo XA, Qin C, Lai YR, He NY, Li T, Hackett ML. Frequency of autoimmune diseases in myasthenia gravis: a systematic review. Int J Neurosci 2010; 121:121-9. [PMID: 21142828 DOI: 10.3109/00207454.2010.539307] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The course of myasthenia gravis (MG) may get complicated by the development of other autoimmune diseases. Estimates of the frequency of autoimmune diseases will help inform patients and physicians, direct health policy discussion, provide etiologic clues, and optimize the management of MG. However, the frequency of autoimmune diseases in people with MG is still uncertain. A systematic search for English language studies was conducted by MEDLINE and EMBASE from 1960 through 2010. Incidence studies and case series of all MG subtypes with information about autoimmune diseases were included; 25 studies met the inclusion criteria. Although there was considerable heterogeneity, the pooled estimate of the coexisting autoimmune diseases in MG was 13% (95% confidence interval, 12%-14%). Autoimmune thyroid disease seems to occur more frequently than other autoimmune conditions in MG patients. Heterogeneity in study estimates could be explained by ascertainment bias and case mix. Furthermore, autoimmune diseases occurred significantly more often in females and anti-acetylcholine receptor seropositive MG patients. Patients with MG have an increased frequency of coexisting autoimmune diseases. Autoimmune diseases seem to occur more often in female and seropositive MG patients. Further research is needed to expand our understanding of these associations.
Collapse
Affiliation(s)
- Zhi-Feng Mao
- Department of Neurology, Third Affiliated Hospital, Guangxi Medical University, Nanning, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Marx A, Willcox N, Leite MI, Chuang WY, Schalke B, Nix W, Ströbel P. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity 2010; 43:413-27. [PMID: 20380583 DOI: 10.3109/08916930903555935] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Paraneoplastic autoimmune diseases associate occasionally with small cell lung cancers and gynecologic tumors. However, myasthenia gravis (MG) occurs in at least 30% of all patients with thymomas (usually present at MG diagnosis). These epithelial neoplasms almost always have numerous admixed maturing polyclonal T cells (thymocytes). This thymopoiesis-and export of mature CD4(+)T cells-particularly associates with MG, though there are rare/puzzling exceptions in apparently pure epithelial WHO type A thymomas. Other features potentially leading to inefficient self-tolerance induction include defective epithelial expression of the autoimmune regulator (AIRE) gene and/or of major histocompatibility complex class II molecules in thymomas, absence of myoid cells, failure to generate FOXP3(+) regulatory T cells, and genetic polymorphisms affecting T-cell signaling. However, the strong focus on MG/neuromuscular targets remains unexplained and suggests some biased autoantigen expression, T-cell selection, or autoimmunization within thymomas. There must be further clues in the intriguing serological and cellular parallels in some patients with late-onset MG but without thymomas-and in others with AIRE mutations-and in the contrasts with early-onset MG, as discussed here.
Collapse
Affiliation(s)
- A Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, D-68135 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Acquired myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction in which patients experience fluctuating skeletal muscle weakness that often affects selected muscle groups preferentially. The target of the autoimmune attack in most cases is the skeletal muscle acetylcholine receptor (AChR), but in others, non-AChR components of the neuromuscular junction, such as the muscle-specific receptor tyrosine kinase, are targeted. The pathophysiological result is muscle endplate dysfunction and consequent fatigable muscle weakness. Clinical presentations vary substantially, both for anti-AChR positive and negative MG, and accurate diagnosis and selection of effective treatment depends on recognition of less typical as well as classic disease phenotypes. Accumulating evidence suggests that clinical MG subgroups might respond differently to treatment. In this Review, we provide current information about the epidemiology, immunopathogenesis, clinical presentations, diagnosis, and treatment of MG, including emerging therapeutic strategies.
Collapse
Affiliation(s)
- Matthew N Meriggioli
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
13
|
Willcox N, Leite MI, Kadota Y, Jones M, Meager A, Subrahmanyam P, Dasgupta B, Morgan BP, Vincent A. Autoimmunizing mechanisms in thymoma and thymus. Ann N Y Acad Sci 2008; 1132:163-73. [PMID: 18567866 DOI: 10.1196/annals.1405.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autoimmunizing mechanisms are very hard to study in humans, so we have focused on vital clues in thymomas and hyperplastic thymuses in myasthenia gravis (MG). According to our multi-step hypothesis: thymic epithelial cells (TEC) present epitopes from the isolated acetylcholine receptor (AChR) subunits they express, and autoimmunize helper T cells; subsequently, these evoke "early antibodies" that then attack rare thymic myoid cells expressing intact AChR; in the resulting germinal centers, autoantibodies diversify to recognize native AChR. We have studied: 1) thymomas, to identify autoimmunizing cell types, focusing on IFN-alpha, against which many patients have high titer autoantibodies, as in another highly informative autoimmune syndrome. Although IFN-alpha is much easier to label than the sparse and delicate AChR subunits, we have not yet located obviously autoimmunizing micro-environments; 2) hyperplastic MG thymuses, where we find (a) upregulation of complement receptors and regulators on hyperplastic TEC and deposition of activated C3b complement component on them, (b) absence of complement regulators from almost all myoid cells, indicating vulnerability to attack, and (c) deposition of C3b, and even of the terminal membrane attack complex, especially on the myoid cells close to the infiltrating germinal centers. The changes are very similar in over 50% of the so-called seronegative patients with generalized MG (SNMG) but without detectable autoantibodies against AChR or MuSK, consistently with other evidence that they belong to the spectrum of AChR-seropositive MG. Together, moreover, our findings implicate both myoid cells and TEC in autoimmunization, and thus strongly support our hypothesis.
Collapse
Affiliation(s)
- Nick Willcox
- Neuroscience Group, Weatherall Institute for Molecular Medicine, University of Oxford, England, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Leite MI, Jones M, Ströbel P, Marx A, Gold R, Niks E, Verschuuren JJGM, Berrih-Aknin S, Scaravilli F, Canelhas A, Morgan BP, Vincent A, Willcox N. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:893-905. [PMID: 17675582 PMCID: PMC1959483 DOI: 10.2353/ajpath.2007.070240] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In early-onset myasthenia gravis, the thymus contains lymph node-type infiltrates with frequent acetylcholine receptor (AChR)-specific germinal centers. Our recent evidence/two-step hypothesis implicates hyperplastic medullary thymic epithelial cells (expressing isolated AChR subunits) in provoking infiltration and thymic myoid cells (with intact AChR) in germinal center formation. To test this, we screened for complement attack in a wide range of typical generalized myasthenia patients. Regardless of the exact serology, thymi with sizeable infiltrates unexpectedly showed patchy up-regulation of both C5a receptor and terminal complement regulator CD59 on hyperplastic epithelial cells. These latter also showed deposits of activated C3b complement component, which appeared even heavier on infiltrating B cells, macrophages, and especially follicular dendritic cells. Myoid cells appeared particularly vulnerable to complement; few expressed the early complement regulators CD55, CD46, or CR1, and none were detectably CD59(+). Indeed, when exposed to infiltrates, and especially to germinal centers, myoid cells frequently labeled for C1q, C3b (25 to 48%), or even the terminal C9, with some showing obvious damage. This early/persistent complement attack on both epithelial and myoid cells strongly supports our hypothesis, especially implicating exposed myoid cells in germinal center formation/autoantibody diversification. Remarkably, the similar changes place many apparent AChR-seronegative patients in the same spectrum as the AChR-seropositive patients.
Collapse
Affiliation(s)
- Maria I Leite
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F, Mantegazza R. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:129-39. [PMID: 15972959 PMCID: PMC1603452 DOI: 10.1016/s0002-9440(10)62960-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thymic abnormalities are present in approximately 80% of myasthenia gravis (MG) patients, and the thymus seems to be the main site of autosensitization to the acetylcholine receptor. In view of findings that the innate immune system can generate an autoimmune response, we studied the expression of Toll-like receptors (TLRs) 2 to 5, key components of innate immunity signaling pathways, in 37 thymuses from patients with autoimmune MG. TLR4 mRNA levels were significantly greater in thymitis (hyperplasia with diffuse B-cell infiltration) and involuted thymus than in germinal center hyperplasia and thymoma. By immunohistochemistry and confocal microscopy, cells positive for TLR4 protein were rarely detected in thymoma. However, in thymitis TLR4 protein was mostly found on epitheliomorphic (cytokeratin-positive) cells located in close association with clusters of acetylcholine receptor-positive myoid cells in thymic medulla and also at the borders between cortical and medullary areas. B cells were never TLR4-positive. TLR4 protein was also present in remnant tissue of involuted thymus. This is the first finding of a possible link between innate immunity and MG. We speculate that in a subgroup of MG patients, an exogenous or endogenous danger signal may activate the innate immune system and give rise to TLR4-mediated mechanisms contributing to autoimmunity.
Collapse
Affiliation(s)
- Pia Bernasconi
- Department of Neurology IV, Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Matsumoto MY, Matsuo H, Oka T, Fukudome T, Hayashi K, Shiraishi H, Motomura M, Shibuya N, Ayabe H. Thymic myoid cells as a myasthenogenic antigen and antigen-presenting cells. J Neuroimmunol 2004; 150:80-7. [PMID: 15081251 DOI: 10.1016/j.jneuroim.2004.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 12/12/2003] [Accepted: 01/23/2004] [Indexed: 11/29/2022]
Abstract
We investigated immune property of a myoid cell line, established from Fisher rat thymus. Immunization of syngeneic rats with the myoid cells induced anti-rat acetylcholine receptor (AChR). Implantation of them into the thymus failed to induce typical thymic pathology of human myasthenia gravis (MG) or anti-AChR responses. We also demonstrated that the myoid cells were able to present exogenous antigens to T cells and induce antigen-specific T cell proliferation. These results suggest that myoid cells have the potential antigenicity to induce anti-AChR and the functions of antigen-presenting cells, but their expansion in the thymus may not directly cause MG.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoantibodies/biosynthesis
- Autoantigens/administration & dosage
- Autoantigens/immunology
- Autoantigens/metabolism
- Cell Differentiation/immunology
- Cell Line
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Injections, Intralymphatic
- Injections, Subcutaneous
- Muscle, Skeletal/cytology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/transplantation
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Rats
- Rats, Inbred F344
- Receptors, Cholinergic/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/transplantation
Collapse
Affiliation(s)
- Megumi Y Matsumoto
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shiono H, Roxanis I, Zhang W, Sims GP, Meager A, Jacobson LW, Liu JL, Matthews I, Wong YL, Bonifati M, Micklem K, Stott DI, Todd JA, Beeson D, Vincent A, Willcox N. Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann N Y Acad Sci 2003; 998:237-56. [PMID: 14592881 DOI: 10.1196/annals.1254.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have studied responses in thymoma patients to interferon-alpha and to the acetylcholine receptor (AChR) in early-onset myasthenia gravis (EOMG), seeking clues to autoimmunizing mechanisms. Our new evidence implicates a two-step process: (step 1) professional antigen-presenting cells and thymic epithelial cells prime AChR-specific T cells; then (step 2) thymic myoid cells subsequently provoke germinal center formation in EOMG. Our unifying hypothesis proposes that AChR epitopes expressed by neoplastic or hyperplastic thymic epithelial cells aberrantly prime helper T cells, whether generated locally or infiltrating from the circulation. These helper T cells then induce antibody responses against linear epitopes that cross-react with whole AChR and attack myoid cells in the EOMG thymus. The resulting antigen-antibody complexes and the recruitment of professional antigen-presenting cells increase the exposure of thymic cells to the infiltrates and provoke local germinal center formation and determinant spreading. Both these and the consequently enhanced heterogeneity and pathogenicity of the autoantibodies should be minimized by early thymectomy.
Collapse
Affiliation(s)
- H Shiono
- Neuroscience Group, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marx A, Müller-Hermelink HK, Ströbel P. The Role of Thymomas in the Development of Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:223-36. [PMID: 14592880 DOI: 10.1196/annals.1254.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymic pathology occurs in 80-90% of myasthenia gravis patients. Significant associations between different thymic alterations and clinical findings are discussed. To highlight peculiarities in thymoma-associated myasthenia gravis, we briefly review myasthenia gravis associated with thymic lymphofollicular hyperplasia (TFH) and thymic atrophy.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany.
| | | | | |
Collapse
|