1
|
Ghorbanzadeh B, Azizolahi B, Behmanesh MA, Forouhar P, Foroughinia A, Nabizadeh M. The role of opioid receptors in the anti-allodynic effect of local montelukast in a rat chronic constriction injury of sciatic nerve model. Neurosci Lett 2025; 851:138165. [PMID: 39956314 DOI: 10.1016/j.neulet.2025.138165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Neuropathic pain is a debilitating and chronic condition that results from damage to the peripheral and central nervous system. The inflammatory mediators such as leukotrienes, and opioidergic pathways are involved in the neuropathic pain generation. The present study aimed to determine the effect of local montelukast and the role of opioid receptors using chronic constriction injury (CCI) of the sciatic nerve in rats. Our results showed that montelukast (1-10 mcg/paw) or morphine (1 and 10 mcg/paw) attenuated the mechanical and cold allodynia at day 7 and 14 post-CCI. The effect of montelukast was attenuated by local pre-treatment with naloxone (20 mcg/paw), and was augmented by an ineffective dose of morphine. Also, the histopathological investigation showed the peripheral anti-inflammatory effect of montelukast in the sciatic-injured paw. Moreover, spinal cord mu-opioid receptor mRNA decreased, and kappa-opioid receptor mRNA increased in rats 14 days after CCI by RT-PCR analyses. However, the administration of montelukast on days 7 and 14 after CCI reversed the observed changes in opioid receptors. Our findings suggested that local montelukast can attenuate neuropathic pain, at least in part, through the peripheral opioid receptors, peripheral anti-inflammatory, and also spinal mu- and kappa-opioid receptors. So, local montelukast could be a novel therapeutic strategy for alleviating neuropathic pain.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Acetates/therapeutic use
- Acetates/administration & dosage
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Quinolines/administration & dosage
- Male
- Rats
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Morphine/pharmacology
- Sciatic Nerve/injuries
- Sciatic Nerve/drug effects
- Receptors, Opioid/metabolism
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Leukotriene Antagonists/pharmacology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats, Sprague-Dawley
- RNA, Messenger/metabolism
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Rats, Wistar
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Behnam Azizolahi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Parsa Forouhar
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Foroughinia
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohadeseh Nabizadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
2
|
Jafal NM, Stoleru S, Zugravu A, Orban C, Popescu M, Marin RC, Fulga IG. The Analgesic Effect of Morphine on Peripheral Opioid Receptors: An Experimental Research. J Crit Care Med (Targu Mures) 2024; 10:337-344. [PMID: 39829726 PMCID: PMC11740696 DOI: 10.2478/jccm-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Opioids represent one of the key pillars in postoperative pain management, but their use has been associated with a variety of serious side effects. Thus, it is crucial to investigate the timing and course of opioid administration in order to ensure a best efficacy to side-effect profile. The aim of our article was to investigate the analgesic effects of locally administered morphine sulfate (intraplantar) in a carrageenan-induced inflammation model in rats. After carrageenan administration, the rats were divided into 10 equal groups and were injected with either morphine 5 mg/kg or 0.9% saline solution at different time intervals, depending on the assigned group. The analgesic effect was assessed through thermal stimulation. Our results showed that paw withdrawal time was significantly higher in rats treated with morphine compared to those in the control group 9.18 ± 3.38 compared to 5.14 ± 2.21 seconds, p=0.012). However, differences were more pronounced at certain time intervals post-carrageenan administration (at 180 minutes compared to 360 minutes, p=0.003 and at 180 minutes compare to 1440 minutes p<0.001), indicating that efficacy varies depending on the timing of treatment. In conclusion, our findings support the hypothesis that locally administered morphine may alleviate pain under inflammatory conditions and underscores the importance of considering treatment timing when evaluating the analgesic effect.
Collapse
Affiliation(s)
| | - Smaranda Stoleru
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Aurelian Zugravu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Orban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Popescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ion-Gigel Fulga
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
3
|
Fernández Martin MT, Alvarez Lopez S, Aldecoa Alvarez-Santullano C. Role of adjuvants in regional anesthesia: A systematic review. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:97-107. [PMID: 36813032 DOI: 10.1016/j.redare.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/22/2023]
Abstract
The combination of drugs and routes of administration produces a synergistic effect, and one of the most important components of multimodal analgesic strategies are, therefore, nerve blocks for pain management. The effect of a local anaesthetic can be prolonged by administering an adjuvant. In this systematic review, we included studies on adjuvants associated with local anaesthetics in peripheral nerve blocks published in the last 5 years in order to evaluate their effectiveness. The results were reported according to the PRISMA guidelines. The 79 studies selected using our criteria showed a clear prevalence of dexamethasone (n=24) and dexmedetomidine (n=33) over other adjuvants. Different meta-analyses comparing adjuvants suggest that dexamethasone administered perineurally achieves superior blockade with fewer side effects than dexmedetomidine. Based on the studies reviewed, we found moderate evidence to recommend the use of dexamethasone as an adjuvant to peripheral regional anaesthesia in surgeries that can cause moderate to severe pain.
Collapse
Affiliation(s)
- M T Fernández Martin
- Servicio de Anestesiología y Reanimación, Hospital Universitario Río Hortega, Valladolid, Spain.
| | - S Alvarez Lopez
- Servicio de Anestesiología y Reanimación, Hospital Abente y Lago, A Coruña, Spain
| | | |
Collapse
|
4
|
Fullerton EF, Karom MC, Streicher JM, Young LJ, Murphy AZ. Age-Induced Changes in µ-Opioid Receptor Signaling in the Midbrain Periaqueductal Gray of Male and Female Rats. J Neurosci 2022; 42:6232-6242. [PMID: 35790399 PMCID: PMC9374133 DOI: 10.1523/jneurosci.0355-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENT Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
5
|
Shafi A, Berry AJ, Sumnall H, Wood DM, Tracy DK. Synthetic opioids: a review and clinical update. Ther Adv Psychopharmacol 2022; 12:20451253221139616. [PMID: 36532866 PMCID: PMC9747888 DOI: 10.1177/20451253221139616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
The term 'opioids' refers to both the natural compounds ('opiates') which are extracted from the opium poppy plant (Papaver somniferum) and their semi-synthetic and synthetic derivatives. They all possess relatively similar biochemical profiles and interact with the opioid receptors within the human body to produce a wide range of physiological effects. They have historically been used for medicinal purposes, their analgesic and sedative effects, and in the management of chronic and severe pain. They have also been used for non-medicinal and recreational purposes to produce feelings of relaxation, euphoria and well-being. Over the last decade, the emergence of an illegal market in new synthetic opioids has become a major global public health issue, associated with a substantial increase in unintentional overdoses and drug-related deaths. Synthetic opioids include fentanyl, its analogues and emerging non-fentanyl opioids. Their popularity relates to changes in criminal markets, pricing, potency, availability compared to classic opioids, ease of transport and use, rapid effect and lack of detection by conventional testing technologies. This article expands on our previous review on new psychoactive substances. We now provide a more in-depth review on synthetic opioids and explore the current challenges faced by people who use drugs, healthcare professionals, and global public health systems.
Collapse
Affiliation(s)
- Abu Shafi
- South West London and Saint George's Mental Health NHS Trust, London, UK
| | - Alex J Berry
- Division of Psychiatry, University College London, London, UK
| | | | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK; Clinical Toxicology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Derek K Tracy
- West London NHS Trust, Trust Headquarters, 1 Armstrong Way, Southall UB2 4SD, UK
| |
Collapse
|
6
|
Zhao G, Shi Y, Gong C, Liu T, Nan W, Ma L, Wu Z, Da C, Zhou K, Zhang H. Curcumin Exerts Antinociceptive Effects in Cancer-Induced Bone Pain via an Endogenous Opioid Mechanism. Front Neurosci 2021; 15:696861. [PMID: 34539332 PMCID: PMC8446608 DOI: 10.3389/fnins.2021.696861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer pain is one of the main complications in advanced cancer patients, and its management is still challenging. Therefore, there is an urgent need to develop novel pharmacotherapy for cancer pain. Several natural products have attracted the interest of researchers. In previous studies, curcumin has proved to exhibit antitumor, antiviral, antioxidant, anti-inflammatory, and analgesic effects. However, the analgesic mechanism of curcumin has not been elucidated. Thus, in this study, we aimed to elucidate the antinociceptive potency and analgesic mechanism of curcumin in cancer-induced bone pain. Our results showed that consecutive curcumin treatment (30, 60, 120 mg/kg, i.p., twice daily for 11 days) produced significant analgesic activity, but had no effect on the progress of the bone cancer pain. Notably, pretreatment with naloxone, a non-selective opioid receptor antagonist, markedly reversed the antinociceptive effect induced by curcumin. Moreover, in primary cultured rat dorsal root ganglion (DRG) neurons, curcumin significantly up-regulated the expression of proopiomelanocortin (Pomc) and promoted the release of β-endorphin and enkephalin. Furthermore, pretreatment with the antiserum of β-endorphin or enkephalin markedly attenuated curcumin-induced analgesia in cancer-induced bone pain. Our present study, for the first time, showed that curcumin attenuates cancer-induced bone pain. The results also suggested that stimulation of expression of DRG neurons β-endorphin and enkephalin mediates the antinociceptive effect of curcumin in pain hypersensitivity conditions.
Collapse
Affiliation(s)
- Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongqiang Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoyang Gong
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Taicong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Wei Nan
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoming Da
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Kaisheng Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach. Pharmaceuticals (Basel) 2021; 14:ph14090868. [PMID: 34577568 PMCID: PMC8468947 DOI: 10.3390/ph14090868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Pain is one of the most disabling symptoms of several clinical conditions. Neurobiologically, it is classified as nociceptive, inflammatory, neuropathic and dysfunctional. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are conventionally prescribed for the treatment of pain. Long-term administration of opioids results in the loss of analgesic efficacy, leading to increased dosage, tolerance, and addiction as the main drawbacks of their use, while the adverse effects of NSAIDs include gastric ulcer formation, intestinal bleeding, acute kidney injury, and hepatotoxicity. Lactoferrin is an iron-binding, anti-inflammatory glycoprotein that displays analgesic activities associated, in part, by interacting with the low-density lipoprotein receptor-related protein (LRP), which may result in the regulation of the DAMP-TRAF6-NFκB, NO-cGMP-ATP K+-sensitive channel and opioid receptor signaling pathways. This review summarizes and discusses for the first time the analgesic effects of lactoferrin and its presumable mechanisms based on pre-clinical trials. Given its anti-nociceptive and anti-inflammatory properties, lactoferrin may be used as an adjunct to enhance the efficacy and to decrease the tolerogenic effects of canonical therapeutic drugs prescribed for pain treatment.
Collapse
|
8
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
9
|
Gonçalves WA, Ferreira RCM, Rezende BM, Mahecha GAB, Gualdron M, de Macedo FHP, Duarte IDG, Perez AC, Machado FS, Cruz JS, Romero TRL. Endogenous opioid and cannabinoid systems modulate the muscle pain: A pharmacological study into the peripheral site. Eur J Pharmacol 2021; 901:174089. [PMID: 33826922 DOI: 10.1016/j.ejphar.2021.174089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
The participation of the peripheral opioid and cannabinoid endogenous systems in modulating muscle pain and inflammation has not been fully explored. Thus, the aim of this study was to investigate the involvement of these endogenous systems during muscular-tissue hyperalgesia induced by inflammation. Hyperalgesia was induced by carrageenan injection into the tibialis anterior muscles of male Wistar rats. We padronized an available Randal-Sellito test adaptation to evaluate nociceptive behavior elicited by mechanical insult in muscles. Western blot analysis was performed to evaluate the expression levels of opioid and cannabinoid receptors in the dorsal root ganglia. The non-selective opioid peptide receptor antagonist (naloxone) and the selective mu opioid receptor MOP (clocinnamox) and kappa opioid receptor KOP (nor-binaltorphimine) antagonists were able to intensify carrageenan-induced muscular hyperalgesia. On the other hand, the selective delta opioid receptor (DOP) antagonist (naltrindole) did not present any effect on nociceptive behavior. Moreover, the selective inhibitor of aminopeptidases (Bestatin) provoked considerable dose-dependent analgesia when intramuscularly injected into the hyperalgesic muscle. The CB1 receptor antagonist (AM251), but not the CB2 receptor antagonist (AM630), intensified muscle hyperalgesia. All irreversible inhibitors of anandamide hydrolase (MAFP), the inhibitor for monoacylglycerol lipase (JZL184) and the anandamide reuptake inhibitor (VDM11) decreased carrageenan-induced hyperalgesia in muscular tissue. Lastly, MOP, KOP and CB1 expression levels in DRG were baseline even after muscular injection with carrageenan. The endogenous opioid and cannabinoid systems participate in peripheral muscle pain control through the activation of MOP, KOP and CB1 receptors.
Collapse
Affiliation(s)
- William A Gonçalves
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Renata C M Ferreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Barbara M Rezende
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - German A B Mahecha
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Melissa Gualdron
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Flávio H P de Macedo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Andrea C Perez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
10
|
Dias Quintão JL, Reis Gonzaga AC, Galdino G, Lima Romero TR, Silva J, Lemos V, Campolina-Silva GH, Aparecida de Oliveira C, Bohórquez Mahecha G, Gama Duarte I. TNF-α, CXCL-1 and IL-1 β as activators of the opioid system involved in peripheral analgesic control in mice. Eur J Pharmacol 2021; 896:173900. [PMID: 33545158 DOI: 10.1016/j.ejphar.2021.173900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Tissue injury results in the release of inflammatory mediators, including a cascade of nociceptive substances, which contribute to development of hyperalgesia. In addition, during this process endogenous analgesic substances are also peripherally released with the aim of controlling the hyperalgesia. Thus, the present study aimed to investigate whether inflammatory mediators TNF-α, IL-1β, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the opioid system. Thus, male Swiss mice and the paw withdrawal test were used. All substances were injected by the intraplantar route. Carrageenan, TNF-α, CXCL-1, IL1-β, NE and PGE2 induced hyperalgesia. Selectives μ (clocinamox), δ (naltrindole) and κ (norbinaltorphimine, nor-BNI) and non-selective (naloxone) opioid receptor antagonists potentiated the hyperalgesia induced by carrageenan, TNF-α, CXCL-1 and IL1-β. In contrast, when the enzyme N-aminopeptidase involved in the degradation of endogenous opioid peptides was inhibited by bestatin, the hyperalgesia was significantly reduced. In addition, the western blotting assay indicated that the expression of the opioid δ receptor was increased after intraplantar injection of carrageenan. The data obtained in this work corroborate the hypothesis that TNF-α, CXCL-1 and IL-β cause, in addition to hyperalgesia, the release of endogenous substances such as opioid peptides, which in turn exert endogenous control over peripheral inflammatory pain.
Collapse
Affiliation(s)
- Jayane Laís Dias Quintão
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Amanda Cristina Reis Gonzaga
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Giovane Galdino
- Motricity Sciences Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - JosianeFernandes Silva
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - VirgíniaSoares Lemos
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Gabriel Henrique Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - Cleida Aparecida de Oliveira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - GermánArturo Bohórquez Mahecha
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil
| | - IgorDimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31.270-100, Belo Horizonte, Brazil.
| |
Collapse
|
11
|
Finn A, Agren G, Bjellerup P, Vedin I, Lundeberg T. Production and characterization of antibodies for the specific determination of the opioid peptide Met5-Enkephalin-Arg6-Phe7. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 64:49-56. [PMID: 15025428 DOI: 10.1080/00365510410004119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endogenous opioids serve as modulators of neuroendocrine and immune system processes, the investigation of which calls for high-specificity radioimmunoassays (RIAs). This study focuses on the development and use of a specific radioimmunoassay for the opioid peptide Met5-Enkephalin-Arg6-Phe7 (MEAP), the C-terminus part of proenkephalin A. Antibodies were raised in four rabbits and investigated in terms of titre, avidity and specificity, followed by finding ideal conditions for these antibodies in RIA. MEAP concentrations were determined in crude extracts of rat hypothalamus, dorsal root ganglia, adrenals and ankle using this standardized assay after an oxidizing process. At reverse-phase high-pressure liquid chromatography (HPLC), the position of immunoreactive material from rat hypothalamus eluted as two peaks out of which one was compatible with that of synthetic MEAP. All rabbits exhibited individual differences in relative immune response and time of its onset. The avidity constant was 10 times higher on a molar basis for ab 4108 compared with ab 4182. There was no cross-reactivity for ab 4182 to related peptides, such as enkephalins and dynorphin B, and negligible background values for ab 4108. The relative levels ofimmunoreactive MEAP from the CNS versus peripheral tissues contrasted in accordance with current knowledge. It is suggested that reports with RIA results should include characterization of antibodies, extraction procedures, standard curves and compositions of buffers. Furthermore, the results should preferably be expressed in relation to total protein content.
Collapse
Affiliation(s)
- A Finn
- Peptide Laboratory, Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
13
|
Joukal M, Vulchanova L, Huffman C, Dubový P, Honda CN. Peripheral Deltorphin II Inhibits Nociceptors Following Nerve Injury. Front Pharmacol 2020; 11:1151. [PMID: 32848761 PMCID: PMC7411131 DOI: 10.3389/fphar.2020.01151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Clinical and preclinical studies have revealed that local administration of opioid agonists into peripheral tissue attenuates inflammatory pain. However, few studies have examined whether peripherally restricted opioids are effective in reducing mechanical allodynia and hyperalgesia that usually follows nerve injury. The aim of the present study was to determine whether the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic pain conditions is depressed by direct activation of delta opioid receptors (DORs) on their peripheral terminals. A murine model of peripheral neuropathic pain was induced with a spared nerve (tibial) injury, in which mice survived 7 or 28 days after surgery before electrophysiological testing began. Control groups comprised naïve and sham-operated animals. An ex vivo preparation of mouse plantar skin with attached tibial nerve was used to examine electrophysiologically the effects of the selective DOR agonist, deltorphin II, on the response properties of individual cutaneous C-fiber nociceptors. In contrast to naïve and sham-operated animals, deltorphin II induced an inhibition of the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic conditions. The effects of deltorphin II were concentration-dependent and prevented by pretreatment with naltrindole indicating DOR-mediated inhibitory effects of deltorphin II. Our results provide the first direct evidence for expression of functional DORs on mechanical nociceptors innervating skin in an animal model of neuropathic pain.
Collapse
Affiliation(s)
- Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Cecilia Huffman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Christopher N Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
15
|
Komla E, Stevens DL, Zheng Y, Zhang Y, Dewey WL, Akbarali HI. Experimental Colitis Enhances the Rate of Antinociceptive Tolerance to Morphine via Peripheral Opioid Receptors. J Pharmacol Exp Ther 2019; 370:504-513. [PMID: 31248978 PMCID: PMC6806632 DOI: 10.1124/jpet.119.256941] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/24/2019] [Indexed: 01/21/2023] Open
Abstract
Opioids are highly effective analgesics, however, their therapeutic use is limited by adverse effects that include respiratory depression, dependence, and tolerance. Inflammation has been implicated as a significant driver for the development of tolerance to opioids. Recent studies show that chronic morphine in mice results in gut microbial dysbiosis and inflammation in the colon. In the present study, we examined whether colonic inflammation results in tolerance to the antinociceptive effects of morphine. Colonic inflammation was induced in mice by intrarectal administration of 2,4,6-trinitro-benzene sulfonic acid. The development of antinociceptive tolerance was determined by warm-water tail-immersion assay in mice implanted with 25-, 50-, or 75-mg morphine pellet. Colonic inflammation significantly enhanced the rate at which tolerance developed in each cohort of chronic morphine-treated mice. At the lowest dose of morphine pellet (25 mg), antinociceptive tolerance only developed in the presence of colonic inflammation, whereas in 50- and 75-mg pelleted mice, tolerance developed faster in the inflamed animals than in the noninflamed mice. The enhanced antinociceptive tolerance was attenuated with daily administration of peripheral opioid receptor antagonist, 6β-N-heterocyclic-substituted naltrexamine derivative [17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'pyridyl)acetamido]morphinan (NAP)], irrespective of colonic inflammation. Collectively, these findings show that the rate of tolerance to morphine antinociception is exaggerated in the presence of colonic inflammation, and tolerance is prevented by a peripheral μ-opioid receptor antagonist. These studies suggest a peripheral component to the development of antinociceptive tolerance to opioids. Furthermore, peripherally selective opioid antagonists may be useful adjuncts in opioid-based pain management. SIGNIFICANCE STATEMENT: This study supports the notion that inflammation influences the development of antinociceptive tolerance to chronic morphine exposure. We found that, in the presence of colonic inflammation, the rate of development of tolerance to the antinociceptive effects of morphine increased. We also found that treatment with a peripheral opioid receptor antagonist prevented morphine antinociceptive tolerance. Increasing opioid intake during an inflammatory state would result in decreased analgesia and enhanced analgesic tolerance, which puts patients with inflammatory bowel diseases, inflammatory joint diseases, and sickle cell anemia at risk for heavy opioid use.
Collapse
Affiliation(s)
- Essie Komla
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - David L Stevens
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Yi Zheng
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Yan Zhang
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - William L Dewey
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I Akbarali
- Departments of Pharmacology and Toxicology (E.K., D.L.S., W.L.D., H.I.A.) and Medicinal Chemistry (Y.Zhe., Y.Zha.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Liu S, Liu L, Jiang Y, Zhou J, Hu H, Wu Z, Long H, Lai W. Effect of endomorphin-2 on orofacial pain induced by orthodontic tooth movement in rats. Eur J Oral Sci 2019; 127:408-416. [PMID: 31365768 DOI: 10.1111/eos.12640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endomorphin-2 demonstrates potent antinociceptive effects in various pain models. The objectives of the present study were to explore the role of endomorphin-2 in the modulation of orofacial pain induced by orthodontic tooth movement in rats. An orthodontic pain model was established in male Sprague-Dawley rats by ligating coiled springs to mimic orthodontic force (40 g). On days 0, 1, 3, 5, 7, and 14 following orthodontic tooth movement, bite force was recorded as a surrogate measure of orthodontic pain. Ipsilateral trigeminal ganglia, trigeminal nucleus caudalis, and periodontal tissues were harvested for immunostaining. Endomorphin-2, endomorphin-2 + naloxone (a non-selective opioid receptor antagonist), naloxone, and saline were injected into trigeminal ganglia and periodontal tissues to explore the role of endomorphin-2 on orthodontic pain. The results showed that following orthodontic tooth movement, endomorphin-2 expression levels in trigeminal ganglia were elevated on days 1, 3, 5, and 7. Orthodontic pain levels were increased on days 1, 3, and 5. The administration of endomorphin-2 into both trigeminal ganglia and periodontal tissues alleviated orthodontic pain. Moreover, the effects of endomorphin-2 could be blocked by naloxone completely in trigeminal ganglia but only partially in periodontal tissues. Therefore, endomorphin-2 plays an important role in the modulation of orthodontic pain both centrally and peripherally, probably through different pathways.
Collapse
Affiliation(s)
- Sixin Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanlu Jiang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huimin Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhouqiang Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Liu B, Liu Y, Li N, Zhang J, Zhang X. Oxycodone regulates incision-induced activation of neurotrophic factors and receptors in an acute post-surgery pain rat model. J Pain Res 2018; 11:2663-2674. [PMID: 30464584 PMCID: PMC6214342 DOI: 10.2147/jpr.s180396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Oxycodone, which is one of the most commonly used opiates in postoperative pain management, has a different affinity for μ-opioid receptors (MOR), κ-opioid receptors (KOR), and δ-opioid receptors (DOR). Accumulating research has suggested that neurotrophins (NTs) are involved in opioid analgesia. In the current exploratory study, we aimed to investigate the underlying mechanisms of the analgesic effects of oxycodone on post-surgery pain in rats and to determine whether neurotrophic factors and receptors were involved in these effects. Methods Mechanical and thermal sensitivity tests were used to evaluate the validity of the postoperative pain rat model and to determine the analgesic effect of oxycodone. Quantitative PCR and Western blot analysis were used to detect the changes in the expression of three types of opioid receptors and NTs and their high-affinity receptors in the spinal cord after surgery and oxycodone administration. Results Oxycodone showed an analgesic effect on plantar incision (PI)-induced hyperalgesia, especially thermal hyperalgesia. We detected an obvious increase in MOR expression levels but insignificant changes in KOR and DOR levels in the spinal cord after PI. Moreover, we found that oxycodone was able to reverse the increased expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor (TrK) A, and TrkB and the decreased expression of NT-3 and TrkC, after PI. Pretreatment with oxycodone also altered the expression of these mediators. Conclusion Based on the results, possible underlying mechanisms for the antinociceptive properties of oxycodone in acute postoperative pain include the activation of MOR downstream signaling and the regulation of NTs and receptor expression through attenuation of glial activation and fortification of antinociceptive mediators in the spinal cord. This study may provide new insights into the molecular mechanisms underlying the analgesic action of oxycodone.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
18
|
Ceredig RA, Pierre F, Doridot S, Alduntzin U, Salvat E, Yalcin I, Gaveriaux-Ruff C, Barrot M, Massotte D. Peripheral delta opioid receptors mediate duloxetine antiallodynic effect in a mouse model of neuropathic pain. Eur J Neurosci 2018; 48:2231-2246. [PMID: 30059180 DOI: 10.1111/ejn.14093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Peripheral delta opioid (DOP) receptors are essential for the antiallodynic effect of the tricyclic antidepressant nortriptyline. However, the population of DOP-expressing cells affected in neuropathic conditions or underlying the antiallodynic activity of antidepressants remains unknown. Using a mouse line in which DOP receptors were selectively ablated in cells expressing Nav1.8 sodium channels (DOP cKO), we established that these DOP peripheral receptors were mandatory for duloxetine to alleviate mechanical allodynia in a neuropathic pain model based on sciatic nerve cuffing. We then examined the impact of nerve cuffing and duloxetine treatment on DOP-positive populations using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP). Eight weeks postsurgery, we observed a reduced proportion of DOPeGFP-positive small peptidergic sensory neurons (calcitonin gene-related peptide (CGRP) positive) in dorsal root ganglia and a lower density of DOPeGFP-positive free nerve endings in the skin. These changes were not present in nerve-injured mice chronically treated with oral duloxetine. In addition, increased DOPeGFP translocation to the plasma membrane was observed in neuropathic conditions but not in duloxetine-treated neuropathic mice, which may represent an additional level of control of the neuronal activity by DOP receptors. Our results therefore established a parallel between changes in the expression profile of peripheral DOP receptors and mechanical allodynia induced by sciatic nerve cuffing.
Collapse
Affiliation(s)
- Rhian Alice Ceredig
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Florian Pierre
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Stéphane Doridot
- Centre National de la Recherche Scientifique, Chronobiotron, Strasbourg, France
| | - Unai Alduntzin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France.,Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Diniz DA, Petrocchi JA, Navarro LC, Souza TC, Castor MGME, Duarte IDG, Romero TRL. Serotonin induces peripheral antinociception via the opioidergic system. Biomed Pharmacother 2018; 97:1434-1437. [DOI: 10.1016/j.biopha.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022] Open
|
20
|
Luan YH, Wang D, Yu Q, Chai XQ. Action of β-endorphin and nonsteroidal anti-inflammatory drugs, and the possible effects of nonsteroidal anti-inflammatory drugs on β-endorphin. J Clin Anesth 2017; 37:123-128. [PMID: 28235500 DOI: 10.1016/j.jclinane.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/02/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022]
Abstract
This study aimed to review research on the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on β-endorphin. NSAIDs are commonly used as anti-inflammatory and analgesic drugs. They are well known for inducing peripheral analgesia by inhibiting cyclooxygenase (COX). However, an increasing number of studies have shown that NSAIDs have an analgesic effect not only in the periphery but also at the center. It means that a central analgesic mechanism of the action of NSAIDs exists besides the peripheral mechanism, and the central mechanism likely involves β-endorphin. β-Endorphin is one of the most prominent endogenous peptides, existing in the hypophysis cerebri and hypothalamus. It plays an irreplaceable role in the central and peripheral analgesia in the human body mainly through three mechanisms including three parts, the spinal cord, the supraspinal cord, and peripheries. β-Endorphin plays an important role in the development of hyperalgesia. However, the specific signal transduction pathways between prostaglandin E2 or NSAIDs and β-endorphin are still not quite clear. Whether NSAIDs can lead to the increased content of β-endorphin in all patients after any operation needs further investigation. Further studies should determine the optimal dose when NSAIDs and opioid drugs are used together, and also explore the existence of one NSAID that has the potential to replace the traditional opioid drugs and can achieve adequate analgesia.
Collapse
Affiliation(s)
- Yuan-Hang Luan
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China
| | - Qi Yu
- Department of PET CT, the 105th Hospital of Chinese People's Liberation Army, Hefei 230001, China
| | - Xiao-Qing Chai
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China.
| |
Collapse
|
21
|
Kulyk VB, Volkova TN, Kryshtal’ OA. Mechanisms of Expression and Release of Endogenous Opioids in Peripheral Tissues. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Correlation of Serum β-Endorphin and the Quality of Life in Allergic Rhinitis. DISEASE MARKERS 2016; 2016:2025418. [PMID: 27647946 PMCID: PMC5014966 DOI: 10.1155/2016/2025418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022]
Abstract
Background. Allergic rhinitis (AR) significantly impairs the quality of life of the patients; however, a questionnaire alone is an insufficient and subjective measure of this condition. Obtaining an objective clinical assessment of the level of impairment will be valuable for its treatment. β-Endorphin is one of the most important mediators of both mental state and specific immunity. Thus, we investigated the possibility of using β-endorphin as a biomarker for evaluating the impairment level in AR. Methods. This study included 48 patients with AR and 32 healthy volunteers. The serum β-endorphin level was determined by enzyme immunoassay, and the serum-specific IgE and total IgE levels were determined by immunoblot assay. The Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) was used to assess the impairment level in the symptom duration. Results. The β-endorphin concentration was significantly decreased in AR patients compared to the healthy controls (p = 0.000, p < 0.05). There was significant negative correlation between the impairment level and serum β-endorphin level (correlation coefficient: −0.468; p = 0.001; p < 0.05), but there was no association between the serum β-endorphin and total IgE levels (p = 0.947, p > 0.05). Conclusion. β-Endorphin is a systemic biomarker that has the potential to assess the impairment level in AR and may therefore be a novel therapeutic target for the treatment of AR.
Collapse
|
23
|
Mambretti EM, Kistner K, Mayer S, Massotte D, Kieffer BL, Hoffmann C, Reeh PW, Brack A, Asan E, Rittner HL. Functional and structural characterization of axonal opioid receptors as targets for analgesia. Mol Pain 2016; 12:12/0/1744806916628734. [PMID: 27030709 PMCID: PMC4994859 DOI: 10.1177/1744806916628734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. RESULTS Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. CONCLUSION MOPs are present and functional in the axonal membrane from naïve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.
Collapse
Affiliation(s)
- Egle M Mambretti
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Stefanie Mayer
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR, Strasbourg Cedex, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Carsten Hoffmann
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| |
Collapse
|
24
|
Suzuki K. Effects of exercise on antibody production. World J Immunol 2015; 5:160-166. [DOI: 10.5411/wji.v5.i3.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/18/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
In this review, we have focused on the effects of exercise on infection or antibody production. In the past, exercise immunologists largely focused on exercise and its effects on infection. Research on the effects of exercise on antibody response began in the 1970s with a primary focus on whether regular exercise helps to minimize the risk of infection. Positive results from these early studies indicated that exercise affects higher survival rate. Based on the results of these studies, researchers then investigated the exercise-induced elevation of plasma antibody levels. It has been suggested that exercise of moderate intensity could be a helpful and effective adjuvant for human health. Other studies have examined the effects of exercise on antibody-producing cells, and the levels of protection conferred by the produced antibodies. We have attempted to summarize the current understanding of exercise-induced elevations in plasma antibody levels. We also propose some future directions for investigating the relationship between exercise and antibody response.
Collapse
|
25
|
Yoshimura N, Oguchi T, Yokoyama H, Funahashi Y, Yoshikawa S, Sugino Y, Kawamorita N, Kashyap MP, Chancellor MB, Tyagi P, Ogawa T. Bladder afferent hyperexcitability in bladder pain syndrome/interstitial cystitis. Int J Urol 2015; 21 Suppl 1:18-25. [PMID: 24807488 DOI: 10.1111/iju.12308] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Bladder pain syndrome/interstitial cystitis is a disease with lower urinary tract symptoms, such as bladder pain and urinary frequency, which results in seriously impaired quality of life of patients. The extreme pain and urinary frequency are often difficult to treat. Although the etiology of bladder pain syndrome/interstitial cystitis is still not known, there is increasing evidence showing that afferent hyperexcitability as a result of neurogenic bladder inflammation and urothelial dysfunction is important to the pathophysiological basis of symptom development. Further investigation of the pathophysiology will lead to the effective treatment of patients with bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang YL, He XF, Shen YF, Yin XH, DU JY, Liang YI, Fang JQ. Analgesic roles of peripheral intrinsic met-enkephalin and dynorphin A in long-lasting inflammatory pain induced by complete Freund's adjuvant in rats. Exp Ther Med 2015; 9:2344-2348. [PMID: 26136984 DOI: 10.3892/etm.2015.2407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/17/2014] [Indexed: 11/05/2022] Open
Abstract
Previous studies have focused on strategies for pain relief based on the peripheral opioid system. However, little is known with regard to the profile of the peripheral opioid system in long-lasting inflammatory pain. In the current study, the intrinsic changes of the peripheral opioids were investigated in long-lasting inflammatory pain. A rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain was established. Paw swelling and thermal hyperalgesia (paw withdrawal latency, PWL) were analyzed until day 18 after the CFA injection. The levels of peripheral opioids and their upstream inducers, corticotrophin-releasing factor (CRF) and interleukin (IL)-1β, were measured, and validation experiments were performed using opioid receptor antagonists. Long-lasting inflammatory pain was successfully induced in the rats, as shown by the significantly increased paw swelling and decreased PWLs. On day 18 after the CFA injection, the IL-1β levels were significantly elevated, while CRF remained at a normal level in the paw inflammatory tissue. In addition, met-enkephalin (Met-ENK) and dynorphin A (DYN A) levels were significantly increased, while the β-endorphin level remained normal. Local intraplantar administration of δ- and κ-opioid receptor antagonists resulted in more substantial pain, but did not significantly affect the PWLs of the normal control rats. Therefore, the results indicated that the increased levels of local Met-ENK and DYN A in CFA-induced long-lasting inflammatory pain may be involved in peripheral intrinsic analgesia.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ya-Fang Shen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiao-Hu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jun-Ying DU
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Y I Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
27
|
Abstract
Painful sensation is a hallmark of microbe-induced inflammation. This inflammatory pain is downregulated a few days after infection by opioids locally released by effector T lymphocytes generated in response to microbe-derived antigens. This review focuses on the endogenous regulation of inflammatory pain associated with adaptive T-cell response and puts in perspective the clinical consequences of the opioid-mediated analgesic activity of colitogenic T lymphocytes in inflammatory bowel disease.
Collapse
|
28
|
Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung 2014; 61:241-60. [PMID: 25261940 DOI: 10.1556/amicr.61.2014.3.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
29
|
Asvadi NH, Morgan M, Herath HM, Hewavitharana AK, Shaw PN, Cabot PJ. Beta-endorphin 1-31 biotransformation and cAMP modulation in inflammation. PLoS One 2014; 9:e90380. [PMID: 24618600 PMCID: PMC3949714 DOI: 10.1371/journal.pone.0090380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
A large body of evidence now exists for the immune cell expression, production, and the release of beta-endorphin (BE 1–31) within inflamed tissue. The inflammatory milieu is characterised by increased acidity, temperature and metabolic activity. Within these harsh conditions BE 1–31 is even more susceptible to increased enzymatic degradation over that of plasma or other non-injured tissue. To elucidate the biotransformation pathways of BE 1–31 and provide an insight to the impact of inflamed tissue environments, BE 1–31 and three of its major N-terminal fragments (BE 1–11, BE 1–13 and BE 1–17) were incubated in inflamed tissue homogenates at pH 5.5 for 2 hrs. In addition, the potency of BE 1–31 and five main N – terminal fragments (BE 1–9, BE 1–11, BE 1–13, BE 1–17, BE 1–20) was assessed at mu-opioid receptors (MOR), delta-opioid receptors (DOR), and kappa-opioid receptors (KOR). Opioid receptor potency was investigated by examining the modulation of forskolin induced cAMP accumulation. The majority of the N-terminal fragment of BE 1–31 had similar efficacy to BE 1–31 at MOR. The shortest of the major N-terminal fragments (BE 1–9), had partial agonist activity at MOR but possessed the highest potency of all tested peptides at DOR. There was limited effect for BE 1–31 and the biotransformed peptides at KOR. Major N-terminal fragments produced within inflamed tissue have increased presence within inflamed tissue over that of the parent molecule BE 1–31 and may therefore contribute to BE 1–31 efficacy within disease states that involve inflammation.
Collapse
Affiliation(s)
| | - Michael Morgan
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Herath M. Herath
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - P. Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
30
|
Zambelli VO, Fernandes ACDO, Gutierrez VP, Ferreira JCB, Parada CA, Mochly-Rosen D, Cury Y. Peripheral sensitization increases opioid receptor expression and activation by crotalphine in rats. PLoS One 2014; 9:e90576. [PMID: 24594607 PMCID: PMC3942445 DOI: 10.1371/journal.pone.0090576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids.
Collapse
MESH Headings
- Analgesics, Opioid/isolation & purification
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Crotalus/metabolism
- Dinoprostone
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
- Hyperalgesia/genetics
- Hyperalgesia/immunology
- Male
- Peptides/isolation & purification
- Peptides/pharmacology
- Peptides/therapeutic use
- Rats
- Rats, Wistar
- Receptors, Opioid/agonists
- Receptors, Opioid/genetics
- Receptors, Opioid/immunology
Collapse
Affiliation(s)
| | | | | | | | - Carlos Amilcar Parada
- Departamento de Fisiologia e Biofísica, Instituto de Biociências (UNICAMP) Rua Monteiro Lobato, Cidade Universitária, Campinas, SP, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Yara Cury
- Laboratório Especial de Dor e Sinalização, Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
31
|
Iwaszkiewicz KS, Schneider JJ, Hua S. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 2013; 4:132. [PMID: 24167491 PMCID: PMC3807052 DOI: 10.3389/fphar.2013.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/04/2013] [Indexed: 01/25/2023] Open
Abstract
Mechanisms of endogenous pain control are significant. Increasing studies have clearly produced evidence for the clinical usefulness of opioids in peripheral analgesia. The immune system uses mechanisms of cell migration not only to fight pathogens but also to control pain and inflammation within injured tissue. It has been demonstrated that peripheral inflammatory pain can be effectively controlled by an interaction of immune cell-derived opioid peptides with opioid receptors on peripheral sensory nerve terminals. Experimental and clinical studies have clearly shown that activation of peripheral opioid receptors with exogenous opioid agonists and endogenous opioid peptides are able to produce significant analgesic and anti-inflammatory effects, without central opioid mediated side effects (e.g., respiratory depression, sedation, tolerance, dependence). This article will focus on the role of opioids in peripheral inflammatory conditions and the clinical implications of targeting peripheral opioid receptors.
Collapse
Affiliation(s)
- Katerina S Iwaszkiewicz
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | | | | |
Collapse
|
32
|
Shaik NA, Rao SS, Chiruvella S, Rao MS, Reddy SV. Effectiveness of butorphanol as an adjuvant to lidocaine for haematoma or periosteal block: A prospective, randomised, double blind study. Indian J Anaesth 2013; 57:150-5. [PMID: 23825814 PMCID: PMC3696262 DOI: 10.4103/0019-5049.111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The peripheral nerve endings carrying pain contains opiod receptors. Blocking these receptors during haematoma block or periosteal block may provide better analgesia. Aim: Evaluation of effectiveness and safety of butorphanol as an adjuvant to lidocaine for haematoma block. Settings and Design: This is a two centre, prospective, individually randomised, two group, parallel, double-blind clinical trial. Methods: In this study, 115 American society of anaesthesiologist grade I and II adult patients scheduled for closed reduction of fractures were randomly allocated into two groups; Group A received 1% lidocaine (2 mg/kg) where as Group B received 1% lidocaine (2 mg/kg) with butorphanol (0.02 mg/kg) during haematoma block. Pain was assessed before, during and after manipulation of fracture by using visual analogue scale (VAS 0-10). Onset time of block, time for first rescue analgesic, 24 hour analgesic requirement and sedation levels were noted. Statistical Analysis: Data analysed with the unpaired t-test with Welch correction assuming unequal variances and Fisher's exact test using Graph pad Prism 5.02 version. Results: Onset time of haematoma block was significantly less in the butorphanol group compared to the lidocaine group (P=0.0003). The mean time for first rescue analgesic was significantly higher and total analgesic requirement was significantly lower in the butorphanol group (P<0.0001). Mean VAS scores were lower and sedation scores were higher in the butorphanol group. Conclusions: Addition of butorphanol to lidocaine quickens onset of haematoma block, provides excellent post manipulation analgesia and decreases 24 hour total analgesic requirement without excessive sedation.
Collapse
Affiliation(s)
- Nawaz Ahmed Shaik
- Department of Anaesthesiology and Critical Care, Rajiv Gandhi Institute of Medical Sciences, Putlampalli, Kadapa, India
| | | | | | | | | |
Collapse
|
33
|
Fu LW, Longhurst JC. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 305:H76-85. [PMID: 23645463 DOI: 10.1152/ajpheart.00091.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T₂-T₅) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32-3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the responses of cardiac sympathetic afferent nerves to myocardial ischemia and ischemic mediators like ATP and bradykinin.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
34
|
van Loon J, de Grauw J, Brunott A, Weerts E, van Weeren P. Upregulation of articular synovial membrane μ-opioid-like receptors in an acute equine synovitis model. Vet J 2013; 196:40-6. [DOI: 10.1016/j.tvjl.2012.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 11/15/2022]
|
35
|
Donskow-Łysoniewska K, Majewski P, Brodaczewska K, Jóźwicka K, Doligalska M. Heligmosmoides polygyrus fourth stages induce protection against DSS-induced colitis and change opioid expression in the intestine. Parasite Immunol 2013; 34:536-46. [PMID: 22889318 DOI: 10.1111/pim.12003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Primary exposure of mice to the nematode Heligmosomoides polygyrus infection reduces inflammation in an experimental model of colitis. The aim of the present investigation was to evaluate whether the reduced inflammation provoked by H. polygyrus L4 larvae in BALB/c mice treated with dextran sulphate sodium is associated with changed expression of opioids in the small intestine and colon. Colitis was induced by 5% Dextran sulphate sodium (DSS) oral administration for 3 days before oral infection with 200 infective larvae (L3) H. polygyrus until the end of the experiment, 6 days post-infection. Clinical disease symptoms were monitored daily. The expressions of proopiomelanocortin POMC1, MOR1 (Oprm1) - opioid receptor and β-endorphin were determined by RT-PCR, Western blot and immunoassay, respectively, in the colon and small intestine of mice. RT-PCR analysis of colon tissues showed up-regulation of the expression of POMC and MOR1 opioid-dependent genes in mice with DSS-induced colitis. H. polygyrus L4 larvae inhibited DSS-induced colitis symptoms that were correlated with increased IL-1β, TNF-α, IL-6, myeloperoxidase (MPO) concentration, macrophages infiltration and MOR1, POMC and β-endorphin increased expression in the small intestine and inhibition of those in the colon.
Collapse
|
36
|
Yokoyama H, Oguchi T, Goins WF, Goss JR, Nishizawa O, de Groat WC, Wolfe D, Krisky DM, Glorioso JC, Yoshimura N. Effects of herpes simplex virus vector-mediated enkephalin gene therapy on bladder overactivity and nociception. Hum Gene Ther 2013; 24:170-80. [PMID: 23316929 DOI: 10.1089/hum.2011.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported the effects of herpes simplex virus (HSV) vector-mediated enkephalin on bladder overactivity and pain. In this study, we evaluated the effects of vHPPE (E1G6-ENK), a newly engineered replication-deficient HSV vector encoding human preproenkephalin (hPPE). vHPPE or control vector was injected into the bladder wall of female rats 2 weeks prior to the following studies. A reverse-transcription PCR study showed high hPPE transgene levels in L6 dorsal root ganglia innervating the bladder in the vHPPE group. The number of freezing behaviors, which is a nociceptive reaction associated with bladder pain, was also significantly lower in the vHPPE group compared with the control group. The number of L6 spinal cord c-fos-positive cells and the urinary interleukin (IL)-1β and IL-6 levels after resiniferatoxin (RTx) administration into the bladder of the vHPPE group were significantly lower compared with those of the control vector-injected group. In continuous cystometry, the vHPPE group showed a smaller reduction in intercontraction interval after RTx administration into the bladder. This antinociceptive effect was antagonized by naloxone hydrochloride. Thus, the HSV vector vHPPE encoding hPPE demonstrated physiological improvement in visceral pain induced by bladder irritation. Gene therapy may represent a potentially useful treatment modality for bladder hypersensitive disorders such as bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Belkowski JS, Briscoe T, Rogers TJ. Regulation of mu opioid receptor expression in developing T cells. J Neuroimmune Pharmacol 2012; 7:835-42. [PMID: 22926418 PMCID: PMC3518723 DOI: 10.1007/s11481-012-9396-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
We have previously reported that functionally active μ-opioid receptors (MOR) are constitutively expressed at relatively low levels by developing T cells in the thymus. However, very little is known about the regulation of MOR expression by immature T cells. In this report, we first attempted to determine the effect of T cell receptor-induced T cell activation on the expression of MOR. We activated T cells with either the combination of anti-CD3 and CD28, or with superantigen, and observed a substantial increase in MOR transcript expression. We also chose to examine the effect of cytokine-mediated T cell activation on the expression of this opioid receptor. We selected certain cytokines that play a role in T cell development and are known to be present at functional levels in the thymus gland. Our results show that interferon γ (IFNγ), IL-1β, and IL-2, and in particular transforming growth factor-β (TGFβ), all induced significant increases in MOR transcript expression. On the other hand, both TNFα and IL-7 exhibited much weaker effects on MOR expression. These results show that MOR expression by developing T cells is strongly regulated by several cytokines involved in T cell development in the thymus gland.
Collapse
Affiliation(s)
- Lily Zhang
- Center for Substance Abuse Research, Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
38
|
Yoshimura N, Miyazato M, Sasaki K, Yokoyama H, Oguchi T, Chancellor MB, Funahashi Y. Gene therapy for lower urinary tract dysfunction. Int J Urol 2012; 20:56-63. [DOI: 10.1111/j.1442-2042.2012.03226.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Naoki Yoshimura
- Department of Urology; University of Pittsburgh School of Medicine; Pittsburgh; Pennsylvania; USA
| | - Minoru Miyazato
- Department of Urology; University of Pittsburgh School of Medicine; Pittsburgh; Pennsylvania; USA
| | - Katsumi Sasaki
- Department of Urology; University of Pittsburgh School of Medicine; Pittsburgh; Pennsylvania; USA
| | - Hitoshi Yokoyama
- Department of Urology; University of Pittsburgh School of Medicine; Pittsburgh; Pennsylvania; USA
| | - Tomohiko Oguchi
- Department of Urology; University of Pittsburgh School of Medicine; Pittsburgh; Pennsylvania; USA
| | - Michael B Chancellor
- Department of Urology; Oakland University William Beaumont School of Medicine; Royal Oak; Michigan; USA
| | | |
Collapse
|
39
|
Abstract
BACKGROUND Neutrophils are one of the predominant immune cells initially migrating to surgical wound edges. They produce mediators both associated with supporting (interleukin [IL]-1β, C5a) and reducing (opioid peptides) pain. Studies demonstrate neutrophil depletion/blockade reduces nociceptive sensitization after nerve injury and carrageenan administration, but enhance sensitization in complete Freund's adjuvant inflammation. This research identifies the contribution of infiltrating neutrophils to incisional pain and inflammation. METHODS Antibody-mediated Gr1 neutrophil depletion preceded hind paw incisions. Sensitization to mechanical and thermal stimuli, effects on edema and local levels of IL-1β and C5a were measured. Local effects of C5a or IL-1 receptor antagonists PMX-53 and anakinra on sensitization after neutrophil depletion were examined. Groups of 4-8 mice were used. RESULTS Anti-Gr1 antibody depleted more than 90% of circulating and infiltrating skin neutrophils after incision. Neutrophil depletion did not change magnitude or duration of mechanical hypersensitivity in incised mice. However, paw edema was significantly reduced and heat hypersensitivity was slightly increased in depleted animals. In depleted animals IL-1β levels were half of controls 24 h after incision, whereas C5a levels were increased in both. Prominent IL-1β immunohistochemical staining of epidermis was seen in both groups. PMX-53 and anakinra reduced incisional mechanical and heat nociceptive sensitization to the same extent, regardless of neutrophil depletion. CONCLUSIONS Neutrophil-derived IL-1β and C5a do not appear to contribute critically to peri-incisional nociceptive signaling. Other sources of mediators, such as epidermal cells, may need to be considered. Controlling inflammatory activation of resident cells in epidermis/deeper structures may show therapeutic efficacy in reducing pain from surgical incisions.
Collapse
|
40
|
Djafarzadeh S, Vuda M, Takala J, Jakob SM. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes. PLoS One 2012; 7:e45195. [PMID: 23028840 PMCID: PMC3441687 DOI: 10.1371/journal.pone.0045195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.
Collapse
Affiliation(s)
- Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Madhusudanarao Vuda
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Martins DF, Bobinski F, Mazzardo-Martins L, Cidral-Filho FJ, Nascimento FP, Gadotti VM, Santos ARS. Ankle Joint Mobilization Decreases Hypersensitivity by Activation of Peripheral Opioid Receptors in a Mouse Model of Postoperative Pain. PAIN MEDICINE 2012; 13:1049-58. [DOI: 10.1111/j.1526-4637.2012.01438.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Braak B, Klooker TK, Wouters MM, Welting O, van der Loos CM, Stanisor OI, van Diest S, van den Wijngaard RM, Boeckxstaens GE. Mucosal immune cell numbers and visceral sensitivity in patients with irritable bowel syndrome: is there any relationship? Am J Gastroenterol 2012; 107:715-26. [PMID: 22488080 DOI: 10.1038/ajg.2012.54] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Repeated exposure to stress leads to mast cell degranulation, microscopic inflammation, and subsequent visceral hypersensitivity in animal models. To what extent this pathophysiological pathway has a role in patients with the irritable bowel syndrome (IBS) has not been properly investigated. The objective of this study was to assess the relationship between visceral hypersensitivity, microscopic inflammation, and the stress response in IBS. METHODS Microscopic inflammation of the colonic mucosa was evaluated by immunohistochemistry in 66 IBS patients and 20 healthy volunteers (HV). Rectal sensitivity was assessed by a barostat study using an intermittent pressure-controlled distension protocol. Salivary cortisol to a psychological stress was measured to assess the stress response. RESULTS Compared with HV, mast cells, T cells, and macrophages were decreased in IBS patients. Similarly, λ-free light chain (FLC)-positive mast cells were decreased but not immunoglobulin E (IgE)- and IgG-positive mast cells. There were no differences between hypersensitive and normosensitive IBS patients. No relation was found between any of the immune cells studied and the thresholds of discomfort, urge, first sensation, or IBS symptoms (e.g., abdominal pain, stool-related complaints, bloating). Finally, stress-related symptoms and the hypothalamic-pituitary-adrenal-axis response to stress were not correlated with the number of mast cells or the presence of visceral hypersensitivity. CONCLUSIONS Although the number of mast cells, macrophages, T cells, and λFLC-positive mast cells is decreased in IBS compared with HV, this is not associated with the presence of visceral hypersensitivity or abnormal stress response. Our data question the role of microscopic inflammation as an underlying mechanism of visceral hypersensitivity, but rather suggest dysregulation of the mucosal immune system in IBS.
Collapse
Affiliation(s)
- Breg Braak
- Department of Gastroenterology and Hepatology, AMC, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu YC, Berta T, Liu T, Tan PH, Ji RR. Acute morphine induces matrix metalloproteinase-9 up-regulation in primary sensory neurons to mask opioid-induced analgesia in mice. Mol Pain 2012; 8:19. [PMID: 22444868 PMCID: PMC3353172 DOI: 10.1186/1744-8069-8-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/25/2012] [Indexed: 01/08/2023] Open
Abstract
Background Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice. Results Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition. Conclusions Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular mechanisms (MMP-9 dependent and independent) control acute opioid-induced pronociceptive actions (anti-analgesia in the first several hours and hyperalgesia after 24 h). Targeting MMP-9 may improve acute opioid analgesia.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Al-Khrasani M, Lackó E, Riba P, Király K, Sobor M, Timár J, Mousa S, Schäfer M, Fürst S. The central versus peripheral antinociceptive effects of μ-opioid receptor agonists in the new model of rat visceral pain. Brain Res Bull 2012; 87:238-43. [DOI: 10.1016/j.brainresbull.2011.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
45
|
Rittner HL, Stein C. Involvement of cytokines, chemokines and adhesion molecules in opioid analgesia. Eur J Pain 2012; 9:109-12. [PMID: 15737796 DOI: 10.1016/j.ejpain.2004.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Tissue destruction is accompanied by an inflammatory reaction. The inflammatory reaction leads to activation of nociceptors and the sensation of pain. Several mediators are responsible for pain and hyperalgesia in inflammation including cytokines, chemokines, nerve growth factor as well as bradykinin, prostaglandins and ATP. Simulatenously however, analgesic mediators are secreted: opioid peptides, somatostatin, endocannabinoids and certain cytokines. Opioid peptides secreted from immune cells are so far the best studied peptides in peripheral inflammatory pain control. This system is hampered for example by anti-adhesion molecule treatment. Novel immunosuppressive drugs for treatment of autoimmune disease targetting cytokines, chemokines or adhesion molecules should therefore be evaluated for potential harmful effects on pain.
Collapse
Affiliation(s)
- H L Rittner
- Klinik für Anästhesiologie und Operative Intensivmedizin, Charité -- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | |
Collapse
|
46
|
Herath HMDR, Cabot PJ, Shaw PN, Hewavitharana AK. Study of beta endorphin metabolism in inflamed tissue, serum and trypsin solution by liquid chromatography-tandem mass spectrometric analysis. Anal Bioanal Chem 2012; 402:2089-100. [PMID: 22231512 DOI: 10.1007/s00216-011-5686-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Beta endorphin (β-END) is recognised as one of the most significant endogenous neuropeptides, responsible for a wide range of biological activities in the body. However, within the body β-END is exposed to hydrolysis by a variety of enzymes. In this study, we investigated the metabolism and fragmentation pattern of β-END in rat inflamed tissue, in rat serum and in trypsin solution. β-END (1-31)-rat was incubated at 37 °C in each matrix for different incubation times. The resultant fragments were separated using a C4 column and detected by mass spectrometry using total ion current mode. Structural information for the fragments was elucidated using tandem mass spectrometry. Incubation of β-END (1-31)-rat in trypsin solution and in rat serum resulted in 8 and 13 fragments, respectively. Incubation in inflamed rat paw tissue resulted in 22 fragments at pH 7.4 and 26 fragments at pH 5.5. Some of these fragments were common to both pH values. The degradation of β-END (1-31)-rat in inflamed tissue at pH 5.5 was faster than that at pH 7.4. Secondary fragmentation of some larger primary fragments was also observed in this study.
Collapse
Affiliation(s)
- H M D R Herath
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
47
|
Su TF, Zhang LH, Peng M, Wu CH, Pan W, Tian B, Shi J, Pan HL, Li M. Cannabinoid CB2 receptors contribute to upregulation of β-endorphin in inflamed skin tissues by electroacupuncture. Mol Pain 2011; 7:98. [PMID: 22177137 PMCID: PMC3281798 DOI: 10.1186/1744-8069-7-98] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electroacupuncture (EA) can produce analgesia by increasing the β-endorphin level and activation of peripheral μ-opioid receptors in inflamed tissues. Endogenous cannabinoids and peripheral cannabinoid CB2 receptors (CB2Rs) are also involved in the antinociceptive effect of EA on inflammatory pain. However, little is known about how peripheral CB2Rs interact with the endogenous opioid system at the inflammatory site and how this interaction contributes to the antinociceptive effect of EA on inflammatory pain. In this study, we determined the role of peripheral CB2Rs in the effects of EA on the expression of β-endorphin in inflamed skin tissues and inflammatory pain. RESULTS Inflammatory pain was induced by injection of complete Freund's adjuvant into the left hindpaw of rats. Thermal hyperalgesia was tested with a radiant heat stimulus, and mechanical allodynia was quantified using von Frey filaments. The mRNA level of POMC and protein level of β-endorphin were quantified by real-time PCR and Western blotting, respectively. The β-endorphin-containing keratinocytes and immune cells in the inflamed skin tissues were detected by double-immunofluorescence labeling. The CB2R agonist AM1241 or EA significantly reduced thermal hyperalgesia and mechanical allodynia, whereas the selective μ-opioid receptor antagonist β-funaltrexamine significantly attenuated the antinociceptive effect produced by them. AM1241 or EA significantly increased the mRNA level of POMC and the protein level of β-endorphin in inflamed skin tissues, and these effects were significantly attenuated by pretreatment with the CB2R antagonist AM630. AM1241 or EA also significantly increased the percentage of β-endorphin-immunoreactive keratinocytes, macrophages, and T-lymphocytes in inflamed skin tissues, and these effects were blocked by AM630. CONCLUSIONS EA and CB2R stimulation reduce inflammatory pain through activation of μ-opioid receptors. EA increases endogenous opioid expression in keratinocytes and infiltrating immune cells at the inflammatory site through CB2R activation.
Collapse
Affiliation(s)
- Tang-feng Su
- Department of Neurobiology, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 2011; 45:9-24. [PMID: 22170499 DOI: 10.1007/s00726-011-1163-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
Endogenous opioids are synthesized in vivo to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abuser-based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid-mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review, we will discuss the role of opioid receptors and their ligands in mediating immune-suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system, as well as the role of opioids in exacerbation of certain disease states.
Collapse
|
49
|
Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev 2011; 63:860-81. [PMID: 21969325 DOI: 10.1124/pr.110.003145] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The concept that the immune system can communicate with peripheral sensory neurons to modulate pain is based mostly on documented interactions between opioid ligands and receptors. Such findings may have broad implications for the development of safer pain medication. Innovative strategies take into account that analgesics should be particularly active in pathological states rather than producing a general suppression of the central nervous system, as with conventional morphine- or cannabinoid-like drugs. Inflammation of peripheral tissue leads to increased functionality of opioid receptors on peripheral sensory neurons and to local production of endogenous opioid peptides. In addition, endocannabinoids were detected in leukocytes, but their role in pain modulation has yet to be addressed. Future aims include the development of peripherally restricted opioid agonists, selective targeting of opioid-containing immune cells to sites of painful injury, and the augmentation of peripheral ligand and receptor synthesis (e.g., by gene therapy). Similar approaches may be pursued for cannabinoids. The ultimate goal is to avoid detrimental side effects of currently available analgesics such as respiratory depression, cognitive impairment, addiction, gastrointestinal bleeding, and thromboembolic complications.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | |
Collapse
|
50
|
Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM, Lu M, Zhang L, Cui Y, Zhang RL, Zhang ZG. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience 2011; 193:399-410. [PMID: 21820491 DOI: 10.1016/j.neuroscience.2011.07.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/17/2011] [Accepted: 07/19/2011] [Indexed: 12/16/2022]
Abstract
Peripheral neuropathy is a common and major complication of diabetes, the underlying mechanisms of which are not fully understood. Using a mouse model of type II diabetes, the present study investigated the role of phosphodiesterase-5 (PDE5) in peripheral neuropathy. BKS.Cg-m+/+Leprdb/J (db/db) mice were treated with sildenafil, a specific inhibitor of PDE5, at doses of 2 and 10 mg/kg or saline. Levels of PDE5 and morphometric parameters in sciatic nerve tissue as well as the motor and sensory function were measured in these mice. In diabetic mice, PDE5 expression in sciatic nerve tissue was significantly upregulated, whereas the myelin sheath thickness, myelin basic protein (MBP), and subcutaneous nerve fibers were significantly reduced. Treatment with sildenafil significantly improved neurological function, assayed by motor and sensory conducting velocities and thermal and mechanical noxious stimuli, concomitantly with increases in myelin sheath thickness, MBP levels, and subcutaneous nerve fibers. In vitro, hyperglycemia upregulated PDE5 in Schwann cells and reduced Schwann cell proliferation, migration, and expression of brain-derived neurotrophic factor (BDNF). Blockage of PDE5 with sildenafil increased cyclic guanosine monophosphate (cGMP) and completely abolished the effect of hyperglycemia on Schwann cells. Sildenafil upregulated cGMP-dependent protein kinase G I (PKGI), whereas inhibition of PKGI with a PKG inhibitor, KT5823, suppressed the inhibitory effect of sildenafil on Schwann cells. These data indicate that hyperglycemia substantially upregulates PDE5 expression and that the cGMP/PKG signaling pathway activated by sildenafil mediates the beneficial effects of sildenafil on diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- L Wang
- Department of Neurology, Henry Ford Health Sciences Center, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|