1
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Logue J, Melville VM, Ardanuy J, Frieman MB. CNP blocks mitochondrial depolarization and inhibits SARS-CoV-2 replication in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544327. [PMID: 37333151 PMCID: PMC10274905 DOI: 10.1101/2023.06.09.544327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The COVID-19 pandemic has claimed over 6.5 million lives worldwide and continues to have lasting impacts on the world's healthcare and economic systems. Several approved and emergency authorized therapeutics that inhibit early stages of the virus replication cycle have been developed however, effective late-stage therapeutical targets have yet to be identified. To that end, our lab identified that 2',3' cyclic-nucleotide 3'-phosphodiesterase (CNP) inhibits SARS-CoV-2 virion assembly. We show that CNP inhibits the generation of new SARS-CoV-2 virions, reducing intracellular titers without inhibiting viral structural protein translation. Additionally, we show that targeting of CNP to mitochondria is necessary for inhibition, blocking mitochondrial depolarization and implicating CNP's proposed role as an inhibitor of the mitochondrial permeabilization transition pore (mPTP) as the mechanism of virion assembly inhibition. We also demonstrate that an adenovirus expressing virus expressing both human ACE2 and CNP inhibits SARS-CoV-2 titers to undetectable levels in lungs of mice. Collectively, this work shows the potential of CNP to be a new SARS-CoV-2 antiviral target.
Collapse
Affiliation(s)
- James Logue
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore,Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore,Maryland, USA
| | - Victoria M. Melville
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore,Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore,Maryland, USA
| | - Jeremy Ardanuy
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore,Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore,Maryland, USA
| | - Matthew B. Frieman
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore,Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore,Maryland, USA
| |
Collapse
|
3
|
Logue J, Melville VM, Ardanuy J, Frieman MB. CNP blocks mitochondrial depolarization and inhibits SARS-CoV-2 replication in vitro and in vivo. PLoS Pathog 2023; 19:e1011870. [PMID: 38117830 PMCID: PMC10766180 DOI: 10.1371/journal.ppat.1011870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 11/28/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has claimed over 6.5 million lives worldwide and continues to have lasting impacts on the world's healthcare and economic systems. Several approved and emergency authorized therapeutics that inhibit early stages of the virus replication cycle have been developed however, effective late-stage therapeutical targets have yet to be identified. To that end, our lab identified that 2',3' cyclic-nucleotide 3'-phosphodiesterase (CNP) inhibits SARS-CoV-2 virion assembly. We show that CNP inhibits the generation of new SARS-CoV-2 virions, reducing intracellular titers without inhibiting viral structural protein translation. Additionally, we show that targeting of CNP to mitochondria is necessary for inhibition, blocking mitochondrial depolarization and implicating CNP's proposed role as an inhibitor of the mitochondrial permeabilization transition pore (mPTP) as the mechanism of virion assembly inhibition. We also demonstrate that an adenovirus expressing virus expressing both human ACE2 and CNP inhibits SARS-CoV-2 titers to undetectable levels in lungs of mice. Collectively, this work shows the potential of CNP to be a new SARS-CoV-2 antiviral target.
Collapse
Affiliation(s)
- James Logue
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Victoria M. Melville
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy Ardanuy
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew B. Frieman
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Karami N, Azari H, Rahimi M, Aligholi H, Kalantari T. A study on the effect of JNJ-10397049 on proliferation and differentiation of neural precursor cells. Anat Cell Biol 2022; 55:179-189. [PMID: 35466086 PMCID: PMC9256489 DOI: 10.5115/acb.21.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
The orexin 2 receptor plays a central role in maintaining sleep and wakefulness. Recently, it has been shown that sleep and wakefulness orchestrate the proliferation and differentiation of oligodendrocytes. Here, we explored the role of a selective orexin 2 receptor antagonist (JNJ-10397049) in proliferation and differentiation of neural progenitor cells (NPCs). We evaluated the proliferation potential of NPCs after exposure to different concentrations of JNJ-10397049 by using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and neurosphere assays. Moreover, the expression of differentiation markers was assessed by immunocytochemistry and real-time polymerase chain reaction. JNJ-10397049 significantly increased the proliferation of NPCs at lower concentrations. In addition, orexin 2 receptor antagonist facilitated progression of differentiation of NPCs towards oligodendroglial lineage by considerable expression of Olig2 and 2’,3’-cyclic-nucleotide 3’-phosphodiesterase as well as decreased expression of nestin marker. The results open a new avenue for future investigations in which the production of more oligodendrocytes from NPCs is needed.
Collapse
Affiliation(s)
- Neda Karami
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Neural Stem Cell Laboratory, Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Moosa Rahimi
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Raasakka A, Myllykoski M, Laulumaa S, Lehtimäki M, Härtlein M, Moulin M, Kursula I, Kursula P. Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase. Sci Rep 2015; 5:16520. [PMID: 26563764 PMCID: PMC4643303 DOI: 10.1038/srep16520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2',3'-cyclic monophosphates to nucleoside 2'-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release.
Collapse
Affiliation(s)
- Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
- European Spallation Source (ESS), Lund, Sweden
| | - Mari Lehtimäki
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|
6
|
Huang Q, Ma X, Zhu DL, Chen L, Jiang Y, Zhou L, Cen L, Pi R, Chen X. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2015; 284:67-73. [PMID: 26025060 DOI: 10.1016/j.jneuroim.2015.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Abstract
Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Qiling Huang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Dong Liang Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Li Chen
- Medical Examination Center, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Linli Zhou
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Lei Cen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
7
|
Raasakka A, Kursula P. The myelin membrane-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase: on a highway to structure and function. Neurosci Bull 2014; 30:956-966. [PMID: 24807122 DOI: 10.1007/s12264-013-1437-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
The membrane-anchored myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. .,Department of Chemistry, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Schirmer L, Srivastava R, Hemmer B. To look for a needle in a haystack: the search for autoantibodies in multiple sclerosis. Mult Scler 2014; 20:271-9. [DOI: 10.1177/1352458514522104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The search for autoantibodies in multiple sclerosis (MS) has been challenging for the last 3 decades. With the development of new proteomic methods and advances in expression and assay technologies, progress in the identification of MS autoantibodies has been made. A number of MS-specific autoantibodies have been proposed, most of them targeting proteins expressed in oligodendrocytes and along the myelin sheath. In this review, we summarize the status of antibody research in MS and then discuss recent developments and future strategies in defining and characterizing the potential antigenic targets of autoantibodies in MS.
Collapse
Affiliation(s)
- Lucas Schirmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Rajneesh Srivastava
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
9
|
Fernandez-Castaneda A, Arandjelovic S, Stiles TL, Schlobach RK, Mowen KA, Gonias SL, Gaultier A. Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem 2013; 288:4538-48. [PMID: 23264627 PMCID: PMC3576060 DOI: 10.1074/jbc.m112.384693] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 12/14/2022] Open
Abstract
In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.
Collapse
Affiliation(s)
- Anthony Fernandez-Castaneda
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Sanja Arandjelovic
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Travis L. Stiles
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Ryan K. Schlobach
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Kerri A. Mowen
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Steven L. Gonias
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Alban Gaultier
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
10
|
Lünemann JD, Gelderblom H, Sospedra M, Quandt JA, Pinilla C, Marques A, Martin R. Cerebrospinal fluid-infiltrating CD4+ T cells recognize Borrelia burgdorferi lysine-enriched protein domains and central nervous system autoantigens in early lyme encephalitis. Infect Immun 2006; 75:243-51. [PMID: 17060473 PMCID: PMC1828376 DOI: 10.1128/iai.01110-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neurological manifestations of Lyme disease are usually accompanied by inflammatory changes in the cerebrospinal fluid (CSF) and the recruitment of activated T cells into the CSF compartment. In order to characterize the phenotype and identify target antigens of CSF-infiltrating T cells in early neuroborreliosis with central nervous system (CNS) involvement, we combined T-cell cloning, functional testing of T-cell responses with positional scanning synthetic combinatorial peptide libraries, and biometric data analysis. We demonstrate that CD4+ gamma interferon-producing T cells specifically responding to Borrelia burgdorferi lysate were present in the CSF of a patient with acute Lyme encephalitis. Some T-cell clones recognized previously uncharacterized B. burgdorferi epitopes which show a specific enrichment for lysine, such as the heat shock-induced chaperone HSP90. Degenerate T-cell recognition that included T-cell responses to borrelia-specific and CNS-specific autoantigens derived from the myelin protein 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) could be demonstrated for one representative clone. Our results show that spirochetal antigen-specific and Th1-polarized CD4+ lymphocytes infiltrate the CSF during monophasic CNS symptoms of Lyme disease and demonstrate that cross-recognition of CNS antigens by B. burgdorferi-specific T cells is not restricted to chronic and treatment-resistant manifestations.
Collapse
Affiliation(s)
- Jan D Lünemann
- Neuroimmunology Branch, Cellular Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sriram S, Steiner I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 2006; 58:939-45. [PMID: 16315280 DOI: 10.1002/ana.20743] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite many years of intensive research, multiple sclerosis (MS) defies understanding and treatment remains suboptimal. The prevailing hypothesis is that MS is immune mediated and that experimental allergic encephalomyelitis (EAE) is a suitable model to elucidate pathogenesis and devise therapy. This review examines critically the validity that EAE is an adequate and useful animal model of MS and finds credible evidence lacking. EAE represents more a model of acute central nervous system inflammation than the counterpart of MS. We propose to reconsider the utilization of EAE, especially when this model is used to define therapy. This will also force us to examine MS without the restraints imposed by EAE, as to what it is, rather than what it looks like.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Vanderbilt Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
12
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
13
|
Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, Gilmore W, Cheema GS, Stohl W, Burnett ME, Ko D, Kachuck NJ, Weiner LP. Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J Neuroimmunol 2004; 155:161-71. [PMID: 15342208 DOI: 10.1016/j.jneuroim.2004.06.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/01/2004] [Accepted: 06/18/2004] [Indexed: 11/22/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the CNS which is characterized by large mononuclear cell infiltration and significant demyelination. CXCL8 is a chemo-attractant for both neutrophils and monocytes and triggers their firm adhesion to endothelium. In this study, we demonstrate that serum CXCL8 and CXCL8 secretion from PBMCs are significantly higher in untreated MS patients compared to controls and are significantly reduced in MS patients receiving interferon-beta1a therapy. We suggest that CXCL8 may serve as a marker of monocyte activity in MS and may play a role in monocyte recruitment to the CNS.
Collapse
Affiliation(s)
- Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, MCH-142, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Significant progress has been made in our understanding of the etiology of MS. MS is widely believed to be an autoimmune disease that results from aberrant immune responses to CNS antigens. T cells are considered to be crucial in orchestrating an immunopathological cascade that results in damage to the myelin sheath. This review summarizes the currently available data supporting the idea that myelin reactive T cells are actively involved in the immunopathogenesis of MS. Some of the therapeutic strategies for MS are discussed with a focus on immunotherapies that aim to specifically target the myelin reactive T cells.
Collapse
Affiliation(s)
- Niels Hellings
- Biomedical Research Institute, Limburg University Center, School for Life Sciences, Transnational University Diepenbeek, Belgium
| | | | | |
Collapse
|
15
|
Muraro PA, Kalbus M, Afshar G, McFarland HF, Martin R. T cell response to 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in multiple sclerosis patients. J Neuroimmunol 2002; 130:233-42. [PMID: 12225906 DOI: 10.1016/s0165-5728(02)00229-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T cell responses targeting myelin antigens are possibly involved in the pathogenesis of demyelinating diseases, such as multiple sclerosis (MS). Little is known about human T cell responses to 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), the third most abundant myelin protein. We examined the primary peripheral T cell response to CNPase and characterized CNPase-specific CD4+ long-term T cell lines (TCL) from MS patients and healthy donors. The strongest primary responses were found in two MS patients with very active disease and were directed against CNP(343-373). We identified immunodominant epitope clusters in the regions CNP(343-373) and (356-388) that were recognized in the context of MS-associated HLA-DR2 and DR4 molecules. These data provide the immunological basis for further investigation of CNPase as a potential target self-antigen in MS.
Collapse
Affiliation(s)
- P A Muraro
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bldg. 10, Room 5B-16, National Institutes of Health, 10 Center Drive MSC1400, 20892, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
In multiple sclerosis (MS), inflammatory demyelination in the central nervous system is thought to be initiated by T cells that recognize myelin antigens. T cells are the main regulators of acquired immunity and are involved in the pathogenesis of several organ-specific autoimmune diseases. This review provides an overview of recent studies on the role of T cells in autoimmune demyelination. Because autoreactive T cells are normally present in the mature repertoire of T cells in the blood and lymphoid organs of MS patients, but also in normal controls, particular attention is devoted to the mechanisms of activation and the functional phenotype of such T cells in patients with MS. The role of cytokines as effector molecules and the main candidate antigens are also discussed.
Collapse
Affiliation(s)
- B Gran
- Department of Neurology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | |
Collapse
|
17
|
Kaye JF, Kerlero de Rosbo N, Mendel I, Flechter S, Hoffman M, Yust I, Ben-Nun A. The central nervous system-specific myelin oligodendrocytic basic protein (MOBP) is encephalitogenic and a potential target antigen in multiple sclerosis (MS). J Neuroimmunol 2000; 102:189-98. [PMID: 10636488 DOI: 10.1016/s0165-5728(99)00168-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uncovering primary target antigens in multiple sclerosis (MS) is of major significance for understanding the etiology and pathophysiology of the disease, and for designing immunospecific therapy. In this study, a synthetic peptide representing a predicted T cell epitope on myelin oligodendrocytic basic protein (MOBP) was found to be encephalitogenic in C3H.SW mice, inducing experimental autoimmune encephalomyelitis with an abrupt onset. Two separate preliminary studies with MOBP peptides indicated that autoreactivity to MOBP occurs in MS. These data strongly suggest that MOBP is a highly relevant target in MS and further point to the complexity of antigen specificities in MS.
Collapse
Affiliation(s)
- J F Kaye
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Stevens DB, Chen K, Seitz RS, Sercarz EE, Bronstein JM. Oligodendrocyte-Specific Protein Peptides Induce Experimental Autoimmune Encephalomyelitis in SJL/J Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Oligodendrocyte-specific protein (OSP) is a recently isolated and cloned, 207-aa, hydrophobic, four-transmembrane protein found in CNS myelin. It represents ∼7% of total myelin protein. The OSP cDNA sequence has no significant homology with previously reported genes, but the predicted protein structure suggests that OSP is a CNS homologue of peripheral myelin protein-22. We previously reported the presence of anti-OSP Abs in the cerebrospinal fluid of relapsing-remitting multiple sclerosis (MS) patients, but not control patient groups. In this study, we tested the ability of a panel of 20-mer peptides with 10-aa overlaps, representing the sequence of murine OSP, to induce experimental autoimmune encephalomyelitis (EAE), an animal model for MS. SJL mice challenged with murine OSP peptides 52–71, 82–101, 102–121, 142–161, 182–201, and 192–207 exhibited clinical EAE. OSP:52–71 elicited severe relapsing-remitting EAE in some individuals. All other encephalitogenic peptides elicited, at most, a loss of tail tonicity from which the mice most often completely recovered. Mononuclear cell infiltrates and focal demyelination characteristic of EAE were evident. T cell proliferative responses were seen with all encephalitogenic peptides except 142–161 and 182–201. OSP peptides 72–91 and 132–151 did not cause clinical EAE, but did elicit robust proliferative responses. B10.PL and PL/J mice challenged with the same OSP peptide doses as SJL mice did not exhibit clinical EAE. These results in the SJL EAE model, together with the results from MS patient clinical samples, make OSP a promising candidate for autoantigenic involvement in MS.
Collapse
Affiliation(s)
- David B. Stevens
- *Department of Neurology and the Brain Research Institute, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
- †Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121; and
| | - Kendall Chen
- *Department of Neurology and the Brain Research Institute, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
| | | | - Eli E. Sercarz
- †Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121; and
| | - Jeff M. Bronstein
- *Department of Neurology and the Brain Research Institute, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
19
|
Abstract
Multiple sclerosis is an inflammatory demyelinating CNS disease of putatively autoimmune origin. Novel models of experimental autoimmune encephalomyelitis (EAE) have demonstrated that T cells specific for various myelin and even nonmyelin proteins are potentially encephalitogenic. The encephalitogenic T cell response directed against different CNS antigens not only determines the lesional topography of CNS inflammation but also the composition of the inflammatory infiltrates. The heterogeneity of the lesional distribution seen in EAE might therefore be useful for the understanding of the various clinical subtypes seen in MS. In this review the possible candidate autoantigens in MS are discussed with special regard to the human T cell and B cell responses against various myelin and nonmyelin proteins.
Collapse
Affiliation(s)
- S Schmidt
- Department of Neurology, University of Bonn (Rheinische Friedrich-Wilhelms-Universität), Germany
| |
Collapse
|
20
|
Abstract
Multiple sclerosis is considered to be an autoimmune disease that results from aberrant immune responses to central nervous system antigens. T cells are considered to be crucial in orchestrating an immunopathological cascade that culminates in damage to the myelin sheath, oligodendrocytes and axons.
Collapse
Affiliation(s)
- G Martino
- Department of Neurology, San Raffaele Scientific Insitute-DIBIT, Milan, Italy
| | | |
Collapse
|
21
|
Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA, Roper RJ, Teuscher C. New Genetic Loci That Control Susceptibility and Symptoms of Experimental Allergic Encephalomyelitis in Inbred Mice. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Experimental allergic encephalomyelitis (EAE), the principal animal model of multiple sclerosis, is a genetically determined phenotype. In this study, analyses of the cumulative disease frequencies in parental, F1 hybrid, and F2 mice, derived from the EAE-susceptible SJL/J strain and the EAE-resistant B10.S/DvTe strain, confirmed that susceptibility to EAE is not inherited as a simple Mendelian trait. Whole genome scanning, using 150 informative microsatellite markers and a panel of 291 affected and 390 unaffected F2 progeny, revealed significant linkage of EAE susceptibility to marker loci on chromosomes 7 (eae4) and 17, distal to H2 (eae5). Quantitative trait loci for EAE severity, duration, and onset were identified on chromosomes 11 (eae6, and eae7), 2 (eae8), 9 (eae9), and 3 (eae10). While each locus reported in this study is important in susceptibility or disease course, interactions between marker loci were not statistically significant in models of genetic control. One locus, eae7, colocalizes to the same region of chromosome 11 as Orch3 and Idd4, susceptibility loci in autoimmune orchitis and insulin-dependent diabetes mellitus, respectively. Importantly, eae5 and eae7 are syntenic with human chromosomes 6p21 and 17q22, respectively, two regions of potential significance recently identified in human multiple sclerosis genome scans.
Collapse
Affiliation(s)
| | - Jayce D. Sudweeks
- †Department of Microbiology, Brigham Young University, Provo, UT 84602
| | - Elizabeth P. Blankenhorn
- ‡Department of Microbiology and Immunology, Allegheny University of the Health Sciences, Philadelphia, PA 19102
| | - Robert Korngold
- §Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Joseph C. Marini
- §Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - John A. Todd
- ¶The Wellcome Trust Center for Human Genetics, Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom OX3 7BN
| | - Randall J. Roper
- *Department of Veterinary Pathobiology, University of Illinois, Urbana, IL 61802
| | - Cory Teuscher
- *Department of Veterinary Pathobiology, University of Illinois, Urbana, IL 61802
| |
Collapse
|
22
|
de Rosbo NK, Ben-Nun A. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 1998; 11:287-99. [PMID: 9776706 DOI: 10.1006/jaut.1998.0202] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, the search for the 'culprit' autoantigen towards which deleterious autoimmunity is directed in multiple sclerosis (MS) centered mostly on myelin basic protein (MBP) and proteolipid (PLP), the two most abundant protein components of central nervous system (CNS) myelin, the target tissue for the autoimmune attack in MS. Although such research has yielded important data, furthering our understanding of the disease and opening avenues for possible immune-specific therapeutic approaches, attempts to unequivocally associate MS with MBP or PLP as primary target antigens in the disease have not been successful. This has led in recent years to a new perspective in MS research, whereby different CNS antigens are being investigated for their possible role in the initiation or progression of MS. Interesting studies in laboratory animals show that T-cells directed against certain non-myelin-specific CNS antigens are able to cause inflammation of the CNS, albeit without expression of clinical disease. However, reactivity to these antigens by MS T-cells has not been demonstrated. Conversely, reactivity by MS T-cells to non-myelin-specific antigens such as heat shock proteins, could be observed, but the pathogenic potential of such reactivity has not been corroborated with the encephalitogenicity of the antigen. More relevant to MS pathogenesis may be, as we outlined in this review, the autoimmune reactivity directed against minor myelin proteins, in particular the CNS-specific myelin oligodendrocyte glycoprotein (MOG). Here, we review the current knowledge gathered on T-cell reactivity to possible target antigens in MS in the context of their encephalitogenic potential, and underline the facets which make MOG a highly relevant contender as primary target antigen in MS, albeit not necessarily the only one.
Collapse
Affiliation(s)
- N K de Rosbo
- Dept. of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|