1
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
2
|
Tonev D, Momchilova A. Therapeutic Plasma Exchange and Multiple Sclerosis Dysregulations: Focus on the Removal of Pathogenic Circulatory Factors and Altering Nerve Growth Factor and Sphingosine-1-Phosphate Plasma Levels. Curr Issues Mol Biol 2023; 45:7749-7774. [PMID: 37886933 PMCID: PMC10605592 DOI: 10.3390/cimb45100489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Multiple sclerosis (MS) is predominantly an immune-mediated disease of the central nervous system (CNS) of unknown etiology with a possible genetic predisposition and effect of certain environmental factors. It is generally accepted that the disease begins with an autoimmune inflammatory reaction targeting oligodendrocytes followed by a rapid depletion of their regenerative capacity with subsequent permanent neurodegenerative changes and disability. Recent research highlights the central role of B lymphocytes and the corresponding IgG and IgM autoantibodies in newly forming MS lesions. Thus, their removal along with the modulation of certain bioactive molecules to improve neuroprotection using therapeutic plasma exchange (TPE) becomes of utmost importance. Recently, it has been proposed to determine the levels and precise effects of both beneficial and harmful components in the serum of MS patients undergoing TPE to serve as markers for appropriate TPE protocols. In this review we discuss some relevant examples, focusing on the removal of pathogenic circulating factors and altering the plasma levels of nerve growth factor and sphingosine-1-phosphate by TPE. Altered plasma levels of the reviewed molecular compounds in response to TPE reflect a successful reduction of the pro-inflammatory burden at the expense of an increase in anti-inflammatory potential in the circulatory and CNS compartments.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Delivanoglou N, Boziki M, Theotokis P, Kesidou E, Touloumi O, Dafi N, Nousiopoulou E, Lagoudaki R, Grigoriadis N, Charalampopoulos I, Simeonidou C. Spatio-temporal expression profile of NGF and the two-receptor system, TrkA and p75NTR, in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:41. [PMID: 31996225 PMCID: PMC6990493 DOI: 10.1186/s12974-020-1708-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course. METHODS EAE was induced in C57BL/6 mice 6-8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20-22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system. RESULTS Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN+ cells, GAP-43+ axons, GFAP+ cells, Arginase1+ cells, and Mac3+ cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase+ cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220+ cells) and no expression on T lymphocytes was noticed. CONCLUSION Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation/genetics
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Nerve Growth Factor/biosynthesis
- Nerve Growth Factor/genetics
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Nickoleta Delivanoglou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolina Dafi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Charalampopoulos
- Laboratory of Pharmacology, Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
4
|
Lu XM, Mao M, Xiao L, Yu Y, He M, Zhao GY, Tang JJ, Feng S, Li S, He CM, Wang YT. Nucleic Acid Vaccine Targeting Nogo-66 Receptor and Paired Immunoglobulin-Like Receptor B as an Immunotherapy Strategy for Spinal Cord Injury in Rats. Neurotherapeutics 2019; 16:381-393. [PMID: 30843154 PMCID: PMC6554366 DOI: 10.1007/s13311-019-00718-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB) are two common receptors of various myelin-associated inhibitors (MAIs) and, thus, play an important role in MAIs-induced inhibitory signalling of regeneration following spinal cord injury (SCI). Based on the concept of protective autoimmunity, vaccine approaches could induce the production of antibodies against inhibitors in myelin, such as using purified myelin, spinal cord homogenates, or MAIs receptor NgR, in order to block the inhibitory effects and promote functional recovery in SCI models. However, due to the complication of the molecules and the mechanisms involved in MAIs-mediated inhibitory signalling, these immunotherapy strategies have yielded inconsistent outcomes. Therefore, we hypothesized that the choice and modification of self-antigens, and co-regulating multiple targets, may be more effective in repairing the injured spinal cord and improving functional recovery. In this study, NgR and PirB were selected to construct a double-targeted granulocyte-macrophage colony stimulating factor-NgR-PirB (GMCSF-NgR-PirB) nucleic acid vaccine, and investigate the efficacy of this immunotherapy in a spinal cord injury model in rats. The results showed that this vaccination could stimulate the production of antibodies against NgR and PirB, block the inhibitory effects mediated by various MAIs, and promote nerve regeneration and functional recovery after spinal cord injury. These findings suggest that nucleic acid vaccination against NgR and PirB can be a promising therapeutic strategy for SCI and other central nervous system diseases and injuries.
Collapse
Affiliation(s)
- Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Min Mao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lan Xiao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ying Yu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Mei He
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guo-Yan Zhao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shuang Feng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Cheng-Ming He
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Acute stress promotes post-injury brain regeneration in fish. Brain Res 2017; 1676:28-37. [PMID: 28916442 DOI: 10.1016/j.brainres.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023]
Abstract
The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration.
Collapse
|
6
|
Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease. Mol Neurobiol 2016; 53:5217-28. [PMID: 26409478 PMCID: PMC5012151 DOI: 10.1007/s12035-015-9436-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Demyelination underlies early neurological symptoms in multiple sclerosis (MS); however, axonal damage is considered critical for permanent chronic deficits. The precise mechanisms by which axonal injury occurs in MS are unclear; one hypothesis is the absence or failure of remyelination, suggesting that promoting remyelination may protect axons from death. This report provides direct evidence that promoting oligodendrocyte remyelination protects axons and maintains transport function. Persistent Theiler's virus infection of Swiss Jim Lambert (SJL)/J mice was used as a model of MS to assess the effects of remyelination on axonal injury following demyelination in the spinal cord. Remyelination was induced using an oligodendrocyte/myelin-specific recombinant human monoclonal IgM, rHIgM22. The antibody is endowed with strong anti-apoptotic and pro-proliferative effects on oligodendrocyte progenitor cells. We used (1)H-magnetic resonance spectroscopy (MRS) at the brainstem to measure N-acetyl-aspartate (NAA) as a surrogate of neuronal health and spinal cord integrity. We found increased brainstem NAA concentrations at 5 weeks post-treatment with rHIgM22, which remained stable out to 10 weeks. Detailed spinal cord morphology studies revealed enhanced remyelination in the rHIgM22-treated group but not in the isotype control antibody- or saline-treated groups. Importantly, we found rHIgM22-mediated remyelination protected small- and medium-caliber mid-thoracic spinal cord axons from damage despite similar demyelination and inflammation across all experimental groups. The most direct confirmation of remyelination-mediated protection of descending neurons was an improvement in retrograde transport. Treatment with rHIgM22 significantly increased the number of retrograde-labeled neurons in the brainstem, indicating that preserved axons are functionally competent. This is direct validation that remyelination preserves spinal cord axons and protects functional axon integrity.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aleksandar Denic
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jens O Watzlawik
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arthur E Warrington
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Departments of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Abstract
IMPORTANCE Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning as well as the local cues to which they are exposed. CONCLUSIONS AND RELEVANCE The mechanisms that drive TBI lesion development as well as those that promote repair are exceedingly complex and often superimposed. Because pathogenic mechanisms can diversify over time or even differ based on the injury type, it is important that neuroprotective therapeutics be developed and administered with these variables in mind. Due to its complexity, TBI has proven particularly challenging to treat; however, a number of promising therapeutic approaches are now under pre-clinical development, and recent clinical trials have even yielded a few successes. Given the worldwide impact of TBI on the human population, it is imperative that research remains active in this area and that we continue to develop therapeutics to improve outcome in afflicted patients.
Collapse
Affiliation(s)
- Kara N Corps
- Viral Immunology and Intravital Imaging Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Theodore L Roth
- Viral Immunology and Intravital Imaging Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Mortazavi MM, Verma K, Harmon OA, Griessenauer CJ, Adeeb N, Theodore N, Tubbs RS. The microanatomy of spinal cord injury: A review. Clin Anat 2014; 28:27-36. [DOI: 10.1002/ca.22432] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ketan Verma
- Pediatric Neurosurgery; Children's of Alabama
| | | | | | - Nimer Adeeb
- Pediatric Neurosurgery; Children's of Alabama
| | | | | |
Collapse
|
9
|
Shrestha R, Millington O, Brewer J, Dev KK, Bushell TJ. Lymphocyte-mediated neuroprotection in in vitro models of excitotoxicity involves astrocytic activation and the inhibition of MAP kinase signalling pathways. Neuropharmacology 2014; 76 Pt A:184-93. [DOI: 10.1016/j.neuropharm.2013.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022]
|
10
|
Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 2012; 33 Suppl 1:S50-6. [PMID: 22990667 DOI: 10.1007/s10875-012-9795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.
Collapse
|
11
|
McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med 2011; 11:246-54. [PMID: 21375489 PMCID: PMC3182412 DOI: 10.2174/156652411795243450] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/25/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. Immune abnormalities have been found in the central nervous system by pathological studies and also in the blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent that an immune response can occur as a response to damage to the nervous system and this can be protective.
Collapse
Affiliation(s)
- P A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Australia.
| | | |
Collapse
|
12
|
Parada CA, Portaro F, Marengo EB, Klitzke CF, Vicente EJ, Faria M, Sant’Anna OA, Fernandes BL. Autolytic Mycobacterium leprae Hsp65 fragments may act as biological markers for autoimmune diseases. Microb Pathog 2011; 51:268-76. [DOI: 10.1016/j.micpath.2011.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
13
|
Wang YT, Lu XM, Zhu F, Huang P, Yu Y, Zeng L, Long ZY, Wu YM. The use of a gold nanoparticle-based adjuvant to improve the therapeutic efficacy of hNgR-Fc protein immunization in spinal cord-injured rats. Biomaterials 2011; 32:7988-98. [PMID: 21784510 DOI: 10.1016/j.biomaterials.2011.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
As a common receptor for three myelin associated inhibitors, Nogo-66 receptor (NgR) mediates their inhibitory activities on neurite outgrowth in the adult mammalian central nervous system (CNS). Therapeutic vaccination protocol targeting NgR emulsified with Freund's adjuvant (FA) has been used in spinal cord injury (SCI) models. However, the vaccine emulsified with FA may induce some side effects, which are not suitable for further clinical application. As an adjuvant, gold nanoparticles (GNPs) could stimulate a stronger immune response without producing detectable toxicity and physiological damage than FA. There is, however, uncertainty regarding the efficacy of axon regeneration and neuroprotection in vaccines with GNPs as an adjuvant. In this investigation, a recombinant protein vaccine targeting NgR, human NgR-Fc (hNgR-Fc) fusion protein conjugated with 15 nm GNPs was prepared and its effects on axonal regeneration and functional recovery in spinal cord-injured rats were investigated. The results showed that adult rats immunized with the protein vaccine produced higher titers of anti-NgR antibody than that with FA, and the antisera promoted neurite outgrowth in presence of MAG in vitro. In a spinal cord dorsal hemisection model, vaccine immunized with GNPs promoted axonal regeneration more effectively than FA, resulted in significant protection from neuronal loss, and improved functional recovery. Thus, as an adjuvant, 15 nm GNPs can effectively boost the immunogenicity of hNgR-Fc protein vaccine, and promote the repair of spinal cord-injured rats. The utilization of GNPs, for clinical considerations, may be a more beneficial supplement than FA to the promising therapeutic vaccination strategy for promoting SCI repair.
Collapse
Affiliation(s)
- Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nemirovsky A, Fisher Y, Baron R, Cohen IR, Monsonego A. Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer's disease. Vaccine 2011; 29:4043-50. [PMID: 21473952 DOI: 10.1016/j.vaccine.2011.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
Abstract
Active vaccination with amyloid beta peptide (Aβ) to induce beneficial antibodies was found to be effective in mouse models of Alzheimer's disease (AD), but human vaccination trials led to adverse effects, apparently caused by exuberant T-cell reactivity. Here, we sought to develop a safer active vaccine for AD with reduced T-cell activation. We treated a mouse model of AD carrying the HLA-DR DRB1*1501 allele, with the Aβ B-cell epitope (Aβ 1-15) conjugated to the self-HSP60 peptide p458. Immunization with the conjugate led to the induction of Aβ-specific antibodies associated with a significant reduction of cerebral amyloid burden and of the accompanying inflammatory response in the brain; only a mild T-cell response specific to the HSP peptide but not to the Aβ peptide was found. This type of vaccination, evoking a gradual increase in antibody titers accompanied by a mild T-cell response is likely due to the unique adjuvant and T-cell stimulating properties of the self-HSP peptide used in the conjugate and might provide a safer approach to effective AD vaccination.
Collapse
Affiliation(s)
- Anna Nemirovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
15
|
Vieira MM, Ferreira TB, Pacheco PA, Barros PO, Almeida CR, Araújo-Lima CF, Silva-Filho RG, Hygino J, Andrade RM, Linhares UC, Andrade AF, Bento CA. Enhanced Th17 phenotype in individuals with generalized anxiety disorder. J Neuroimmunol 2010; 229:212-8. [DOI: 10.1016/j.jneuroim.2010.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/02/2010] [Accepted: 07/22/2010] [Indexed: 01/22/2023]
|
16
|
Barros PO, Ferreira TB, Vieira MMM, Almeida CRM, Araújo-Lima CF, Silva-Filho RG, Hygino J, Andrade RM, Andrade AF, Bento CA. Substance P enhances Th17 phenotype in individuals with generalized anxiety disorder: an event resistant to glucocorticoid inhibition. J Clin Immunol 2010; 31:51-9. [PMID: 20865305 DOI: 10.1007/s10875-010-9466-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Our objective was to evaluate the effect of stress-related dose of substance P (SP) on the in vitro proliferation and cytokine production in polyclonally activated T cells from healthy individuals or individuals with generalized anxiety disorder (GAD). Our results demonstrated that cell cultures from GAD group proliferated less following T cell activation, as compared with control group. The addition of SP enhanced, while the glucocorticoid (GC) reduced, the proliferative response in activated cell cultures from healthy but not from GAD individuals. The cytokine profile in GAD individuals revealed Th1 and Th2 deficiencies were associated with dominate Th17 phenotype which was enhanced by SP. Differently from control, the production of Th17 cytokines in GAD individuals was not affected by GC. In conclusion, our results show that complex T cell functional dysregulation in GAD individuals is significantly amplified by SP. These immune abnormalities can have impact in increasing the susceptibility to infectious diseases and inflammatory/autoimmune disorders in anxious individuals.
Collapse
Affiliation(s)
- Priscila O Barros
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, 20.261-040 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fasano M, Alberio T, Lopiano L. Peripheral biomarkers of Parkinson's disease as early reporters of central neurodegeneration. Biomark Med 2010; 2:465-78. [PMID: 20477424 DOI: 10.2217/17520363.2.5.465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is the most common age-related movement disorder, with a prevalence of approximately 2% among people over 65 years of age. The diagnosis of PD is currently based on the clinical manifestations of the disease; therefore, the availability of peripheral biomarkers would have a great impact. In this review, we discuss and compare several attempts made to find peripheral biomarkers of PD to achieve early diagnosis, differential diagnosis, therapy assessment and classification of disease subtypes. Several investigators focused on proteins that are involved in PD pathogenesis. However, the best choice for a sensible biomarker-discovery procedure makes use of global approaches such as metabolomics and proteomics. In addition, the tissue or compartment where biomarkers are located, plays a basic role. In this context, lymphocytes are of particular interest because they are circulating dopaminergic cells, and display several functional modifications in PD.
Collapse
Affiliation(s)
- Mauro Fasano
- Department of Structural & Functional Biology, Via Alberto da Giussano 12, 21052 Busto Arsizio (VA), Italy.
| | | | | |
Collapse
|
18
|
Derecki NC, Privman E, Kipnis J. Rett syndrome and other autism spectrum disorders--brain diseases of immune malfunction? Mol Psychiatry 2010; 15:355-63. [PMID: 20177406 PMCID: PMC3368984 DOI: 10.1038/mp.2010.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
Abstract
Neuroimmunology was once referred to in terms of its pathological connotation only and was generally understood as covering the deleterious involvement of the immune system in various diseases and disorders of the central nervous system (CNS). However, our conception of the function of the immune system in the structure, function, and plasticity of the CNS has undergone a sea change after relevant discoveries over the past two decades, and continues to be challenged by more recent studies of neurodevelopment and cognition. This review summarizes the recent advances in understanding of immune-system participation in the development and functioning of the CNS under physiological conditions. Considering as an example Rett syndrome a devastating neurodevelopmental disease, we offer a hypothesis that might help to explain the part played by immune cells in its etiology, and hence suggests that the immune system might be a feasible therapeutic target for alleviation of some of the symptoms of this and other autism spectrum disorders.
Collapse
Affiliation(s)
- NC Derecki
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - E Privman
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| | - J Kipnis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Gill JM, Saligan L, Woods S, Page G. PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care 2009; 45:262-77. [PMID: 19780999 DOI: 10.1111/j.1744-6163.2009.00229.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE. Post-traumatic stress disorder (PTSD) is associated with inflammatory-related medical conditions. This review examines studies of immune function in individuals with PTSD to determine if excessive inflammation is associated with PTSD. CONCLUSIONS. Current studies suggest an excess of inflammatory actions of the immune system in individuals with chronic PTSD. High levels of inflammatory cytokines have also been linked to PTSD vulnerability in traumatized individuals. There is also evidence that excessive inflammation is in part due to insufficient regulation by cortisol. PRACTICE IMPLICATIONS. An excess of inflammatory immune activity may contribute to health declines in individuals with PTSD, and treating PTSD symptoms may reduce these risks.
Collapse
Affiliation(s)
- Jessica M Gill
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
20
|
Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system. J Neuropathol Exp Neurol 2009; 68:845-56. [PMID: 19606068 DOI: 10.1097/nen.0b013e3181ae0236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervous system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP) or ovalbumin (TOVA). The axonal lesion of TMBP-recipient mice resulted in lesion-specific recruitment of large numbers of T cells in contrast to very limited T-cell infiltration in TOVA-recipient and -naïve perforant pathway-deafferented mice. By double immunofluorescence and confocal microscopy, infiltration with TMBP but not TOVA enhanced the microglial response to axonal transection and microglial phagocytosis of myelin debris associated with the degenerating axons. Because myelin antigen-specific immune responses may provoke protective immunity, increased phagocytosis of myelin debris might enhance regeneration after a neural antigen-specific T cell-mediated immune response in multiple sclerosis.
Collapse
|
21
|
Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 2009; 23:64-74. [PMID: 18706993 PMCID: PMC2660333 DOI: 10.1016/j.bbi.2008.07.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/01/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous, behaviorally defined disorders characterized by disturbances in social interaction and communication, often with repetitive and stereotyped behavior. Previous studies have described the presence of antibodies to various neural proteins in autistic individuals as well as post-mortem evidence of neuropathology in the cerebellum. We examined plasma from children with ASD, as well as age-matched typically developing controls, for antibodies directed against human cerebellar protein extracts using Western blot analysis. In addition, the presence of cerebellar specific antibodies was assessed by immunohistochemical staining of sections from Macaca fascicularis monkey cerebellum. Western blot analysis revealed that 13/63 (21%) of subjects with ASD possessed antibodies that demonstrated specific reactivity to a cerebellar protein with an apparent molecular weight of approximately 52 kDa compared with only 1/63 (2%) of the typically developing controls (p=0.0010). Intense immunoreactivity, to what was determined morphologically to be the Golgi cell of the cerebellum, was noted for 7/34 (21%) of subjects with ASD, compared with 0/23 of the typically developing controls. Furthermore, there was a strong association between the presence of antibodies reactive to the 52 kDa protein by Western blot with positive immunohistochemical staining of cerebellar Golgi cells in the ASD group (r=0.76; p=0.001) but not controls. These studies suggest that when compared with age-matched typically developing controls, children with ASD exhibit a differential antibody response to specific cells located in the cerebellum and this response may be associated with a protein of approximately 52 kDa.
Collapse
Affiliation(s)
- Sharifia Wills
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- NIEHS Center for Children’s Environmental Health, University of California, Davis. Davis, CA 95616 USA
| | - Maricel Cabanlit
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- NIEHS Center for Children’s Environmental Health, University of California, Davis. Davis, CA 95616 USA
| | - Jeff Bennett
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis
- The M.I.N.D. Institute, University of California at Davis
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis
- The M.I.N.D. Institute, University of California at Davis
- NIEHS Center for Children’s Environmental Health, University of California, Davis. Davis, CA 95616 USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis
- The M.I.N.D. Institute, University of California at Davis
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- The M.I.N.D. Institute, University of California at Davis
- NIEHS Center for Children’s Environmental Health, University of California, Davis. Davis, CA 95616 USA
| |
Collapse
|
22
|
Abstract
Inflammatory and immune responses play important roles following ischaemic stroke. Inflammatory responses contribute to damage and also contribute to repair. Injury to tissue triggers an immune response. This is initiated through activation of the innate immune system. In stroke there is microglial activation. This is followed by an influx of lymphocytes and macrophages into the brain, triggered by production of pro-inflammatory cytokines. This inflammatory response contributes to further tissue injury. There is also a systemic immune response to stroke, and there is a degree of immunosuppression that may contribute to the stroke patient's risk of infection. This immunosuppressive response may also be protective, with regulatory lymphocytes producing cytokines and growth factors that are neuroprotective. The specific targets of the immune response after stroke are not known, and the details of the immune and inflammatory responses are only partly understood. The role of inflammation and immune responses after stroke is twofold. The immune system may contribute to damage after stroke, but may also contribute to repair processes. The possibility that some of the immune response after stroke may be neuroprotective is exciting and suggests that deliberate enhancement of these responses may be a therapeutic option.
Collapse
Affiliation(s)
- P A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital and Neuroimmunology Research Unit, Central Clinical School, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
23
|
Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O'Sullivan JD, Pandian JD, Read SJ, McCombe PA. Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 2008; 206:112-7. [PMID: 19058859 DOI: 10.1016/j.jneuroim.2008.11.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/11/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Lymphocytes, neutrophils and macrophages are found in the brain in areas of acute ischaemic stroke. There is also evidence of modulation of systemic immune function after stroke, with post-stroke immunosuppression being observed. Because lymphocytes are activated in the peripheral immune compartment, before entry to the target organ, we reasoned that activated lymphocytes would be present in the circulation, prior to entering the brain, in patients after stroke. Because immune responses are controlled by regulatory mechanisms, we also reasoned that the post-stroke immunosuppression would involve T regulatory cells. The aim of the study was to look for evidence of immune activation and alterations in regulatory T cells in the peripheral blood of patients after acute ischaemic stroke, in comparison to age-matched healthy controls and patients with other neurological diseases (OND), and to determine the phenotype of the activated cells. The percentages of total and activated T cells, B cells, monocyte/ macrophages, and NK/NK-T cells were determined by labelling peripheral blood leukocytes with specific cell surface markers and analysis with 4-colour flow cytometry. The percentages of activated T cells and regulatory T cells were significantly increased in patients with ischemic stroke compared to healthy subjects and patients with OND. There was also an increase in the percentage of CCR7+ T cells. There were no significant differences in the activation of other cell types. In conclusion, there is evidence of immune activation and Treg cells in acute ischaemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bulloch K, Miller MM, Gal-Toth J, Milner TA, Gottfried-Blackmore A, Waters EM, Kaunzner UW, Liu K, Lindquist R, Nussenzweig MC, Steinman RM, McEwen BS. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 2008; 508:687-710. [PMID: 18386786 DOI: 10.1002/cne.21668] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.
Collapse
Affiliation(s)
- Karen Bulloch
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The role of Treg in immune regulation is the topic of this Viewpoint series in the European Journal of Immunology (EJI); the question to be discussed in this section is the effector function of Treg in immune regulation. In this manuscript, we take on the following three postulates outlined by Rolf Zinkernagel on the role of Treg in the control of immunity. First, the immune response is regulated primarily by the antigen and not by Treg. Second, immune non-responsiveness results from the deletion of specific receptor-bearing T cells. Third, there is no definitive proof of the existence of specialized Treg that know what is needed for an equilibrated immune response. Herein, we discuss data demonstrating the existence of specialized Treg and therefore arguing against the validity of the first two postulates. However, based on the reactive nature of the immune system, we agree with Rolf's third postulate in that Treg cannot know ahead of time an ideal set-point for immune homeostasis.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02446, USA.
| | | |
Collapse
|
26
|
|
27
|
Remyelination-promoting human IgMs: developing a therapeutic reagent for demyelinating disease. Curr Top Microbiol Immunol 2008; 318:213-39. [PMID: 18219820 PMCID: PMC7120407 DOI: 10.1007/978-3-540-73677-6_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Promoting remyelination following injury to the central nervous system (CNS) promises to be an effective neuroprotective strategy to limit the loss of surviving axons and prevent disability. Studies confirm that multiple sclerosis (MS) and spinal cord injury lesions contain myelinating cells and their progenitors. Recruiting these endogenous cells to remyelinate may be of therapeutic value. This review addresses the use of antibodies reactive to CNS antigens to promote remyelination. Antibody-induced remyelination in a virus-mediated model of chronic spinal cord injury was initially observed in response to treatment with CNS reactive antisera. Monoclonal mouse and human IgMs, which bind to the surface of oligodendrocytes and myelin, were later identified that were functionally equivalent to antisera. A recombinant form of a human remyelination-promoting IgM (rHIgM22) targets areas of CNS injury and promotes maximal remyelination within 5 weeks after a single low dose (25 microg/kg). The IgM isoform of this reparative antibody is required for in vivo function. We hypothesize that the IgM clusters membrane domains and associated signaling molecules on the surface of target cells. Current therapies for MS are designed to modulate inflammation. In contrast, remyelination promoting IgMs are the first potential therapeutic molecules designed to induce tissue repair by acting within the CNS at sites of damage on the cells responsible for myelin synthesis.
Collapse
|
28
|
Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol 2006; 1:195-211. [PMID: 18040798 DOI: 10.1007/s11481-006-9021-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/26/2006] [Indexed: 12/18/2022]
|
29
|
Dubucquoi S. [Physiological and pathological autoimmunity in neurological disease]. Rev Neurol (Paris) 2005; 161:1163-76. [PMID: 16340911 DOI: 10.1016/s0035-3787(05)85189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Over the last years, the functions of the immune system have radically been revised. It has been illustrated how the different responses of the innate defense and the adaptative system were intimately intricated. STATE OF KNOWLEDGE Innate immunity is an elaborate strategy, switched on by an invariant receptor-based response that is able to develop a specific defense against some pathogens. Moreover, this innate immunity governs T- and B-cell-dependent adaptive immune response, mediated via dendritic cells whose maturation is controlled by immune specificity. The concepts of autoreactivity have also strongly progressed and the functions of the physiological autoimmune response have been highlighted. The notion of T- and B-cell self-antigens not only shapes the immune repertoire, but also the self-recognition process which is a tool for the control of the immune response itself. PERSPECTIVE New concepts of the pathophysiology of autoimmune diseases have emerged from a better understanding of the immune response, balancing between an intrinsic deregulation of the immune system and system deficiency to mount an effective response against an initial injury. CONCLUSION Of course, therapeutic strategies are challenged by these data. We should expect that control of several autoimmune processes will be achieved in a few years, e.g. in rheumatoid arthritis or Crohn's disease controlled with biotherapies.
Collapse
Affiliation(s)
- S Dubucquoi
- Laboratoire d'Immunologie du CHRU de Lille, Pôle Biologie Pathologie, Parc Eurasante, 152, avenue du Docteur-Yersin, 59120 Loos.
| |
Collapse
|
30
|
Granja C, Moliterno RA, Ferreira MS, Fonseca JA, Kalil J, Coelho V. T-cell autoreactivity to Hsp in human transplantation may involve both proinflammatory and regulatory functions. Hum Immunol 2005; 65:124-34. [PMID: 14969767 DOI: 10.1016/j.humimm.2003.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 09/24/2003] [Accepted: 10/06/2003] [Indexed: 10/26/2022]
Abstract
Heat shock proteins (Hsp) are moving from the category of basically intracellular chaperone molecules to important proteins in both innate and acquired immune responses, with great potential for clinical application as immunomodulators. Both proinflammatory and regulatory Hsp-reactive T cells have been described in animal models of autoimmune diseases. To investigate the role of autoreactivity to Hsp60 and Hsp70 in human transplantation, we analyzed, sequentially, peripheral blood mononuclear cell proliferation and cytokine production before and at different time points after renal transplantation, as well as the modulation of proliferation to Hsp in the presence of exogenous cytokines. Proliferation to Hsp60 and Hsp70 in the pretransplantation (pre-Tx) period was significantly associated with rejection episodes in the first months post-Tx. In contrast, IL-4 production was significantly associated with absence of rejection. Addition of exogenous IL-4 distinctly modulated the proliferative response to Hsp60; inhibiting proliferation in 83% of patients in the early post-Tx period (0-6 months), in which rejection episodes occurred, and inducing proliferation in 62.5% of patients in the later period (>12-24 months), when no rejection was observed. Characterization of autoreactive anti-Hsp60 regulatory T cells may permit new approaches to control the proinflammatory response to the graft, as well as aggressive autoimmunity.
Collapse
Affiliation(s)
- Clarissa Granja
- Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
TMEV and Neuroantigens: Myelin Genes and Proteins, Molecular Mimicry, Epitope Spreading, and Autoantibody-Mediated Remyelination. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7121993 DOI: 10.1007/0-387-25518-4_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
32
|
Quintana FJ, Cohen IR. The natural autoantibody repertoire and autoimmune disease. Biomed Pharmacother 2004; 58:276-81. [PMID: 15194162 DOI: 10.1016/j.biopha.2004.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/26/2022] Open
Abstract
The incidence of autoimmune diseases has shown a significant increase in developed countries during the last 40 years. The cause of this increase is still unknown, and reliable methods for the detection of individuals at risk of developing autoimmune disease are not available yet. To explore new methods for the diagnosis and monitoring of autoimmune disease, we have studied the repertoire of natural autoantibodies (NA) and its relationship with autoimmune disease using large arrays of defined antigens. NA are found in healthy humans and mice, apparently in the absence of immunization with their target antigens. We used knock-out mice to demonstrate that the repertoire of NA is influenced by factors not directly related to antigenic stimulation such as endogenous levels of histamine. By studying strains of mice known to differ in their susceptibility to autoimmune disease, we could conclude that the repertoire of NA reflects the susceptibility to develop autoimmune disease. The study of the human repertoire of NA required the development of bio-informatic tools to overcome the variation introduced by individual differences in the genetic background and immune history. We found that human NA are organized in clusters that can differentiate healthy subjects from patients with type 1 diabetes mellitus, type 2 diabetes mellitus or Behçet's disease patients. The development of new tools to undertake large-scale NA analysis could also enhance our understanding of the immune system, and leave us in a better position to face the up-coming epidemics of autoimmune disorders.
Collapse
Affiliation(s)
- Francisco J Quintana
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
33
|
Monsonego A, Zota V, Karni A, Krieger JI, Bar-Or A, Bitan G, Budson AE, Sperling R, Selkoe DJ, Weiner HL. Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J Clin Invest 2003; 112:415-22. [PMID: 12897209 PMCID: PMC166296 DOI: 10.1172/jci18104] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alzheimer disease (AD) is characterized by the progressive deposition of the 42-residue amyloid beta protein (Abeta) in brain regions serving memory and cognition. In animal models of AD, immunization with Abeta results in the clearance of Abeta deposits from the brain. However, a trial of vaccination with synthetic human Abeta1-42 in AD resulted in the development of meningoencephalitis in some patients. We measured cellular immune responses to Abeta in middle-aged and elderly healthy subjects and in patients with AD. A significantly higher proportion of healthy elderly subjects and patients with AD had strong Abeta-reactive T cell responses than occurred in middle-aged adults. The immunodominant Abeta epitopes in humans resided in amino acids 16-33. Epitope mapping enabled the identification of MHC/T cell receptor (TCR) contact residues. The occurrence of intrinsic T cell reactivity to the self-antigen Abeta in humans has implications for the design of Abeta vaccines, may itself be linked to AD susceptibility and course, and appears to be associated with the aging process.
Collapse
Affiliation(s)
- Alon Monsonego
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Monsonego A, Zota V, Karni A, Krieger JI, Bar-Or A, Bitan G, Budson AE, Sperling R, Selkoe DJ, Weiner HL. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J Clin Invest 2003. [DOI: 10.1172/jci200318104] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Logan A, Berry M. Cellular and molecular determinants of glial scar formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:115-58. [PMID: 12575819 DOI: 10.1007/978-1-4615-0123-7_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann Logan
- Molecular Neuroscience, Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | |
Collapse
|
36
|
Schwartz M. Neuroprotection as a treatment for glaucoma: pharmacological and immunological approaches. Eur J Ophthalmol 2003; 13 Suppl 3:S27-31. [PMID: 12749674 DOI: 10.1177/112067210301303s05] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary open-angle glaucoma is a chronic, progressive optic neuropathy associated with a gradual decline in visual function, which may lead to blindness. In most cases, the optic neuropathy is associated with increased intraocular pressure. It is now generally accepted, however, that normalization of pressure, although necessary, is often not-sufficient as a remedial measure. This is because of the existence of additional factors, some of which emerge as a consequence of the initial damage. This situation is reminiscent of the response to a traumatic axonal insult, in which some of the damage is immediate and is caused by the insult itself, and some is secondary and is caused by a deficiency of growth-supportive factors as well as by toxic factors derived from the damaged tissue. Accordingly, the author has suggested that glaucoma may be viewed as a neurodegenerative disease and consequently amenable to any therapeutic intervention applicable to neurodegenerative diseases. There is evidence that neuroprotection can be achieved both pharmacologically and immunologically. Pharmacologic intervention neutralizes some of the effects of the nerve-derived toxic factors and possibly increases the ability of the remaining healthy neurons, at any given time, to cope with the stressful conditions. Immunologic intervention boosts the body's repair mechanisms for counteracting the toxicity of physiologic compounds acting as stress signals.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Petitto JM, Huang Z, Lo J, Streit WJ. IL-2 gene knockout affects T lymphocyte trafficking and the microglial response to regenerating facial motor neurons. J Neuroimmunol 2003; 134:95-103. [PMID: 12507776 DOI: 10.1016/s0165-5728(02)00422-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following facial nerve axotomy in mice, T cells cross the intact blood-brain barrier (BBB), home to nerve cell bodies in the facial motor nucleus (FMN), and augment neuroregenerative processes. The pivotal T cell immunoregulatory cytokine, IL-2, appears to have bidirectional effects on neuronal and microglial cell function, suggesting rival hypotheses that IL-2 could either enhance or disrupt processes associated with regeneration of axotomized facial motor neurons. We tested these competing hypotheses by comparing the effect of facial nerve axotomy on C57BL/6-IL-2(-/-) knockout and C57BL/6-IL-2(+/+) wild-type littermates. Since IL-2 may also be produced endogenously in the brain, we also sought to determine whether differences between the knockout and wild-type mice were attributable to loss of IL-2 gene expression in the CNS, loss of peripheral sources of IL-2 and the associated effects on T cell function, or a combination of these factors. To address this question, we bred novel congenic mice with the SCID mutation (mice lacking T cell derived IL-2) that were homozygous for either the IL-2 knockout or wild-type gene alleles (C57BL/6scid-IL-2(-/-) and C57BL/6scid-IL-2(+/+) littermates, respectively). Groups were assessed for differences in (1) T lymphocytes entering the axotomized FMN; (2) perineuronal CD11b(+) microglial phagocytic clusters, a measure of motor neuron death; and (3) activated microglial cells as measured by MHC-II positivity. C57BL/6-IL-2(-/-) knockout mice had significantly higher numbers of T cells and lower numbers of activated MHC-II-positive microglial cells in the regenerating FMN than wild-type littermates, although the number of CD11b(+) phagocytic microglia clusters did not differ. Thus, despite the significant impairment of T cell function known to be associated with loss of peripheral IL-2, the increased number of T cells entering the axotomized FMN appears to have sufficient activity to support neuroregenerative processes. Congenic C57BL/6scid-IL-2(-/-) knockout mice had lower numbers of CD11b(+) microglial phagocytic clusters than congenic C57BL/6scid-IL-2(+/+) wild-type littermates, suggesting that loss of the IL-2 gene in the CNS (and possibly the loss of other unknown sources of the gene) enhanced neuronal regeneration. Further study of IL-2's complex actions in neuronal injury may provide greater understanding of key variables that determine whether or not immunological processes in the brain are proregenerative.
Collapse
Affiliation(s)
- John M Petitto
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0256, USA.
| | | | | | | |
Collapse
|
38
|
Mor F, Quintana F, Mimran A, Cohen IR. Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:628-34. [PMID: 12496452 DOI: 10.4049/jimmunol.170.1.628] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beta-synuclein is a neuronal protein that accumulates in the plaques that characterize neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. It has been proposed that immunization to peptides of plaque-forming proteins might be used therapeutically to help dissociate pathogenic plaques in the brain. We now report that immunization of Lewis rats with a peptide from beta-synuclein resulted in acute paralytic encephalomyelitis and uveitis. T cell lines and clones reactive to the peptide adoptively transferred the disease to naive rats. Immunoblotting revealed the presence of beta-synuclein in heavy myelin, indicating that the expression of beta-synuclein is not confined to neurons. These results add beta-synuclein to the roster of encephalitogenic self Ags, point out the potential danger of therapeutic autoimmunization to beta-synuclein, and alert us to the unsuspected possibility that autoimmunity to beta-synuclein might play an inflammatory role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Felix Mor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
39
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Significant progress has been made in our understanding of the etiology of MS. MS is widely believed to be an autoimmune disease that results from aberrant immune responses to CNS antigens. T cells are considered to be crucial in orchestrating an immunopathological cascade that results in damage to the myelin sheath. This review summarizes the currently available data supporting the idea that myelin reactive T cells are actively involved in the immunopathogenesis of MS. Some of the therapeutic strategies for MS are discussed with a focus on immunotherapies that aim to specifically target the myelin reactive T cells.
Collapse
Affiliation(s)
- Niels Hellings
- Biomedical Research Institute, Limburg University Center, School for Life Sciences, Transnational University Diepenbeek, Belgium
| | | | | |
Collapse
|
40
|
Kipnis J, Mizrahi T, Yoles E, Ben-Nun A, Schwartz M, Ben-Nur A. Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J Neuroimmunol 2002; 130:78-85. [PMID: 12225890 DOI: 10.1016/s0165-5728(02)00219-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Myelin-specific encephalitogenic T cells, when passively transferred into rats or mice, cause an experimental autoimmune disease. Previous studies by our group have shown that (a) the same cells also significantly reduce post-traumatic degeneration in these animals after injury to the central nervous system, (b) this beneficial autoimmunity is a physiological response, and (c) animals differ in their ability to resist injurious conditions, and the ability to resist post-traumatic degeneration correlates with resistance to the development of an autoimmune disease. Here we show that optic nerve neurons in both resistant and susceptible rat strains can be protected from secondary degeneration after crush injury by immunization with myelin basic protein emulsified in complete or incomplete Freund's adjuvant. We provide evidence that potentially destructive autoimmunity (causing autoimmune disease) and beneficial autoimmunity (causing improved neuronal survival) both result from activity of the same myelin-specific, proinflammatory Th1 cells. We further show that following passive transfer of such Th1 cells, the expression of their beneficial potential depends on the activity of an additional T cell (CD4(+)) population. By identifying the additional cellular component of autoimmune neuroprotection, we may be able to take meaningful steps toward achieving neuroprotection without risk of accompanying autoimmune disease.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neurobiology, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 2002. [PMID: 11923434 DOI: 10.1523/jneurosci.22-07-02690.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lymphocytes respond to myelin proteins after spinal cord injury (SCI) and may contribute to post-traumatic secondary degeneration. However, there is increasing evidence that autoreactive T-lymphocytes may also convey neuroprotection and promote functional recovery after CNS injury. To clarify the role of myelin autoreactive lymphocytes after SCI, we performed contusion injuries in the thoracic spinal cord of transgenic (Tg) mice in which >95% of all CD4+ T-lymphocytes are reactive with myelin basic protein (MBP). We observed significantly impaired recovery of locomotor and reflex function in Tg mice compared with non-Tg (nTg) littermates. Measures of functional impairment in Tg mice correlated with significantly less white matter at the injury site, and morphometric comparisons of injured Tg and nTg spinal cords revealed increased rostrocaudal lesion expansion (i.e., secondary degeneration) in Tg mice. Rostrocaudal to the impact site in SCI-nTg mice, demyelination was restricted to the dorsal funiculus, i.e., axons undergoing Wallerian degeneration. The remaining white matter appeared normal. In contrast, lymphocytes were colocalized with regions of demyelination and axon loss throughout the white matter of SCI-Tg mice. Impaired neurological function and exacerbated neuropathology in SCI-Tg mice were associated with increased intraspinal production of proinflammatory cytokine mRNA; neurotrophin mRNA was not elevated. These data suggest that endogenous MBP-reactive lymphocytes, activated by traumatic SCI, can contribute to tissue injury and impair functional recovery. Any neuroprotection afforded by myelin-reactive T-cells is likely to be an indirect effect mediated by other non-CNS-reactive lymphocytes. Similar to the Tg mice in this study, a subset of humans that are genetically predisposed to autoimmune diseases of the CNS may be adversely affected by vaccine therapies designed to boost autoreactive lymphocyte responses after CNS trauma. Consequently, the safe implementation of such therapies requires that future studies define the mechanisms that control T-cell function within the injured CNS.
Collapse
|
42
|
David S, Ousman SS. Recruiting the immune response to promote axon regeneration in the injured spinal cord. Neuroscientist 2002; 8:33-41. [PMID: 11843097 DOI: 10.1177/107385840200800108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin contains molecules that can inhibit the growth and regeneration of axons. Neutralizing the activity of these inhibitors can enhance axon regeneration in the adult mammalian central nervous system (CNS). The complexity of the CNS-immune system interactions after CNS trauma is now beginning to be better understood. Recent studies indicate that both cell-mediated and antibody-mediated immune responses can help in promoting axon regeneration after CNS injury. It is hoped that such advances will lead to the development of safe and effective vaccine and cytokine treatments for spinal cord injuries.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, McGill University, Quebec, Canada.
| | | |
Collapse
|
43
|
Mennicken F, Chabot JG, Quirion R. Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia 2002; 37:124-38. [PMID: 11754211 DOI: 10.1002/glia.10021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As chemokines and their receptors are primarily expressed by glial cells in brain parenchyma, a model of glial cell proliferation may be useful to study the regulation of their expression in the brain. The well-established kainic acid seizure model was used in this study, focusing on the expression of the CCR5 chemokine receptor. Adult Sprague-Dawley rats were injected intraperitoneally with kainic acid (12 mg/kg), and in situ hybridization of CCR5 mRNA was performed at 12 h, 1, 3, or 7 days, posttreatment. Autoradiographic films and wet photographic emulsions demonstrated the very low expression of CCR5 mRNA in normal brain parenchyma, as well as in the microvasculature and ventricular/choroid plexus systems. After kainic acid treatment, brain CCR5 mRNA expression increased progressively from 12 h to 7 days, especially in the olfactory system, amygdaloid complex, thalamus, hippocampal formation, septum, and neocortex. This increase paralleled that of activated microglial cells as shown, using the microglial marker, OX-42. Moreover, CCR5 mRNA ISH combined with neuron-specific enolase immunocytochemistry showed that, in addition to its glial expression, CCR5 mRNA is expressed in neurons in the normal brain and, to a lesser extent, after kainate treatment due to neuronal losses. Finally, CCR5 protein is detected by immunocytochemistry in neurodegenerative areas in numerous glial cells, as well as in neurons, as clearly shown in the hippocampal formation. In summary, the chemokine receptor CCR5 is expressed by neuronal and non-neuronal cell types in the normal brain and is upregulated in both cell types after an insult.
Collapse
Affiliation(s)
- Françoise Mennicken
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, LaSalle-Verdun, Québec, Canada
| | | | | |
Collapse
|
44
|
Burns JB, Bartholomew BD, Lobo ST. Isolation of CD45RO+, memory T cells recognizing proteolipid protein from neurologically normal subjects. Cell Immunol 2001; 212:44-50. [PMID: 11716528 DOI: 10.1006/cimm.2001.1842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies provide evidence for in vivo activation of MBP-reactive T cells in subjects with multiple sclerosis. In general, in vivo activation occurs less frequently in healthy control subjects. In the current study we examined the T cell response to proteolipid protein in PBMC isolated from 9 control subjects. We used CD45 isotypes as markers for memory and naïve T cells to assess in vivo activation of CD4+ T cells reactive with PLP. In contrast to the results obtained using MBP, we found that approximately 50% of PLP-reactive T cells were derived from the CD45RO+ memory subpopulation of T cells isolated from these control subjects. These results indicate that some myelin-reactive T cells have undergone activation in vivo in neurologically intact individuals. This suggests that immunoregulatory mechanisms may be present that prevent overt disease in spite of in vivo activation of PLP-reactive T cells.
Collapse
Affiliation(s)
- J B Burns
- Department of Neurology, Neurovirology Research 151B, V.A. Medical Center, University of Utah, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | | | | |
Collapse
|
45
|
Hauben E, Agranov E, Gothilf A, Nevo U, Cohen A, Smirnov I, Steinman L, Schwartz M. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 2001; 108:591-9. [PMID: 11518733 PMCID: PMC209402 DOI: 10.1172/jci12837] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 06/18/2001] [Indexed: 01/28/2023] Open
Abstract
Spinal cord injury results in a massive loss of neurons, and thus of function. We recently reported that passive transfer of autoimmune T cells directed against myelin-associated antigens provides acutely damaged spinal cords with effective neuroprotection. The therapeutic time window for the passive transfer of T cells was found to be at least 1 week. Here we show that posttraumatic T cell-based active vaccination is also neuroprotective. Immunization with myelin-associated antigens such as myelin basic protein (MBP) significantly promoted recovery after spinal cord contusion injury in the rat model. To reduce the risk of autoimmune disease while retaining the benefit of the immunization, we vaccinated the rats immediately after severe incomplete spinal cord injury with MBP-derived altered peptide ligands. Immunization with these peptides resulted in significant protection from neuronal loss and thus in a reduced extent of paralysis, assessed by an open-field behavioral test. Retrograde labeling of the rubrospinal tracts and magnetic resonance imaging supported the behavioral results. Further optimization of nonpathogenic myelin-derived peptides can be expected to lead the way to the development of an effective therapeutic vaccination protocol as a strategy for the prevention of total paralysis after incomplete spinal cord injury.
Collapse
Affiliation(s)
- E Hauben
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Injury to the CNS is often followed by a spread of damage (secondary degeneration), resulting in neuronal losses that are substantially greater than might have been predicted from the severity of the primary insult. Studies in our laboratory have shown that injured CNS neurons can benefit from active or passive immunization with CNS myelin-associated antigens. The fact that autoimmune T-cells can be both beneficial and destructive, taken together with the established phenomenon of genetic predisposition to autoimmune diseases, raises the question: will genetic predisposition to autoimmune diseases affect the outcome of traumatic insult to the CNS? Here we show that the survival rate of retinal ganglion cells in adult mice or rats after crush injury of the optic nerve or intravitreal injection of a toxic dosage of glutamate is up to twofold higher in strains that are resistant to the CNS autoimmune disease experimental autoimmune encephalomyelitis (EAE) than in susceptible strains. The difference was found to be attributed, at least in part, to a beneficial T-cell response that was spontaneously evoked after CNS insult in the resistant but not in the susceptible strains. In animals of EAE-resistant but not of EAE-susceptible strains devoid of mature T-cells (as a result of having undergone thymectomy at birth), the numbers of surviving neurons after optic nerve injury were significantly lower (by 60%) than in the corresponding normal animals. Moreover, the rate of retinal ganglion cell survival was higher when the optic nerve injury was preceded by an unrelated CNS (spinal cord) injury in the resistant strains but not in the susceptible strains. It thus seems that, in normal animals of EAE-resistant strains (but not of susceptible strains), the injury evokes an endogenous protective response that is T-cell dependent. These findings imply that a protective T-cell-dependent response and resistance to autoimmune disease are regulated by a common mechanism. The results of this study compel us to modify our understanding of autoimmunity and autoimmune diseases, as well as the role of autoimmunity in non-autoimmune CNS disorders. They also obviously have far-reaching clinical implications in terms of prognosis and individual therapy.
Collapse
|
47
|
Schwartz M. Neuroprotection as a treatment for glaucoma: pharmacological and immunological approaches. Eur J Ophthalmol 2001; 11 Suppl 2:S7-11. [PMID: 11592535 DOI: 10.1177/112067210101102s01] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Primary open-angle glaucoma is a chronic, progressive optic neuropathy associated with a gradual decline in visual functions, which may lead to blindness. METHODS In most cases, the optic neuropathy is associated with increased intraocular pressure. However, it is now generally accepted, that normalization of pressure, although necessary, is often not sufficient as a remedial measure. This is because of the existence of additional risk factors, some of which emerge as a consequence of the initial damage. This situation is reminiscent of the response to a traumatic axonal insult: some of the damage is immediate and is caused by the insult itself, while some is secondary and is caused by a deficiency of growth-supportive factors as well as by toxic factors derived from the damaged tissue. Accordingly, we have suggested that glaucoma may be viewed as a neurodegenerative disease and consequently is amenable to any therapeutic intervention applicable to these diseases. CONCLUSIONS There is evidence that neuroprotection can be achieved both pharmacologically and immunologically. Pharmacological intervention (e.g. by using selective alpha-2 adrenergic receptor agonists) neutralizes some of the effects of the nerve-derived toxic factors and possibly increases the ability of the remaining healthy neurons, at any given time, to cope with the stressful conditions. Immunological intervention boosts the body's own repair mechanisms for counteracting the toxicity of physiological compounds acting as stress signals.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Abstract
Primary damage caused by injury to the CNS is often followed by delayed degeneration of initially spared neurons. Studies in our laboratory have shown that active or passive immunization with CNS myelin-associated self-antigens can reduce this secondary loss. Here we show, using four experimental paradigms in rodents, that CNS trauma spontaneously evokes a beneficial T cell-dependent immune response, which reduces neuronal loss. (1) Survival of retinal ganglion cells in rats was significantly higher when optic nerve injury was preceded by an unrelated CNS (spinal cord) injury. (2) Locomotor activity of rat hindlimbs (measured in an open field using a locomotor rating scale) after contusive injury of the spinal cord (T8) was significantly better (by three to four score grades) after passive transfer of myelin basic protein (MBP)-activated splenocytes derived from spinally injured rats than in untreated injured control rats or rats similarly treated with splenocytes from naive animals or with splenocytes from spinally injured rats activated ex vivo with ovalbumin or without any ex vivo activation. (3) Neuronal survival after optic nerve injury was 40% lower in adult rats devoid of mature T cells (caused by thymectomy at birth) than in normal rats. (4) Retinal ganglion cell survival after optic nerve injury was higher (119 +/- 3.7%) in transgenic mice overexpressing a T cell receptor (TcR) for MBP and lower (85 +/- 1.3%) in mice overexpressing a T cell receptor for the non-self antigen ovalbumin than in matched wild types. Taken together, the results imply that CNS injury evokes a T cell-dependent neuroprotective response.
Collapse
|
49
|
Abstract
In glaucoma, as in other degenerative diseases of the central nervous system (CNS), there are some neurons which, although susceptible to degeneration, are amenable to neuroprotection. Until very recently, attempts to attenuate the spread of damage after CNS trauma or in neurodegenerative diseases did not include recruitment of the immune system, because it was assumed that in the CNS any immune activity, particularly autoimmune activity, would be harmful. Using the injured optic nerve of the rat as a model, we recently showed, however, that this 'secondary degeneration' can be slowed down by a well-controlled adaptive immune response, which is mediated by T cells against CNS self-antigens, such as myelin basic protein (MBP), and can be achieved either by passive transfer of MBP-activated T cells or by active immunization with MBP. Accordingly, we suggested that autoimmune T cells can be neuroprotective. We further showed that the neuroprotective autoimmunity is a physiological response to the injury, perhaps insufficient in its natural state, but amenable to boosting. The neuroprotective activity of these T cells probably depends on their reactivation by their specific antigen after they are targeted to the injured nerve. As nerve degeneration is initiated and sustained by many factors, it would probably best be counteracted by a comprehensive type of therapy rather than treatment that addresses only some aspects of nerve damage. T cell therapy, being physiological rather than pharmaceutical in nature, may provide a global answer. However, since the neuroprotective immune response is directed against the self, it must be rigorously regulated to avoid inducing an autoimmune disease. We showed that the synthetic copolymer Cop-1 can passively or actively evoke T cell-mediated neuroprotection, probably by cross-reacting with MBP. Safe synthetic peptides that resemble self-antigens and are cross-activated by CNS-associated self antigens may be a useful starting point for the development of anti-self immunity for neuroprotective purposes.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Bechmann I, Peter S, Beyer M, Gimsa U, Nitsch R. Presence of B‐7.2 (CD86) and lack of B7‐1 (CD80) on myelin‐phagocytosing MHC‐II positive rat microglia are associated with nondestructive immunity in vivo. FASEB J 2001. [DOI: 10.1096/fsb2fj000563fje] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ingo Bechmann
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Susanne Peter
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Martin Beyer
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Ulrike Gimsa
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Robert Nitsch
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| |
Collapse
|