1
|
Kanellopoulos JM, Delarasse C. Pleiotropic Roles of P2X7 in the Central Nervous System. Front Cell Neurosci 2019; 13:401. [PMID: 31551714 PMCID: PMC6738027 DOI: 10.3389/fncel.2019.00401] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The purinergic receptor P2X7 is expressed in neural and immune cells known to be involved in neurological diseases. Its ligand, ATP, is a signaling molecule that can act as a neurotransmitter in physiological conditions or as a danger signal when released in high amount by damaged/dying cells or activated glial cells. Thus, ATP is a danger-associated molecular pattern. Binding of ATP by P2X7 leads to the activation of different biochemical pathways, depending on the physiological or pathological environment. The aim of this review is to discuss various functions of P2X7 in the immune and central nervous systems. We present evidence that P2X7 may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies: epilepsy, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, age-related macular degeneration and cerebral artery occlusion.
Collapse
Affiliation(s)
| | - Cécile Delarasse
- Inserm, Sorbonne Université, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
Almeida A. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci 2013; 70:71-88. [PMID: 22695677 PMCID: PMC11113535 DOI: 10.1007/s00018-012-1029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
Abstract
Apoptosis is a common mode of cell death that contributes to neuronal loss associated with neurodegeneration. Single-nucleotide polymorphisms (SNPs) in chromosomal DNA are contributing factors dictating natural susceptibility of humans to disease. Here, the most common SNPs affecting neuronal vulnerability to apoptosis are reviewed in the context of neurological disorders. Polymorphic variants in genes encoding apoptotic proteins, either from the extrinsic (FAS, TNF-α, CASP8) or the intrinsic (BAX, BCL2, CASP3, CASP9) pathways could be highly valuable in the diagnosis of neurodegenerative diseases and stroke. Interestingly, the Arg72Pro SNP in TP53, the gene encoding tumor suppressor p53, was recently revealed a biomarker of poor prognosis in stroke due to its ability to modulate neuronal apoptotic death. Search for new SNPs responsible for genetic variability to apoptosis will ensure the implementation of novel diagnostic and prognostic tools, as well as therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Angeles Almeida
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the CNS. Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), are target cells in MS. Although the etiology of MS is poorly known, new insights suggest oligodendrocyte apoptosis as one of the critical events followed by glial activation and infiltration of lymphocytes and macrophages. A major breakthrough in delineation of the mechanism of cell death, perivascular cuffing, and glial activation came from elucidation of the sphingolipid signal transduction pathway. The sphingolipid signal transduction pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and downstream targets. Sphingomyelin, a major component of myelin membrane formed by mature oligodendrocytes, is abundant in the CNS and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Similarly, under certain conditions, sphingosine produced from ceramide by ceramidase is phosphorylated by sphingosine kinases to sphingosine-1 phosphate, another potent second messenger molecule. Both ceramide and sphingosine-1 phosphate regulate life and death of many cell types including brain cells and participate in pathogenic processes of MS. In this review, we have made an honest attempt to compile recent findings made by others and us relating to the role of sphingolipids in the disease process of MS.
Collapse
Affiliation(s)
- Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St., Chicago, IL 60612, USA
| | | |
Collapse
|
4
|
Göbel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hünig T, Meuth SG, Wiendl H. Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack. Glia 2010; 58:469-80. [PMID: 19780193 DOI: 10.1002/glia.20938] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Demyelination and death of oligodendrocytes accompanied by transection of neurites and neuronal apoptosis are pathological hallmarks of cortical and subcortical gray matter lesions in demyelinating viral and autoimmune inflammatory CNS disorders. In these disorders, leukocortical lesions, containing the perikarya of most efferent neurons, display pronounced infiltration by CD8(+) T cells of putative specificity for oligodendrocyte- and myelin-related antigens. Hence, neuronal apoptosis in gray matter lesions may be a collateral effect of an oligodendrocyte-directed attack by CD8(+) T cells. To challenge this hypothesis, we transferred activated antigen-specific CD8(+) T cells (OT-I T cells) into acute coronal brain slices from mice selectively expressing ovalbumin as a cytosolic neo-self-antigen in oligodendrocytes (ODC-OVA mice). We studied mechanisms and kinetics of oligodendroglial and neuronal apoptosis in the neocortex and hippocampus, using multicolor staining for different cell types and activated caspase-3. Within the gray matter, a single OT-I T cell caused simultaneous caspase-3 activation in about 30 ODCs and 10 neurons within 6 h in a strictly antigen-dependent manner. Experiments with OT-I T cells genetically deficient for perforin or the granzyme B-cluster and with blocking anti-FasL antibodies as well as proinflammatory cytokines revealed, that collateral apoptosis of neurons was likely due to a spillover of perforin and granzyme(s) from the OT-I T cell itself or the immunological synapse that it selectively formed with antigen-presenting oligodendrocytes. Collateral neuronal apoptosis could contribute to substantial neuronal loss in gray matter lesions and cause persistent neurological impairment in both acute and chronic gray matter lesions in various inflammatory CNS disorders.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Encefalomielite acuta disseminata. Neurologia 2010. [PMCID: PMC7147914 DOI: 10.1016/s1634-7072(10)70499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L’encefalomielite acuta disseminata (EMAD) è una malattia infiammatoria autoimmune che coinvolge il cervello e il midollo spinale. Descritta soprattutto nel bambino, generalmente fa seguito a un episodio infettivo o a una vaccinazione, ma può essere idiopatica. La sua presentazione clinica comprende un’encefalopatia acuta associata a segni e a sintomi neurologici multifocali. La sua diagnosi si basa sulla clinica e sulla risonanza magnetica, che rivela lesioni multifocali della sostanza bianca in ipersegnale T2 mal delimitate, della stessa età, che prendono il gadolinio e possono anche riguardare il talamo e i nuclei della base. Il liquor può mostrare un’iperlinfocitosi con iperproteinorrachia e, a volte, la presenza di bande oligoclonali transitorie. La sua prognosi è piuttosto favorevole, passato l’episodio monofasico, con un trattamento specifico. È quindi fondamentale escludere fino dall’inizio le sue molte diagnosi differenziali. Il trattamento dell’EMAD, di prima scelta, consiste in boli di corticosteroidi endovenosi a forti dosi. In caso di insuccesso bisogna ricorrere agli scambi plasmatici o alle immunoglobuline endovenose. Anche se, di solito, è monofasica, possono verificarsi altri episodi che fanno allora pensare a un’EMAD multifasica. Tuttavia, in alcuni casi queste nuove poussées sono una modalità di esordio di un’autentica sclerosi multipla.
Collapse
|
6
|
Omokaro SO, Desierto MJ, Eckhaus MA, Ellison FM, Chen J, Young NS. Lymphocytes with aberrant expression of Fas or Fas ligand attenuate immune bone marrow failure in a mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3414-22. [PMID: 19265119 PMCID: PMC3513944 DOI: 10.4049/jimmunol.0801430] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone marrow (BM) and lymphocyte samples from aplastic anemia patients show up-regulated Fas and Fas-ligand (FasL) expression, respectively, supporting a relationship between immune-mediated BM destruction and the Fas apoptotic pathway. Mice with spontaneous lymphoproliferation (lpr) and generalized lymphoproliferative disease (gld) mutations exhibit abnormal expression of Fas and FasL, serving as potential models to elucidate underlying mechanisms of BM failure. We examined cellular and functional characteristics of lpr and gld mutants on the C57BL/6 (B6) background. Lymph node (LN) cells from lpr and gld mice produced less apoptosis when coincubated with C.B10-H2(b)/LilMcd (C.B10) BM cells in vitro. This functional difference was confirmed by infusing lpr, gld, and B6 LN cells into sublethally irradiated CB10 mice. All donor LN cells showed significant T cell expansion and activation, but only B6 LN cells caused severe BM destruction. Mice infused with gld LN cells developed mild to moderate BM failure despite receiving FasL-deficient effectors, thus suggesting the existence of alternative pathways or incomplete penetrance of the mutation. Paradoxically, mice that received Fas-deficient lpr LN cells also had reduced BM failure, likely due to down-regulation of proapoptotic genes, an effect that can be overcome by higher doses of lpr LN cells. Our model demonstrates that abnormal Fas or FasL expression interferes with the development of pancytopenia and marrow hypoplasia, validating a major role for the Fas/FasL cytotoxic pathway in immune-mediated BM failure, although disruption of this pathway does not completely abolish marrow destruction.
Collapse
Affiliation(s)
- Stephanie O Omokaro
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda,MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity? Trends Neurosci 2008; 31:478-86. [DOI: 10.1016/j.tins.2008.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 12/20/2022]
|
8
|
Waid DM, Vaitaitis GM, Pennock ND, Wagner DH. Disruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T cells promotes diabetes. J Leukoc Biol 2008; 84:431-9. [PMID: 18469093 DOI: 10.1189/jlb.1207857] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although regulatory T cells (Tregs) are well described, identifying autoaggressive effector T cells has proven more difficult. However, we identified CD4loCD40+ (Th40) cells as being necessary and sufficient for diabetes in the NOD mouse model. Importantly, these cells are present in pancreata of prediabetic and diabetic NOD mice, and Th40 cells but not CD4+CD40(-) T cells transfer progressive insulitis and diabetes to NOD.scid recipients. Nonobese-resistant (NOR) mice have the identical T cell developmental background as NOD mice, yet they are diabetes-resistant. The seminal issue is how NOR mice remain tolerant to diabetogenic self-antigens. We show here that autoaggressive T cells develop in NOR mice and are confined to the Th40 subset. However, NOR mice maintain Treg numbers equivalent to their Th40 numbers. NOD mice have statistically equal numbers of CD4+CD25+forkhead box P3+intrinsic Tregs compared with NOR or nonautoimmune BALB/c mice, and NOD Tregs are equally as suppressive as NOR Tregs. A critical difference is that NOD mice develop expanded numbers of Th40 cells. We suggest that a determinant factor for autoimmunity includes the Th40:Treg ratio. Mechanistically, NOD Th40 cells have low susceptibility to Fas-induced cell death and unlike cells from NOR and BALB/c mice, have predominantly low Fas expression. CD40 engagement of Th40 cells induces Fas expression but further confers resistance to Fas-mediated cell death in NOD mice. A second fundamental difference is that NOD Th40 cells undergo much more rapid homeostatic expansion than Th40 cells from NOR mice.
Collapse
Affiliation(s)
- Dan M Waid
- Webb-Waring Institute and Department of Medicine, University of Colorado Denver School of Medicine, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
9
|
Jiang JL, Peng YP, Qiu YH, Wang JJ. Effect of endogenous catecholamines on apoptosis of Con A-activated lymphocytes of rats. J Neuroimmunol 2007; 192:79-88. [DOI: 10.1016/j.jneuroim.2007.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 12/24/2022]
|
10
|
Kalman B, Laitinen K, Komoly S. The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 2007; 188:1-12. [PMID: 17493689 DOI: 10.1016/j.jneuroim.2007.03.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis is an immune-mediated disorder of the central nervous system. Major pathological characteristics include the loss of oligodendrocytes, demyelination and neuroaxonal depletion in association with inflammation. The complex pathophysiology of tissue loss is only partially understood. Here we discuss a variety of mitochondrion-driven mechanisms involved in immune regulation, oligodendrocyte depletion and neurodegeneration. The recognition of a mitochondrial link between inflammation and neurodegeneration underscores the importance of an early aggressive intervention for halting inflammation and preventing neurodegeneration, and identifies the mitochondrion as a potential target in neuroprotection.
Collapse
|
11
|
Comi C, Gaviani P, Leone M, Ferretti M, Castelli L, Mesturini R, Ubezio G, Chiocchetti A, Osio M, Muscia F, Bogliun G, Corso G, Gavazzi A, Mariani C, Cantello R, Monaco F, Dianzani U. Fas-mediated T-cell apoptosis is impaired in patients with chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst 2006; 11:53-60. [PMID: 16519782 DOI: 10.1111/j.1085-9489.2006.00063.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Fas death receptor is expressed by activated lymphocytes and is involved in switching-off the immune response. Its inherited defects cause auto-immune lymphoproliferative syndrome. Impaired Fas function may also play a role in other auto-immune diseases, such as multiple sclerosis and type 1 diabetes mellitus. The aim of this work was to evaluate Fas function in T cells from patients with chronic inflammatory demyelinating polyneuropathy (CIDP). We evaluated Fas-induced apoptosis in T-cell lines from 27 patients with CIDP, 12 patients with acute inflammatory demyelinating polyneuropathy (AIDP), and 110 controls. CIDP patients displayed lower Fas function than both AIDP patients and controls, whereas no statistically significant difference was found between AIDP patients and controls. Moreover, Fas function was lower in CIDP patients with progressive course than in those with relapsing-remitting course and lower in CIDP patients with axonal damage than in those with pure demyelination. These data suggest that defective Fas function favours CIDP development and aggressive evolution.
Collapse
Affiliation(s)
- Cristoforo Comi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Medical Sciences, 'A. Avogadro' University of Eastern Piedmont, Maggiore Hospital, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mitsuhashi M, Tomozawa S, Endo K, Shinagawa A. Quantification of mRNA in whole blood by assessing recovery of RNA and efficiency of cDNA synthesis. Clin Chem 2006; 52:634-42. [PMID: 16497944 DOI: 10.1373/clinchem.2005.048983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Current gene expression analysis relies on the assumption that the isolated RNA represents all species of mRNA in proportions equal to those in the original materials. No system is available for absolute quantification of mRNA. METHODS We applied whole blood to 96-well filterplates to trap leukocytes. Lysis buffer containing cocktails of specific reverse primers and known concentrations of synthetic external control RNA (RNA34) was added to filterplates, and cell lysates were transferred to oligo(dT)-immobilized microplates for hybridization. We then synthesized the cDNA in the oligo(dT)-immobilized microplates from these primer sites and used the cDNA for real-time PCR. RNA34 acted as a universal control, and gene amplification results were converted to quantities of mRNA per microliter of whole blood after the recovery of RNA34 in each sample was determined. RESULTS Under fully optimized conditions, both added RNA34 and native mRNA species exhibited approximately 10% recovery from whole blood to real-time PCR. When whole blood was stimulated ex vivo, changes in gene expression as low as 30%-40% were detected with statistical significance, and the experimental CVs were low (10%-20%). CONCLUSION This new system to estimate mRNA copies per microliter of whole blood may allow standardization of gene-expression-based molecular diagnostics.
Collapse
|
13
|
Cudrici C, Niculescu F, Jensen T, Zafranskaia E, Fosbrink M, Rus V, Shin ML, Rus H. C5b-9 Terminal Complex Protects Oligodendrocytes from Apoptotic Cell Death by Inhibiting Caspase-8 Processing and Up-Regulating FLIP. THE JOURNAL OF IMMUNOLOGY 2006; 176:3173-80. [PMID: 16493077 DOI: 10.4049/jimmunol.176.5.3173] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of the terminal complement cascade involving C5 to C9 proteins has a beneficial role for oligodendrocytes (OLG) in experimental allergic encephalomyelitis, an animal model of multiple sclerosis, by protecting them from apoptotic cell death. We have previously shown that sublytic C5b-9 complexes, through posttranslational regulation of Bad, inhibit the mitochondrial pathway of apoptosis induced by serum deprivation. In the present study, we examined the possible involvement of the caspase-8 and Fas pathway in OLG apoptosis and the role of C5b-9 in this process. In a serum-free defined medium, OLG undergo apoptosis and differentiation concomitantly. Under this condition, we found that caspase-8 processing was increased in association with Bid cleavage and markedly reduced expression of cellular FLIP long isoform protein. The caspase-8 inhibitor Z-IETD-FMK inhibited cell death associated with differentiation in a dose-dependent manner. Exposure to C5b-9 induced an inhibition of caspase-8 activation, Bid cleavage, and a significant increase in expression of cellular FLIP long isoform. These C5b-9 effects were reversed by PI3K inhibitor LY294002. C5b-9 also down-regulated the expression of FasL and the Fas-induced apoptosis. These data suggest that C5b-9 through PI3K signaling can rescue OLG from Fas-mediated apoptosis by regulating caspase-8 processing.
Collapse
Affiliation(s)
- Cornelia Cudrici
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hövelmeyer N, Hao Z, Kranidioti K, Kassiotis G, Buch T, Frommer F, von Hoch L, Kramer D, Minichiello L, Kollias G, Lassmann H, Waisman A. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2005; 175:5875-84. [PMID: 16237080 DOI: 10.4049/jimmunol.175.9.5875] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, immunization with myelin Ags leads to demyelination and paralysis. To investigate which molecules are crucial for the pathogenesis of EAE, we specifically assessed the roles of the death receptors Fas and TNF-R1. Mice lacking Fas expression in oligodendrocytes (ODCs) were generated and crossed to TNF-R1-deficient mice. To achieve specific deletion of a loxP-flanked fas allele in ODCs, we generated a new insertion transgene, expressing the Cre recombinase specifically in ODCs. Fas inactivation alone as well as the complete absence of TNF-R1 protected mice partially from EAE induced by the immunization with myelin ODC glycoprotein. The double-deficient mice, however, showed almost no clinical signs of EAE after immunization. Histological analysis revealed that demyelination was suppressed in CNS tissue and that lymphocyte infiltration was notably reduced. We conclude that the death receptors Fas and TNF-R1 are major initiators of ODC apoptosis in EAE. Although only moderate reduction of lymphocyte infiltration into CNS tissue was observed, the absence of these receptors appears to confer protection from demyelination and development of clinical disease.
Collapse
Affiliation(s)
- Nadine Hövelmeyer
- Laboratory for Molecular Immunology, Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ruggieri M, Avolio C, Scacco S, Pica C, Lia A, Zimatore GB, Papa S, Livrea P, Trojano M. Glatiramer acetate induces pro-apoptotic mechanisms involving Bcl-2, Bax and Cyt-c in peripheral lymphocytes from multiple sclerosis patients. J Neurol 2005; 253:231-6. [PMID: 16184340 DOI: 10.1007/s00415-005-0965-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/12/2005] [Accepted: 05/06/2005] [Indexed: 11/24/2022]
Abstract
Apoptotic deletion of autoreactive T-cells is defective in patients with multiple sclerosis (MS). Glatiramer acetate (GA) treatment seems to restore apoptosis of detrimental T-cells. We analyzed the mitochondria membrane pro- (Bax) and anti-apoptotic (Bcl- 2) and cytosolic pro-apoptotic (Cyt-c, APAF-1) proteins expression in peripheral lymphocytes from relapsing-remitting (RR) MS patients during GA treatment. Blood samples were collected from 8 healthy controls (HCs) and from 8 RR MS patients prior to and every three months during the 9 months of GA treatment. Peripheral blood mononuclear cells (PBMNCs) Bcl-2, Bax, Cyt-c and APAF-1 were quantified by western blot followed by densitometric scanning and Bax/Bcl-2, cytosolic Cyt-c/Bcl-2 and APAF-1/Bcl-2 ratios were calculated. T-cells were in vitro tested for oxygen consumption by a respirometric analysis. Bax/Bcl-2, cytosolic Cyt-c/Bcl-2 and APAF-1/Bcl-2 ratios in untreated MS patients were significantly (p < 0.05) lower than in HCs. Bax/Bcl-2 ratio increased (p = 0.03) and Cyt-c/Bcl-2 ratio showed a trend to increase during the 9 months of GA treatment in MS patients. A reduction of 58% and 59% in oxygen consumption by PBMNCs was evident after GA treatment in vitro or when GA treated patients' cells were compared with those from HCs, respectively. Our findings suggest that GA exerts a regulatory effect on peripheral T lymphocytes through pro-apoptosis mechanisms involving mitochondria and cytosolic proteins.
Collapse
Affiliation(s)
- M Ruggieri
- Dept. of Neurological and Psychiatric Sciences, University of Bari, Policlinico, Piazza Giulio Cesare, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saresella M, Marventano I, Speciale L, Ruzzante S, Trabattoni D, Della Bella S, Filippi M, Fasano F, Cavarretta R, Caputo D, Clerici M, Ferrante P. Programmed cell death of myelin basic protein-specific T lymphocytes is reduced in patients with acute multiple sclerosis. J Neuroimmunol 2005; 166:173-9. [PMID: 16161213 DOI: 10.1016/j.jneuroim.2005.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the apoptosis of myelin basic protein (MBP)-specific T lymphocytes in multiple sclerosis (MS) patients with acute (AMS) or stable (SMS) MS by evaluating the expression of apoptosis markers on peripheral cells. Cells of healthy controls (HC) were evaluated as well. Results showed that mitogen-stimulated apoptosis was comparable among patients and controls, whereas MBP-stimulated CD4+ and CD8+ 7-AAD+ and 7-AAD+ Fas+ cell (apoptotic cells) were significantly reduced in AMS patients. A reduction of the apoptotic rate of myelin-specific CD4+ and CD8+ T lymphocytes could be involved in the immune-mediated destruction of the myelin sheath seen in AMS patients.
Collapse
Affiliation(s)
- Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, IRCCS S. Maria Nascente, Don C. Gnocchi Foundation, 66, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hayley S, Crocker SJ, Smith PD, Shree T, Jackson-Lewis V, Przedborski S, Mount M, Slack R, Anisman H, Park DS. Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci 2004; 24:2045-53. [PMID: 14985447 PMCID: PMC6730390 DOI: 10.1523/jneurosci.4564-03.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence suggests that apoptotic and inflammatory factors contribute to the demise of dopaminergic neurons. In this respect, Fas, a member of the tumor necrosis factor receptor family with proapoptotic and inflammatory functions, was reported to be elevated within the striatum and substantia nigra pars compacta (SNc) of Parkinson's disease (PD) patients. Accordingly, the present investigation evaluated the function of Fas in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Injection of MPTP increased nigral Fas expression, and mice lacking Fas displayed attenuated MPTP-induced SNc dopaminergic loss and microglial activation. In addition, Fas induction was blocked by expression of a dominant-negative c-Jun adenovirus that also protected dopamine neurons from MPTP-induced damage. Together, these data suggest the critical nature of the c-Jun-Fas signaling pathway in MPTP-induced neuronal loss. Although critical for degeneration of the soma, Fas deficiency did not significantly prevent the reduction of dopaminergic terminal fibers within the striatum or normalize the activation of striatal microglia and elevation of the postsynaptic activity marker DeltaFosB induced by denervation. Interestingly, Fas-deficient mice displayed a pre-existing reduction in striatal dopamine levels and locomotor behavior when compared with wild-type mice. Despite the reduced terminals, dopamine levels were not further suppressed by MPTP treatment in mutant mice, raising the possibility of a compensatory response in basal ganglia function in Fas-deficient mice.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adenoviridae/genetics
- Animals
- Cell Death/drug effects
- Cell Death/genetics
- Corpus Striatum/drug effects
- Corpus Striatum/enzymology
- Corpus Striatum/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Drug Resistance/genetics
- Female
- Gene Expression Regulation/drug effects
- Genes, Dominant
- Genes, Reporter
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- JNK Mitogen-Activated Protein Kinases
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Motor Activity/drug effects
- Motor Activity/genetics
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/metabolism
- Parkinsonian Disorders/pathology
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Shawn Hayley
- Ottawa Health Research Institute, Neuroscience Group, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Niculescu T, Weerth S, Niculescu F, Cudrici C, Rus V, Raine CS, Shin ML, Rus H. Effects of Complement C5 on Apoptosis in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2004; 172:5702-6. [PMID: 15100315 DOI: 10.4049/jimmunol.172.9.5702] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement activation is involved in the initiation of Ab-mediated inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). At a sublytic dose, the C5b-9 membrane attack complex protects oligodendrocytes (OLG) from apoptosis. Using C5-deficient (C5-d) mice, we previously showed a dual role for C5: enhancement of inflammatory demyelination in acute EAE, and promotion of remyelination during recovery. In this study, we investigated the role of C5 in apoptosis in myelin-induced EAE. In acute EAE, C5-d and C5-sufficient (C5-s) mice had similar numbers of total apoptotic cells, whereas C5-s had significantly fewer than C5-d during recovery. In addition, although both groups of mice displayed TUNEL(+) OLG, there were significantly fewer in C5-s than in C5-d during both acute EAE and recovery. Gene array and immunostaining of apoptosis-related genes showed that Fas ligand expression was higher in C5-s. In C5-s mice, Fas(+) cells were also higher than in C5-d mice in acute EAE; however, these cells were significantly reduced during recovery. Together, these findings are consistent with the role of C5, possibly by forming the membrane attack complex, in limiting OLG apoptosis in EAE, thus promoting remyelination during recovery.
Collapse
Affiliation(s)
- Teodora Niculescu
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. ACTA ACUST UNITED AC 2004; 44:65-81. [PMID: 14739003 DOI: 10.1016/j.brainresrev.2003.08.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis, also known as programmed cell death, is the major type of cell death involved in normal development, regeneration, proliferation and pathologic degeneration in the central nervous system (CNS). The apoptotic process can be divided further into two pathways depending on the involvement of mitochondria and related biochemical cascades. The internal pathway of apoptosis is initiated by a variety of cytotoxic stimuli and mediated by the release of cytochrome c and subsequent activation of downstream caspases. The external pathway is mainly triggered by ligation of death receptors such as Fas, tumor necrosis factor (TNF)-related apoptosis inducing ligand-R1 (TRAIL-R1), TRAIL-R2 and TNFRp55, and mediated by direct activation of upstream caspases. The Fas-FasL system has been known as a prototypic inducer of extrinsic cell death responsible for cell-mediated cytotoxicity, peripheral immune regulation, immune privilege and "counterattack" of malignant tumor cells against the host immune system. Fas and FasL are expressed in the normal CNS, and expression increases in inflamed and degenerated brains. Like other specialized tissues such as the eye and testis, the Fas-FasL system is thought to be involved in immune suppressed status in the CNS. Expression of Fas and FasL is significantly elevated in a variety of the neurologic disorders, suggesting the possibility that this system may play roles in degenerative and inflammatory responses in the CNS. Therefore, the FasL-Fas system should be considered as a double-edged sword in the CNS: maintaining the immune suppressed status in normal brain and inducing neuronal cell death and inflammation in a variety of neurologic disorders.
Collapse
Affiliation(s)
- Chulhee Choi
- The Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, 11-1 Daehyun-dong, Sudaemun-gu, Seoul 120-750, South Korea.
| | | |
Collapse
|
20
|
Kantarci OH, Hebrink DD, Achenbach SJ, Atkinson EJ, de Andrade M, McMurray CT, Weinshenker BG. CD95 polymorphisms are associated with susceptibility to MS in women. J Neuroimmunol 2004; 146:162-70. [PMID: 14698859 DOI: 10.1016/j.jneuroim.2003.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CD95/CD95L interaction results in activation-induced apoptosis thereby regulating clonal expansion of T cells outside the thymus. Genetic defects in this system result in autoimmune lymphoproliferation in mice and men. CD95-induced cell death may be defective in MS. We studied the association of CD95 and CD95L polymorphisms with MS in 221 unique patients representing 79% ascertainment in Olmsted County, MN, and 442 gender-, age- and ethnicity-matched controls. Being a homozygote for the G allele of CD95 5'(-670)*A-->G SNP (p=0.034; OR: 1.59, 95% CI: 1.06-2.38) and for the C allele of CD95 E7(74)*C-->T SNP (p=0.007; OR: 1.73, 95% CI: 1.17-2.56) increased susceptibility to MS exclusively in women. There was strong but incomplete linkage disequilibrium between the two markers (p<0.001; D'=0.546). Homozygosity for 5'(-670)*A or E7(74)*C explained 28% of risk of MS in women but 0% of the risk in men in Olmsted County, MN. Our results agree with the previously published studies and highlight that the association of the polymorphisms is restricted to women with MS. We did not find an association between CD95L and susceptibility to MS nor CD95 or CD95L and age of onset, disease course and disease severity.
Collapse
Affiliation(s)
- Orhun H Kantarci
- Department of Neurology, Mayo Clinic and Foundation, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Crist SA, Griffith TS, Ratliff TL. Structure/function analysis of the murine CD95L promoter reveals the identification of a novel transcriptional repressor and functional CD28 response element. J Biol Chem 2003; 278:35950-8. [PMID: 12855690 DOI: 10.1074/jbc.m306220200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD28 costimulation, an important second signal for antigen-mediated T cell activation, is known to enhance expression of several genes important for the regulation of CD4+ T cell effector function including interleukin-2 and CD154. Previous studies demonstrate CD28-mediated enhancement of the transcription and expression of Fas ligand (CD95L) in T cell lines, suggesting a regulatory link between CD28 and CD95L expression. These results served as the basis for structure/function analysis of the CD95L promoter to elucidate the mechanism for CD28-mediated enhancement of CD95L. In this report, we describe a novel response element, located at -210 to -201 bp upstream of the transcription start site, that confers CD28 responsiveness to the CD95L gene. This response element is homologous to the CD28 response element (CD28RE) previously identified in the IL-2 promoter and bears structural similarities to a newly identified CD28RE in the CD154 promoter. We further demonstrate that CD28-mediated enhancement of promoter activity correlates with enhanced expression of CD95L mRNA, cell surface expression of CD95L protein, and increased apoptosis of CD95+ target cells. These results demonstrate a direct transcriptional regulatory role for CD28 in CD95L-mediated functional activity in CD4+ T cells. Mutational analysis of the CD95L promoter also reveals a novel transcriptional repressor element located approximately 60 bp 5' of the CD28RE. The repressor element bears sequence homology to an activator protein-1 element, constitutively binds c-Fos but not c-Jun, and is activation-independent.
Collapse
Affiliation(s)
- Scott A Crist
- Department of Urology and the Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
22
|
Imitola J, Snyder EY, Khoury SJ. Genetic programs and responses of neural stem/progenitor cells during demyelination: potential insights into repair mechanisms in multiple sclerosis. Physiol Genomics 2003; 14:171-97. [PMID: 12923300 DOI: 10.1152/physiolgenomics.00021.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, it has become evident that the adult mammalian CNS contains a population of neural stem cells (NSCs) described as immature, undifferentiated, multipotent cells, that may be called upon for repair in neurodegenerative and demyelinating diseases. NSCs may give rise to oligodendrocyte progenitor cells (OPCs) and other myelinating cells. This article reviews recent progress in elucidating the genetic programs and dynamics of NSC and OPC proliferation, differentiation, and apoptosis, including the response to demyelination. Emerging knowledge of the molecules that may be involved in such responses may help in the design of future stem cell-based treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Partners MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
23
|
Abstract
Cellular FLIP (c-FLIP), also known as FLICE-inhibitory protein, has been identified as an inhibitor of apoptosis triggered by engagement of death receptors (DRs) such as Fas or TRAIL (TNF-related apoptosis-inducing ligand). cFLIP is recruited to DR signalling complexes, where it prevents caspase activation. Animal models have indicated that c-FLIP plays an important role in T cell proliferation and heart development. Abnormal c-FLIP expression has been identified in various diseases such as multiple sclerosis (MS), Alzheimer's disease (AD), diabetes mellitus, rheumatoid arthritis (RA) and various cancers. This review focuses on recent insights into c-FLIP dysregulation associated with human diseases and addresses the possibilities of using c-FLIP as a therapeutic target.
Collapse
Affiliation(s)
- Olivier Micheau
- INSERM 517, IFR100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, 21079 Dijon cedex, France.
| |
Collapse
|
24
|
Buch T, Uthoff-Hachenberg C, Waisman A. Protection from autoimmune brain inflammation in mice lacking IFN-regulatory factor-1 is associated with Th2-type cytokines. Int Immunol 2003; 15:855-9. [PMID: 12807824 DOI: 10.1093/intimm/dxg086] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IFN-regulatory factor-1 (IRF-1) is a transcription factor that regulates the expression of IFN-induced genes and type I IFN. It has previously been demonstrated that IRF-1-deficient mice show reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by a peptide from myelin basic protein. To further study the role of IRF-1 in brain inflammation, we analyzed EAE induced by immunization with a myelin oligodendrocyte glycoprotein-derived peptide in 129/Sv mice lacking IRF-1. We found that these mice were almost completely resistant to EAE induction and that this unresponsiveness was intrinsically related to the IRF-1 deficiency of the T cells, but not with any other cell type. Furthermore, we show that the amelioration of EAE was associated with increased production of T(h)2-type and decreased production of T(h)1-type cytokines. These results demonstrate that absence of IRF-1 in myelin-specific T cells results in protection from severe EAE and is associated with a skewing of the T cell response towards T(h)2.
Collapse
Affiliation(s)
- Thorsten Buch
- Laboratory of Molecular Immunology, Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
25
|
Abstract
The role of p53, a pro-apoptotic protein, in experimental autoimmune encephalomyelitis (EAE) was investigated using p53-deficient C57BL/6J mice. p53-deficient mice immunised with myelin oligodendrocyte glycoprotein (MOG) exhibited a more severe clinical course of EAE with more severe inflammation in the central nervous system (CNS) compared to wild-type littermates. While T and B cell responses of p53-deficient mice to MOG were comparable to those of wild-type littermates, significantly higher production of IL-6, granulocyte macrophage colony-stimulating factor and IL-10 was observed in lymphocytes exposed to MOG from p53-deficient mice than those from wild-type littermates. Furthermore, a flow cytometric analysis of Annexin V staining showed that apoptosis of CNS-infiltrating cells was less in p53-deficient mice with EAE compared to wild-type littermates. These results suggest that p53 may be involved in the regulatory process of EAE through the control of cytokine production and/or the apoptotic elimination of inflammatory cells.
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | |
Collapse
|
26
|
Sharief MK, Matthews H, Noori MA. Expression ratios of the Bcl-2 family proteins and disease activity in multiple sclerosis. J Neuroimmunol 2003; 134:158-65. [PMID: 12507784 DOI: 10.1016/s0165-5728(02)00400-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is emerging evidence that failure of apoptosis (programmed cell death) of potentially pathogenic T lymphocytes may be involved in the pathogenesis of multiple sclerosis (MS). The commitment of T lymphocytes to die is partly regulated by the Bcl-2 family proteins, which act as a checkpoint upstream of mitochondrial dysfunction. These proteins include the death antagonists Bcl-2 and Bcl-X(L), and death agonists Bax and Bad. Recent studies suggest that altered expression of Bcl-2 family proteins in T lymphocytes is involved in promoting cellular resistance to apoptosis in patients with MS. However, the relationship between these alterations in Bcl-2 proteins expression and clinical disease activity has not yet been evaluated. In this study, we analyzed the expression ratios of pro- to anti-apoptosis Bcl-2 family proteins in patients with clinically active MS and compared results to corresponding ratios in patients with stable MS and relevant control groups. We observed a significant reduction in the expression ratios of pro- to anti-apoptosis Bcl-2 members in peripheral lymphocytes from patients with active MS when compared to corresponding ratios in patients with stable MS or other controls. This imbalance in the expression ratios of pro- and anti-apoptosis proteins was functionally active in reducing cellular susceptibility to apoptosis in active MS. It also correlated with clinical features of disease activity, such as the number of gadolinium-enhancing MRI lesions and clinical relapses. Our findings indicate that dysregulated expression of Bcl-2 family proteins in peripheral lymphocytes is a feature of clinically active multiple sclerosis.
Collapse
Affiliation(s)
- M K Sharief
- Department of Neuroimmunology, Guy's, King's and St. Thomas' School of Medicine, Guy's Hospital, London SE1 1UL, UK.
| | | | | |
Collapse
|
27
|
Abstract
Acute disseminated encephalomyelitis (ADEM) is an acute demyelinating disorder of the central nervous system, and is characterised by multifocal white matter involvement. Diffuse neurological signs along with multifocal lesions in brain and spinal cord characterise the disease. Possibly, a T cell mediated autoimmune response to myelin basic protein, triggered by an infection or vaccination, underlies its pathogenesis. ADEM is a monophasic illness with favourable long term prognosis. The differentiation of ADEM from a first attack of multiple sclerosis has prognostic and therapeutic implications; this distinction is often difficult. Most patients with ADEM improve with methylprednisolone. If that fails immunoglobulins, plasmapheresis, or cytotoxic drugs can be given. Recent literature suggests that a significant proportion of patients with ADEM will later develop multiple sclerosis; however, follow up experience from developing countries does not support this view.
Collapse
Affiliation(s)
- R K Garg
- Department of Neurology, King George's Medical College, Lucknow, India.
| |
Collapse
|
28
|
Tsunoda I, Kuang LQ, Fujinami RS. Induction of autoreactive CD8+ cytotoxic T cells during Theiler's murine encephalomyelitis virus infection: implications for autoimmunity. J Virol 2002; 76:12834-12844. [PMID: 12438608 PMCID: PMC136689 DOI: 10.1128/jvi.76.24.12834-12844.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 09/03/2002] [Indexed: 02/08/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) belongs to the family Picornaviridae and causes demyelinating disease in the spinal cords of infected mice. Although immune responses have been shown to play an important role in demyelination, the precise effector mechanism(s) is unknown. Potentially autoreactive cytotoxic cells could contribute to the destruction. We tested whether an autoreactive cell induced by TMEV infection mediated cytotoxicity by using a 5-h (51)Cr release assay in SJL/J mice. Spleen cells from TMEV-infected mice were stimulated with irradiated TMEV antigen-presenting cells and used as effector cells. The effector cells differed from conventional cytotoxic T cells since these cells could kill both TMEV-infected and uninfected syngeneic or semisyngenic cell lines (PSJLSV and BxSF11gSV) but could not kill an allogeneic cell line (C57SV). The TMEV-induced autoreactive cells were also different from conventional natural killer (NK) cells or lymphokine-activated killer (LAK) cells, because they could kill neither NK cell-sensitive YAC-1 nor NK cell-resistant P815 and EL4 cells. Induction of autoreactive cells was not detected in vaccinia virus infection. The autoreactive killing required direct cell-to-cell contact and was mediated by a Fas-FasL pathway but not by a perforin pathway. The phenotype of the killer cells was CD3(+) CD4(-) CD8(+). Intracerebral inoculation of the effector cells into naive mice caused meningitis and perivascular cuffing not only in the brain parenchyma but also in the spinal cord, with no evidence of viral antigen-positive cells. This is the first report demonstrating that TMEV can induce autoreactive cytotoxic cells that induce central nervous system pathology.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
29
|
Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 2002; 133:233-40. [PMID: 12446028 DOI: 10.1016/s0165-5728(02)00372-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathoadrenergic mechanisms may play a role in multiple sclerosis (MS). We examined catecholamine (CA) levels and production and tyrosine hydroxylase (TH) expression in peripheral blood mononuclear cells (PBMCs) from MS patients, and the correlation between CA production and apoptosis in PBMCs. PBMCs from MS patients had increased norepinephrine (NE) levels. However, phytohaemagglutinin (PHA)-stimulated PBMCs from MS patients with active disease synthesized less dopamine (DA) than cells from both healthy controls and patients with inactive disease. PBMCs from patients with inactive disease showed lower expression of TH. Pharmacological inhibition of TH in cultured PBMCs stimulated with PHA reduced the percentage of apoptotic cells. Since a failure of activation-induced apoptosis in immune cells may be involved in MS, it is suggested that altered CA production by PBMCs may be implicated in such dysregulation.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Clinical and Applied Pharmacology, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okuda Y, Okuda M, Bernard CCA. The suppression of T cell apoptosis influences the severity of disease during the chronic phase but not the recovery from the acute phase of experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2002; 131:115-25. [PMID: 12458043 DOI: 10.1016/s0165-5728(02)00267-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elimination of T cells by apoptosis is considered to be one of the regulatory factors in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To address further the role of apoptotic T cell death in EAE, we investigated myelin oligodendrocyte glycoprotein (MOG)-induced EAE in transgenic mice overexpressing the anti-apoptotic gene, bcl-2, in T cells. During the acute phase of EAE, no significant difference was observed in the clinical course, pathology and T cell response to MOG between bcl-2 transgenic mice and wild-type littermates. While the recovery from the first attack of EAE was not impaired in the bcl-2 transgenic mice, a more severe disease was observed during the chronic phase of the disease even though T and B cell responses to MOG were comparable to those of wild-type littermates. A flow cytometric analysis by Annexin V showed a significant decrease of apoptotic T cells in the central nervous system (CNS) of the bcl-2 transgenic mice with EAE compared with controls during the chronic as well as the acute phase of disease. These results suggest that while T cell apoptosis in the CNS may play a regulatory role in EAE, the spontaneous recovery from acute EAE cannot solely be explained by T cell apoptosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis
- Cells, Cultured
- Chronic Disease
- Cytokines/biosynthesis
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, bcl-2
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Nitrites/analysis
- Spinal Cord/pathology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | |
Collapse
|
31
|
Sharief MK, Noori MA, Douglas MR, Semra YK. Upregulated survivin expression in activated T lymphocytes correlates with disease activity in multiple sclerosis. Eur J Neurol 2002; 9:503-10. [PMID: 12220382 DOI: 10.1046/j.1468-1331.2002.00454.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Programmed cell death (apoptosis) is critical for the normal development and homeostasis of the immune system. There is emerging evidence that failure of apoptosis to eliminate potentially pathogenic, autoreactive T lymphocytes may be involved in the pathogenesis of multiple sclerosis (MS). This failure is related to multiple abnormalities of apoptosis-regulatory molecules that involve survivin, a recently described cell cycle-regulated anti-apoptosis protein. In this study, we investigated the relationship between survivin expression in peripheral T lymphocytes and clinical features of MS. We detected a significant over-expression of survivin in mitogen stimulated T lymphocytes from patients with active MS when compared with corresponding expression in patients with stable MS or those with inflammatory and non-inflammatory neurologic disorders. This over-expression of survivin in patients with active MS correlated with cellular resistance to apoptosis and with features of disease activity, such as disease duration and the number of enhanced lesions on cranial magnetic resonance imaging. There was no correlation between cellular survivin levels and the expression of other apoptosis-inhibitory proteins, such as Bcl-2 and Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (FLIP). Our findings indicate that cellular over-expression of the novel anti-apoptosis protein survivin is a feature of clinically active MS.
Collapse
Affiliation(s)
- M K Sharief
- Department of Neuroimmunology, Guy's, King's and St Thomas' School of Medicine, Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
32
|
Li W, Maeda Y, Ming X, Cook S, Chapin J, Husar W, Dowling P. Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures. J Neurosci Res 2002; 69:189-96. [PMID: 12111800 DOI: 10.1002/jnr.10285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine how oligodendrocytes die following Fas receptor activation. An immortalized human oligodendrocyte hybrid line (MO3.13) was challenged with Fas ligand (FasL), and cell death was assessed by flow cytometry and DNA gel electrophoresis. Caspase activation was determined by either Western immunoblotting on cell extracts or by whole-cell flow cytometry. FasL challenge clearly induced substantial apoptotic cell death in the oligodendrocyte hybrid cell line, as judged by flow cytometry and by the presence of prominent low molecular weight DNA banding patterns after gel electrophoresis. Western immunoblots showed marked increases in cleaved caspase-1, 8, and 3, indicating that the extrinsic Fas death receptor-induced pathway was activated. The intrinsic mitochondrial pathway was also activated, but only at a minimal level. These findings demonstrate that there are several independent molecular sites within the extrinsic caspase cascade in oligodendrocytes where inhibitory compounds may be capable of blocking cell death in vivo.
Collapse
Affiliation(s)
- Weiping Li
- Neurology Service, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey 07109, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Terrazzino S, Bauleo A, Baldan A, Leon A. Peripheral LPS administrations up-regulate Fas and FasL on brain microglial cells: a brain protective or pathogenic event? J Neuroimmunol 2002; 124:45-53. [PMID: 11958821 DOI: 10.1016/s0165-5728(02)00013-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We evaluated the effect of single or repeated intraperitoneal daily LPS injections on expression of Fas/FasL system within the brain. Results obtained, utilizing real-time quantitative RT-PCR, show that, while a bolus injection of LPS robustly increases hippocampal Fas, but not FasL, mRNA expression, repeated LPS administrations also induce FasL up-regulation. Immunofluorescence studies demonstrated, in turn, an increased number of Fas and FasL immunoreactive microglial cells within the brain parenchyma. The increase in FasL immunoreactivity was, in contrast to Fas, still evident 2 weeks following LPS wash-out. At all times, no Fas-positive immunoreactive neurons nor TUNEL-positive resident brain cells were observed. Collectively, these data provide further support for the existence of innate immune responses in brain and, in addition, raise the possibility that Fas and FasL are, within the brain parenchyma, differentially regulated.
Collapse
|
34
|
Ciusani E, Gelati M, Frigerio S, Pollo B, Massa G, Sacerdote P, Panerai AE, Salmaggi A. Modulation of experimental allergic encephalomyelitis in Lewis rats by administration of a peptide of Fas ligand. J Autoimmun 2001; 17:273-80. [PMID: 11771951 DOI: 10.1006/jaut.2001.0554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of modulation of apoptosis in experimental allergic encephalomyelitis (EAE) in Lewis rats have been investigated using a peptide of the Fas-Ligand protein (FasL-p). The peptide was administered both subcutaneously and intra-cerebro-ventricularly (i.c.v.) after EAE induction. Rats treated subcutaneously with FasL-p showed a worse clinical score as compared to saline treated animals, while i.c.v. treatment with FasL-p did not modify significantly the severity of EAE. Apoptotic lymphomonocytes (identified by TUNEL) infiltrating the brain and the spinal cord were decreased in rats treated i.c.v. with FasL-p. The data suggest that the Fas/Fas-ligand pathway may be modulated by treatments with peptides of Fas-Ligand and that it may be at work within the central nervous system in EAE.
Collapse
Affiliation(s)
- E Ciusani
- Istituto Nazionale Neurologico 'C. Besta', Via Celoria 11, Milan, 20133, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gao YL, Rajan AJ, Raine CS, Brosnan CF. gammadelta T cells express activation markers in the central nervous system of mice with chronic-relapsing experimental autoimmune encephalomyelitis. J Autoimmun 2001; 17:261-71. [PMID: 11771950 DOI: 10.1006/jaut.2001.0547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we assessed the expression of activation markers on gammadelta T cells in central nervous system (CNS) lesions of SJL mice adoptively sensitized to develop experimental autoimmune encephalomyelitis (EAE) using myelin basic protein-reactive T cells. Although disease expression is known to be dependent upon T cells that express the alphabeta T cell receptor (TCR), a role for gammadelta T cells has been implicated in some studies but not in others. Using three-color flow cytometric analysis of both total and gammadelta T cells in spleen and CNS, the data showed that expression of CD69 (early activation marker), CD62L (lymphocyte homing receptor), CD25 (IL-2Ralpha), CD122 (IL-2Rbeta) and CD95/CD95L (Fas/FasL), fluctuated on gammadelta T cells in EAE lesions in a disease-related fashion. Furthermore, the pattern of expression for these markers on gammadelta T cells was distinct from that found on the total lymphocyte population. Cytokine analysis of gammadelta T cells in the CNS demonstrated a bias towards a Th1-like cytokine profile. From these data, we conclude that gammadelta T cells in EAE lesions display an activated phenotype and form a dynamic component of the total lymphocyte population in the CNS, supporting a contributory role for these cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Biomarkers
- CD8 Antigens/physiology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Chronic Disease
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Immunophenotyping
- L-Selectin/physiology
- Lectins, C-Type
- Lymphocyte Activation/immunology
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-2/physiology
- Recurrence
- Spleen/physiology
- T-Lymphocyte Subsets/immunology
- fas Receptor/physiology
Collapse
Affiliation(s)
- Y L Gao
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
36
|
Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 2001; 119:248-60. [PMID: 11585628 DOI: 10.1016/s0165-5728(01)00357-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Kalman B, Lublin FD. Spectrum and classification of inflammatory demyelinating diseases of the central nervous system. Curr Neurol Neurosci Rep 2001; 1:249-56. [PMID: 11898526 DOI: 10.1007/s11910-001-0027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this review is to highlight recent observations concerning the pathogenesis of acute and chronic inflammatory demyelinating diseases in the central nervous system. Without attempting to provide a didactic classification or a complete survey, we emphasize the discriminative nature of new clinical, imaging, and immunopathologic data, which, even in the absence of specific molecular markers, modify our views about the nosologic relations among these overlapping clinicopathologic entities. In the light of new findings, multiple sclerosis may represent a spectrum of demyelinating diseases rather than a single entity.
Collapse
Affiliation(s)
- B Kalman
- Department of Neurology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1137, New York, NY 10029-6574, USA
| | | |
Collapse
|