1
|
Synthetic Secoisolariciresinol Diglucoside (LGM2605) Prevents Asbestos-Induced Inflammation and Genotoxic Cell Damage in Human Mesothelial Cells. Int J Mol Sci 2022; 23:ijms231710085. [PMID: 36077483 PMCID: PMC9456329 DOI: 10.3390/ijms231710085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Although alveolar macrophages play a critical role in malignant transformation of mesothelial cells following asbestos exposure, inflammatory and oxidative processes continue to occur in the mesothelial cells lining the pleura that may contribute to the carcinogenic process. Malignant transformation of mesothelial cells following asbestos exposure occurs over several decades; however, amelioration of DNA damage, inflammation, and cell injury may impede the carcinogenic process. We have shown in an in vitro model of asbestos-induced macrophage activation that synthetic secoisolariciresinol diglucoside (LGM2605), given preventively, reduced inflammatory cascades and oxidative/nitrosative cell damage. Therefore, it was hypothesized that LGM2605 could also be effective in reducing asbestos-induced activation and the damage of pleural mesothelial cells. LGM2605 treatment (50 µM) of huma n pleural mesothelial cells was initiated 4 h prior to exposure to asbestos (crocidolite, 20 µg/cm2). Supernatant and cells were evaluated at 0, 2, 4, and 8 h post asbestos exposure for reactive oxygen species (ROS) generation, DNA damage (oxidized guanine), inflammasome activation (caspase-1 activity) and associated pro-inflammatory cytokine release (IL-1β, IL-18, IL-6, TNFα, and HMGB1), and markers of oxidative stress (malondialdehyde (MDA) and 8-iso-prostaglandin F2a (8-iso-PGF2α). Asbestos induced a time-dependent ROS increase that was significantly (p < 0.0001) reduced (29.4%) by LGM2605 treatment. LGM2605 pretreatment also reduced levels of asbestos-induced DNA damage by 73.6% ± 1.0%. Although levels of inflammasome-activated cytokines, IL-1β and IL-18, reached 29.2 pg/mL ± 0.7 pg/mL and 43.9 pg/mL ± 0.8 pg/mL, respectively, LGM2605 treatment significantly (p < 0.0001) reduced cytokine levels comparable to baseline (non-asbestos exposed) values (3.8 pg/mL ± 0.2 pg/mL and 5.4 pg/mL ± 0.2 pg/mL, respectively). Furthermore, levels of IL-6 and TNFα in asbestos-exposed mesothelial cells were high (289.1 pg/mL ± 2.9 pg/mL and 511.3 pg/mL ± 10.2 pg/mL, respectively), while remaining undetectable with LGM2605 pretreatment. HMGB1 (a key inflammatory mediator and initiator of malignant transformation) release was reduced 75.3% ± 0.4% by LGM2605. Levels of MDA and 8-iso-PGF2α, markers of oxidative cell injury, were significantly (p < 0.001) reduced by 80.5% ± 0.1% and 76.6% ± 0.3%, respectively. LGM2605, given preventively, reduced ROS generation, DNA damage, and inflammasome-activated cytokine release and key inflammatory mediators implicated in asbestos-induced malignant transformation of normal mesothelial cells.
Collapse
|
2
|
Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605) Reduces Asbestos-Induced Cytotoxicity in an Nrf2-Dependent and -Independent Manner. Antioxidants (Basel) 2018; 7:antiox7030038. [PMID: 29498660 PMCID: PMC5874524 DOI: 10.3390/antiox7030038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.
Collapse
|
3
|
Zhang Q, Hu J, Ling K. Molecular views of Arf-like small GTPases in cilia and ciliopathies. Exp Cell Res 2013; 319:2316-22. [PMID: 23548655 PMCID: PMC3742637 DOI: 10.1016/j.yexcr.2013.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The primary cilia are microtubule-based organelles that protrude from most of the eukaryotic cells. Recognized as the cell's antenna, primary cilium functions as a signaling hub for many physiologically and developmentally important signaling cascades. Ciliary dysfunction causes a wide spectrum of syndromic human genetic diseases collectively termed "ciliopathies". Mounting evidences have shown that various small GTPases have been implicated in the context of cilia as well as human ciliopathies. However, how these small GTPases affect cilia formation and function remains poorly understood. Here we review and discuss the ciliary role of three Arf-like small GTPases (Arls), Arl3, Arl6, and Arl13b.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- NIH Mayo Translational PKD Center
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- NIH Mayo Translational PKD Center
| |
Collapse
|
4
|
Pasaje CFA, Bae JS, Park BL, Cheong HS, Jang AS, Uh ST, Kim MK, Kim JH, Park TJ, Lee JS, Kim Y, Park CS, Shin HD. Genetic analysis between FGD6 and aspirin exacerbated respiratory disease in a Korean population. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Autore F, Pagano B, Fornili A, Rittinger K, Fraternali F. In silico phosphorylation of the autoinhibited form of p47(phox): insights into the mechanism of activation. Biophys J 2010; 99:3716-25. [PMID: 21112296 PMCID: PMC2998635 DOI: 10.1016/j.bpj.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022] Open
Abstract
Activation of the multicomponent enzyme NADPH oxidase requires the interaction between the tandem SH3 domain of the cytosolic subunit p47(phox) and the cytoplasmic tail of membrane-bound p22(phox). In the resting state, p47(phox) exists in an autoinhibited conformation stabilized by intramolecular contacts between the SH3 domains and an adjacent polybasic region. Phosphorylation of three serine residues, Ser(303), Ser(304), and Ser(328) within this polybasic region has been shown to be sufficient for the disruption of the intramolecular interactions thereby inducing an active state of p47(phox). This active conformation is accessible to the cytoplasmic tail of p22(phox) and initiates the formation of the membrane-bound functional enzyme complex. Molecular dynamics simulations reveal insights in the mechanism of activation of the autoinhibited form of p47(phox) by in silico phosphorylation, of the three serine residues, Ser(303), Ser(304), and Ser(328). The simulations highlight the major collective coordinates generating the opening and the closing of the two SH3 domains and the residues that cause the unmasking of the p22(phox) binding site.
Collapse
Affiliation(s)
- Flavia Autore
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences & Engineering, King's College, London, United Kingdom
| | - Bruno Pagano
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences & Engineering, King's College, London, United Kingdom
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | - Arianna Fornili
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences & Engineering, King's College, London, United Kingdom
| | - Katrin Rittinger
- Division of Molecular Structure, MRC-National Institute for Medical Research, London, United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences & Engineering, King's College, London, United Kingdom
- KCL Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College, London, United Kingdom
| |
Collapse
|
6
|
Zavarella S, Nakada M, Belverud S, Coniglio SJ, Chan A, Mittler MA, Schneider SJ, Symons M. Role of Rac1-regulated signaling in medulloblastoma invasion. Laboratory investigation. J Neurosurg Pediatr 2009; 4:97-104. [PMID: 19645540 DOI: 10.3171/2009.4.peds08322] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT Medulloblastomas are the most common malignant brain tumors in children. These tumors are highly invasive, and patients harboring these lesions are frequently diagnosed with distant spread. In this study, the authors investigated the role of Rac1, a member of the Rho family of small guanosine triphosphatases, in medulloblastoma invasion. METHODS Three established medulloblastoma cell lines were used: DAOY, UW-228, and ONS-76. Specific depletion of Rac1 protein was accomplished by transient transfection of small interfering RNA. Cell invasion through extracellular matrix (Matrigel) was quantified using a transwell migration assay. Mitogen activated protein kinase activation was determined using phospho-MAP kinase-specific antibodies, and inhibition of MAP kinase pathways was achieved by specific small molecule inhibitors. Localization of Rac1 and its expression levels were determined by immunohistochemical analysis using a Rac1-specific antibody, and Rac1 activation was qualitatively assessed by Rac1 plasma membrane association. RESULTS Small interfering RNA-mediated depletion of Rac1 strongly inhibited medulloblastoma cell invasion. Although depletion of Rac1 inhibited the proliferation of UW-228 cells, and of ONS-76 cells to a lesser extent, it stimulated the proliferation of DAOY cells. Depletion of Rac1 also inhibited the activation of the ERK and JNK MAP kinase pathways, and inhibition of either pathway diminished invasion and proliferation. Immunohistochemical analysis demonstrated that the Rac1 protein was overexpressed in all medulloblastoma tumors examined, and indicated that Rac1 was hyperactive in 6 of 25 tumors. CONCLUSIONS The authors' data show that Rac1 is necessary for the invasive behavior of medulloblastoma cells in vitro, and plays a variable role in medulloblastoma cell proliferation. In addition, these results indicate that Rac1 stimulates medulloblastoma invasion by activating the ERK and JNK pathways. The authors suggest that Rac1 and signaling elements controlled by this guanosine triphosphatase may serve as novel targets for therapeutic intervention in malignant medulloblastomas.
Collapse
Affiliation(s)
- Salvatore Zavarella
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Vincent F, Cook SP, Johnson EO, Emmert D, Shah K. Engineering unnatural nucleotide specificity to probe G protein signaling. ACTA ACUST UNITED AC 2007; 14:1007-18. [PMID: 17884633 DOI: 10.1016/j.chembiol.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
G proteins comprise approximately 0.5% of proteins encoded by mammalian genomes. To date, there exists a lack of small-molecule modulators that could contribute to their functional study. In this report, we present the use of H-Ras to develop a system that answers this need. Small molecules that allow for the highly specific inhibition or activation of the engineered G protein were developed. The rational design preserved binding of the natural substrates to the G protein, and the mutations were functionally innocuous in a cellular context. This tool can be used for isolating specific G protein effectors, as we demonstrate with the identification of Nol1 as a putative effector of H-Ras. Finally, the generalization of this system was confirmed by applying it to Rap1B, suggesting that this method will be applicable to other G proteins.
Collapse
Affiliation(s)
- Fabien Vincent
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
8
|
Watanabe Y, Tsuboi H, Koyama M, Kubo M, Del Carpio CA, Broclawik E, Ichiishi E, Kohno M, Miyamoto A. Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity. Comput Biol Chem 2006; 30:303-12. [PMID: 16798095 DOI: 10.1016/j.compbiolchem.2006.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 11/26/2022]
Abstract
The phagocyte NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of superoxides. Chronic granulomatous disease (CGD) is an inherited immune deficiency caused by the absence of certain components of the NADPH oxidase. Key to the activation of the NADPH oxidase is the cytoplasmic subunit p47phox, which includes the tandem SH3 domains (N-SH3 and C-SH3). In active phagocytes, p47phox forms a stable complex with the cytoplasmic region of membrane subunit p22phox that forms a left-handed polyproline type-II (PPII) helix conformation. In this report, we have analyzed the conformational changes of p47phox-p22phox complexes of wild-type and three mutants, which have been detected in CGD patients, using molecular dynamics simulations. We have found that in the wild-type, two basal planes of PPII prism in cytoplasmic region of p22phox interacted with N-SH3 and C-SH3. In contrast, in the modeled mutants, the residue at the ape of PPII helix, which interacts simultaneously with both of the tandem SH3 domains in the wild-type, moved toward C-SH3. Furthermore, interaction energies of the cytoplasmic region of p22phox with C-SH3 tend to decrease in these mutants. All these findings led us to conclude that interactions between N-SH3 of p47phox and PPII helix, which is formed by cytoplasmic region of p22phox, may play a significant role in the activation of the NADPH oxidase.
Collapse
Affiliation(s)
- Yoko Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
WATANABE Y, TSUBOI H, KOYAMA M, KUBO M, A. DEL CARPIO C, ICHIISHI E, KOHNO M, MIYAMOTO A. Molecular Dynamics Study on the Activation Mechanism of p47phox in the Auto-Inhibited Form. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2006. [DOI: 10.2477/jccj.5.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Arf, Sec7 and Brefeldin A: a model towards the therapeutic inhibition of guanine nucleotide-exchange factors. Biochem Soc Trans 2005; 33:1265-8. [PMID: 16246094 DOI: 10.1042/bst0331265] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GEFs (guanine nucleotide-exchange factors), which stimulate GDP dissociation from small G-proteins, are pivotal regulators of signalling pathways activated by small G-proteins. In the case of Arf proteins, which are major regulators of membrane traffic in the cell and have recently been found to be involved in an increasing number of human diseases, GDP/GTP exchange is stimulated by GEFs that carry a catalytic Sec7 domain. Recent structural results captured snapshots of the exchange reaction, revealing that Sec7 domains secure Arf-GDP to membranes before nucleotide exchange takes place, taking advantage of a built-in structural device in Arf proteins that couples their affinity for membranes to the nature of the bound nucleotide. One of the Arf-Sec7 intermediates was trapped by BFA (Brefeldin A), an uncompetitive inhibitor of Arf activation that has been instrumental in deciphering the molecular principles of membrane traffic at the Golgi. BFA targets a low-affinity Arf-Sec7 intermediate of the exchange reaction. It binds at the Arf-GDP/Sec7 interface, thus freezing the complex in an abortive conformation that cannot proceed to nucleotide dissociation. In the cell, this results in the specific inhibition of Arf1 by a subset of its GEFs, and the efficient and reversible block of membrane traffic at the Golgi. The mechanism of BFA leads to the concept of 'interfacial inhibition', in which a protein-protein interaction of therapeutic interest is stabilized, rather than impaired, by a drug. Up-regulated activity of small G-proteins is involved in various human diseases, making their GEFs attractive candidates to interrupt specifically the corresponding signalling pathway. Interfacial inhibitors are proposed as an alternative to competitive inhibitors that may be explored for their inhibition.
Collapse
|
11
|
Jalil J, Lavandero S, Chiong M, Ocaranza MP. [Rho/Rho kinase signal transduction pathway in cardiovascular disease and cardiovascular remodeling]. Rev Esp Cardiol 2005. [PMID: 16053829 DOI: 10.1157/13078132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The small guanosine triphosphatase Rho and its target, Rho kinase, play important roles in both blood pressure regulation and vascular smooth muscle contraction. Rho is activated by agonists of receptors coupled to cell membrane G protein, such as angiotensin II and phenylephrine. Once Rho is activated, it translocates to the cell membrane where it, in turn, activates Rho kinase. Activated Rho kinase phosphorylates myosin light chain phosphatase, which is then inhibited. This sequence stimulates vascular smooth muscle contraction, stress fiber formation,and cell migration. In this way, Rho and Rho kinase activation have important effects on several cardiovascular diseases. Currently available substances that specifically inhibit this signaling pathway could offer clinical benefits in several cardiovascular, as well as noncardiovascular diseases, such as arterial hypertension, pulmonary hypertension, cerebral or coronary spasm, post-angioplasty restenosis, and erectile dysfunction.
Collapse
Affiliation(s)
- Jorge Jalil
- Departamento de Enfermedades Cardiovasculares, Hospital Clínico, Pontificia Universidad Católica de Chile, Chile.
| | | | | | | |
Collapse
|
12
|
Nilsson M, Weineisen M, Andersson T, Truedsson L, Sjöbring U. Critical role for complement receptor 3 (CD11b/CD18), but not for Fc receptors, in killing of Streptococcus pyogenes by neutrophils in human immune serum. Eur J Immunol 2005; 35:1472-81. [PMID: 15832298 DOI: 10.1002/eji.200424850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During phagocytosis, surface receptors on neutrophils interact with pathogens opsonized with complement factor C3b/iC3b and in some cases with antibodies. In human immune sera antibodies directed against surface-bound M proteins mediated killing of Streptococcus pyogenes by neutrophils. Surprisingly, blocking of the Fc receptors had little effect on the killing. In contrast, inhibition of C3b/iC3b generation, or blocking of the major neutrophil iC3b receptor CD11b/CD18, enabled S. pyogenes to grow efficiently in immune sera. Inhibition of CD11b/CD18, but not of CD32, the major neutrophil signaling Fc receptor, prevented Streptococcus-induced NADPH oxidase-dependent respiratory burst, and blocking of C3b/iC3b formation inhibited Streptococcus-induced activation of Cdc42, a small GTPase critically involved in transmitting pro-inflammatory signals to the cytoskeleton. Consequently, ligation of CD11b/CD18 by bacteria-bound iC3b is necessary for inducing a neutrophil response leading to elimination of S. pyogenes in immune human serum.
Collapse
Affiliation(s)
- Maria Nilsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386:401-16. [PMID: 15588255 PMCID: PMC1134858 DOI: 10.1042/bj20041835] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/02/2004] [Accepted: 12/10/2004] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein-protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.
Collapse
Key Words
- nadph oxidase
- oxidase assembly
- phosphorylation
- protein–protein interaction
- reactive oxygen species
- ac, acidic cluster
- bc, basic cluster
- cgd, chronic granulomatous disease
- gap, gtpase-activating protein
- gdi, gdp-dissociation inhibitor
- gef, guanine-nucleotide-exchange factor
- gst, glutathione s-transferase
- itc, isothermal titration calorimetry
- mapk, mitogen-activated protein kinase
- pb1, phox and bem1
- pc, phox and cdc24
- phox, phagocytic oxidase
- ppii helix, polyproline type ii helix
- px, phox homology
- prr, proline-rich region
- rms, root mean square
- ros, reactive oxygen species
- sh3, src homology 3
- spr, surface plasmon resonance
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Yvonne Groemping
- *Abteilung Biomolekulare Mechanismen, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Katrin Rittinger
- †Division of Protein Structure, National Institute for Medical Research, London, U.K
| |
Collapse
|
14
|
Kim C, Marchal CC, Penninger J, Dinauer MC. The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. THE JOURNAL OF IMMUNOLOGY 2004; 171:4425-30. [PMID: 14530369 DOI: 10.4049/jimmunol.171.8.4425] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vav1 is a hemopoietic-specific Rho/Rac guanine nucleotide exchange factor that plays a prominent role in responses to multisubunit immune recognition receptors in lymphoid cells, but its contribution to regulation of neutrophil functions is unknown. Activated Rho family GTPases are critical participants in neutrophil signaling cascades initiated by binding of FMLP and other chemoattractants to their cognate G protein-coupled receptors. Therefore, we investigated whether Vav1 regulates chemoattractant-induced responses in neutrophils. We found that superoxide production elicited by FMLP in Vav1(-/-) murine neutrophils isolated from either bone marrow or from peritoneal exudates was substantially reduced compared with that of wild type. Filamentous actin generation in FMLP-stimulated Vav1(-/-) neutrophils was also markedly reduced, whereas it was normal in response to IL-8 or leukotriene B(4). FMLP induced tyrosine phosphorylation of Vav1, whereas IL-8 or leukotriene B(4) did not, correlating with the requirement for Vav1 in chemoattractant-stimulated filamentous actin generation. Neutrophil motility in vitro and neutrophil mobilization into peripheral blood in vivo elicited by FMLP were both decreased in Vav1(-/-) mice. Hence, this study defines a new role for Vav1 in regulating granulocytic leukocytes as well as linking Vav1 to specific cellular responses downstream of a seven transmembrane domain receptor.
Collapse
Affiliation(s)
- Chaekyun Kim
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
15
|
Abstract
In addition to their role in bacterial killing by leukocytes, reactive oxygen species (ROS) have been increasingly recognized as important components of signaling and host defense in other cell types. The formation of ROS in both phagocytic- and non-phagocytic cells involves membrane-localized NADPH oxidases (Noxs). Nox proteins show structural homology to the cytochrome b(558) of leukocytes but, until recently, their regulation has been poorly understood. Here, we describe our current understanding of Nox function, and discuss emerging paradigms for regulation of Nox activity by Rac GTPase and/or other cytosolic components.
Collapse
Affiliation(s)
- Gary M Bokoch
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
16
|
Bylund J, Björstad A, Granfeldt D, Karlsson A, Woschnagg C, Dahlgren C. Reactivation of formyl peptide receptors triggers the neutrophil NADPH-oxidase but not a transient rise in intracellular calcium. J Biol Chem 2003; 278:30578-86. [PMID: 12773548 DOI: 10.1074/jbc.m209202200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In neutrophils, coupling of chemoattractants to their cell surface receptor at low temperature (<or=15 degrees C) leads to receptor deactivation/desensitization without any triggering of the superoxide anion-generating NADPH-oxidase. We show that the deactivated formyl peptide receptors (FPRs) can be reactivated/resensitized by the cytoskeleton-disrupting drug cytochalasin B. Such cytoskeleton-dependent receptor reactivation occurs also with the closely related receptors FPR-like-1 and C5aR but not with the receptors for interleukin-8 and platelet-activating factor. The reactivation state was further characterized with FPR as a model. The signals generated by receptor reactivation induced superoxide production that was terminated in 5-8 min, after which the neutrophils entered a new state of homologous deactivation. FPR antagonists were potent inhibitors of the superoxide production induced by the reactivated receptors, suggesting that the occupied receptors turn into an actively signaling state when the cytoskeleton is disrupted. The signals generated by the reactivated receptor were pertussis toxin-sensitive, indicating involvement of a G-protein. However, no transient elevation of intracellular Ca2+ accompanies the NADPH-oxidase activation. This was not due to a general down-regulation of phospholipase C/Ca2+ signaling, and despite the fact that no intracellular Ca2+ transient was generated, protein kinase C still appeared to be involved in the response. Further, phosphatidylinositol 3-kinase, mitogen-activated protein kinase, and MEK all participated in the generation of second messengers from the reactivated receptors.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Calcium/metabolism
- Cytochalasin B/pharmacology
- Cytoskeleton/drug effects
- Cytoskeleton/enzymology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Proteins/metabolism
- HL-60 Cells
- Humans
- NADPH Oxidases/metabolism
- Neutrophils/enzymology
- Platelet Membrane Glycoproteins/chemistry
- Platelet Membrane Glycoproteins/metabolism
- Protein Structure, Tertiary
- Receptor, Anaphylatoxin C5a
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Complement/chemistry
- Receptors, Complement/metabolism
- Receptors, Formyl Peptide
- Receptors, G-Protein-Coupled
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-8A/chemistry
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/chemistry
- Receptors, Interleukin-8B/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Wortmannin
Collapse
Affiliation(s)
- Johan Bylund
- Department of Rheumatology and Inflammation Research, University of Göteborg, Guldhedsgatan 10, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 2003; 113:343-55. [PMID: 12732142 DOI: 10.1016/s0092-8674(03)00314-3] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.
Collapse
Affiliation(s)
- Yvonne Groemping
- Division of Protein Structure, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
18
|
Illenberger D, Walliser C, Strobel J, Gutman O, Niv H, Gaidzik V, Kloog Y, Gierschik P, Henis YI. Rac2 regulation of phospholipase C-beta 2 activity and mode of membrane interactions in intact cells. J Biol Chem 2003; 278:8645-52. [PMID: 12509427 DOI: 10.1074/jbc.m211971200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase C-beta (PLCbeta) isozymes play important roles in transmembrane signaling. Their activity is regulated by heterotrimeric G proteins. The PLCbeta(2) isozyme is unique in being stimulated also by Rho GTPases (Rac and Cdc42). However, the mechanism(s) of this stimulation are still unclear. Here, we employed fluorescence recovery after photobleaching to investigate the interaction of green fluorescent protein (GFP)-PLCbeta(2) with the plasma membrane. For either GFP-PLCbeta(2) or GFP-PLCbeta(2)Delta, a C-terminal deletion mutant lacking the region required for stimulation by Galpha(q), these interactions were characterized by a mixture of exchange with a cytoplasmic pool and lateral diffusion. Constitutively active Rac2(12V) stimulated the activity of both GFP-PLCbeta(2) and GFP-PLCbeta(2)Delta in live cells, and enhanced their membrane association as evidenced by the marked reduction in their fluorescence recovery rates. Both effects required the putative N-terminal pleckstrin homology (PH) domain of PLCbeta(2). Importantly, Rac2(12V) dramatically increased the contribution of exchange to the fluorescence recovery of GFP-PLCbeta(2), but had the opposite effect on GFP-PLCbeta(2)Delta, where lateral diffusion became dominant. Our results demonstrate for the first time the regulation of membrane association of a PLCbeta isozyme by a GTP-binding protein and assign a novel function to the PLCbeta(2) C-terminal region, regulating its exchange between membrane-bound and cytosolic states.
Collapse
Affiliation(s)
- Daria Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Rac plays a central role in regulating neutrophil responses to inflammatory signals, including actin remodeling, chemotaxis, and superoxide production by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Rac-GTP is a component of the membrane-assembled NADPH oxidase complex, and new evidence suggests that Rac-GTP interacts directly with the oxidase flavocytochrome, in addition to binding to the regulatory p67 subunit, to regulate electron transfer both independently and cooperatively from NADPH to molecular oxygen. Other new studies suggest that Rac-GTP plays a dual role in NADPH oxidase activation, and can initiate signaling pathways leading to translocation of cytosolic oxidase subunits in addition to functioning in the assembled enzyme complex. Rac activation in response to neutrophil chemoattractants may be regulated in large part by a newly identified guanine nucleotide exchange factor, P-Rex1, which is activated by either phosphatidylinositols or Gbetagamma subunits. Multiple Rac GTPase activating proteins are present in neutrophils and may also modulate levels of Rac-GTP. The importance of Rac in a broad range of neutrophil functions is shown by the variety of defects seen in neutrophils from Rac2 knockout mice and from a patient with recurrent infections and a dominant-negative mutation in Rac2.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, James Whitcomb Riley Hospitals for Children, Indiana University School of Medicine, Indianapolis 46202, USA.
| |
Collapse
|
20
|
Li S, Yamauchi A, Marchal CC, Molitoris JK, Quilliam LA, Dinauer MC. Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5043-51. [PMID: 12391220 DOI: 10.4049/jimmunol.169.9.5043] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hemopoietic-specific Rho family GTPase Rac2 shares 92% amino acid identity with ubiquitously expressed Rac1. Neutrophils from rac2(-/-) mice have multiple defects, including chemoattractant-stimulated NADPH oxidase activity and chemotaxis, which may result from an overall reduction in cellular Rac or mechanisms that discriminate Rac1 and Rac2. We show that murine neutrophils have similar amounts of Rac1 and Rac2, unlike human neutrophils, which express predominantly Rac2. An affinity precipitation assay for Rac-GTP showed that although FMLP-induced activation of both isoforms in wild-type neutrophils, approximately 4-fold more Rac2-GTP was detected than Rac1-GTP. Wild-type and Rac2-deficient neutrophils have similar levels of total Rac1. FMLP-induced Rac1-GTP in rac2(-/-) neutrophils was approximately 3-fold greater than in wild-type cells, which have similar levels of total Rac1, yet FMLP-stimulated F-actin, chemotaxis, and superoxide production are markedly impaired in rac2(-/-) neutrophils. Heterozygous rac2(+/-) neutrophils, which had intermediate levels of total and FMLP-induced activated Rac2, exhibited intermediate functional responses to FMLP, suggesting that Rac2 was rate limiting for these functions. Thus, phenotypic defects in FMLP-stimulated Rac2-deficient neutrophils appear to reflect distinct activation and signaling profiles of Rac1 and Rac2, rather than a reduction in the total cellular level of Rac.
Collapse
Affiliation(s)
- Shijun Li
- Herman B Wells Center for Pediatric Research and Department of Pediatrics (Hematology/Oncology), Indiana University Medical School, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cicchetti G, Allen PG, Glogauer M. Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:220-8. [PMID: 12090462 DOI: 10.1177/154411130201300302] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, we present an overview of the signaling elements between neutrophil chemotactic receptors and the actin cytoskeleton that drives cell motility. From receptor-ligand interactions, activation of heterotrimeric G-proteins, their downstream effectors PLC and PI-3 kinase, the activation of small GTPases of the Rho family, and their regulation of particular cytoskeletal regulatory proteins, we describe pathways specific to the chemotaxing neutrophil and elements documented to be important for neutrophil function.
Collapse
Affiliation(s)
- Gregor Cicchetti
- Hematology Division, Harvard Medical School, Brigham and Women's Hospital, LMRC 301, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Illenberger D, Stephan I, Gierschik P, Schwald F. Stimulation of phospholipase C-beta 2 by Rho GTPases. Methods Enzymol 2001; 325:167-77. [PMID: 11036602 DOI: 10.1016/s0076-6879(00)25441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- D Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | | | |
Collapse
|
23
|
van Nieuw Amerongen GP, van Hinsbergh VW. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler Thromb Vasc Biol 2001; 21:300-11. [PMID: 11231907 DOI: 10.1161/01.atv.21.3.300] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho-like small GTPases, with their main representatives (Rho, Rac, and Cdc42), have been recognized in the past decade as key regulators of the F-actin cytoskeleton. Rho-like small GTPases are now known to play a major role in vascular processes caused by changes in the actin cytoskeleton, such as smooth muscle cell contraction, endothelial permeability, platelet activation, and leukocyte migration. Data are now accumulating regarding the involvement of Rho GTPases in vascular disorders associated with vascular remodeling, altered cell contractility, and cell migration. The unraveling of signal transduction pathways used by the Rho-like GTPases revealed many upstream regulators and downstream effector molecules, and their number is still growing. An important action of Rho, Rac, and Cdc42 is their ability to regulate the phosphorylation status of the myosin light chain, a major regulator of actin-myosin interaction. Present knowledge of the Rho-like small GTPases has resulted in the development of promising new strategies for the treatment of many vascular disorders, including hypertension, vasospasms, and vascular leakage.
Collapse
|
24
|
Symons M, Takai Y. Ras GTPases: Singing in Tune. Sci Signal 2001. [DOI: 10.1126/scisignal.682001pe1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Symons M, Takai Y. Ras GTPases: singing in tune. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe1. [PMID: 11752638 DOI: 10.1126/stke.2001.68.pe1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A review of the meeting "The Ras Superfamily of Small GTP-Binding Proteins," FASEB Summer Research Conference, Snowmass, Colorado, 15 through 20 July 2000 The molecular cloning of the human proto-oncogene encoding Ras was reported nearly 20 years ago. Since then, Ras has become the prototypical member of a superfamily of small guanosine triphosphatase proteins. Despite the maturity of this field of research, the discovery of new functions and interactions between the superfamily members continues unabated. Symons and Takai have written a meeting report on the latest findings on the Ras superfamily.
Collapse
Affiliation(s)
- M Symons
- The Picower Institute for Medical Research, Manhasset, NY 11030, USA.
| | | |
Collapse
|
26
|
Interference of antibacterial agents with phagocyte functions: immunomodulation or "immuno-fairy tales"? Clin Microbiol Rev 2000. [PMID: 11023961 DOI: 10.1128/cmr.13.4.615-650.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Professional phagocytes (polymorphonuclear neutrophils and monocytes/macrophages) are a main component of the immune system. These cells are involved in both host defenses and various pathological settings characterized by excessive inflammation. Accordingly, they are key targets for immunomodulatory drugs, among which antibacterial agents are promising candidates. The basic and historical concepts of immunomodulation will first be briefly reviewed. Phagocyte complexity will then be unravelled (at least in terms of what we know about the origin, subsets, ambivalent roles, functional capacities, and transductional pathways of this cell and how to explore them). The core subject of this review will be the many possible interactions between antibacterial agents and phagocytes, classified according to demonstrated or potential clinical relevance (e.g., neutropenia, intracellular accumulation, and modulation of bacterial virulence). A detailed review of direct in vitro effects will be provided for the various antibacterial drug families, followed by a discussion of the clinical relevance of these effects in two particular settings: immune deficiency and inflammatory diseases. The prophylactic and therapeutic use of immunomodulatory antibiotics will be considered before conclusions are drawn about the emerging (optimistic) vision of future therapeutic prospects to deal with largely unknown new diseases and new pathogens by using new agents, new techniques, and a better understanding of the phagocyte in particular and the immune system in general.
Collapse
|
27
|
Feoktistov I, Goldstein AE, Biaggioni I. Cyclic AMP and protein kinase A stimulate Cdc42: role of A(2) adenosine receptors in human mast cells. Mol Pharmacol 2000; 58:903-10. [PMID: 11040036 DOI: 10.1124/mol.58.5.903] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional activity of Cdc42 is known to be regulated by proteins that control its GDP/GTP-bound state. However, there is still limited information on how Cdc42 is controlled by G-protein-coupled receptors. Adenosine receptors belong to the G-protein-coupled receptor family of cell surface receptors. Human HMC-1 mast cells express the high-affinity A(2A) and the low-affinity A(2B) subtypes of adenosine receptors known to increase intracellular cAMP levels. We found that both subtypes of A(2) adenosine receptors activate Cdc42 in HMC-1 cells. Furthermore, stimulation of adenylate cyclase with forskolin, or loading of HMC-1 with the cell-permeable cAMP analog 8-Br-cAMP, activated Cdc42. Stimulation of Cdc42 by cAMP was also observed in CHO-K1 and COS-7 cells. Protein kinase A (PKA)-mediated phosphorylation is likely involved in cAMP-dependent Cdc42 activation, because transient expression of the PKA catalytic subunit in COS-7 cells activated Cdc42. Inhibition of protein phosphatases 1 and 2A with calyculin A potentiated the effects of 5'-N-ethylcarboxamidoadenosine and 8-Br-cAMP, whereas the selective PKA inhibitor H-89 reversed the activation of Cdc42. We demonstrated that Cdc42 is a poor substrate for PKA phosphorylation in vitro and in intact cells. Our data suggest that PKA does not phosphorylate Cdc42 directly. Instead, the proteins that modulate the GDP/GTP-bound state of Cdc42 may be the primary targets of PKA phosphorylation.
Collapse
Affiliation(s)
- I Feoktistov
- Division of Cardiology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
28
|
Labro MT. Interference of antibacterial agents with phagocyte functions: immunomodulation or "immuno-fairy tales"? Clin Microbiol Rev 2000; 13:615-50. [PMID: 11023961 PMCID: PMC88953 DOI: 10.1128/cmr.13.4.615] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Professional phagocytes (polymorphonuclear neutrophils and monocytes/macrophages) are a main component of the immune system. These cells are involved in both host defenses and various pathological settings characterized by excessive inflammation. Accordingly, they are key targets for immunomodulatory drugs, among which antibacterial agents are promising candidates. The basic and historical concepts of immunomodulation will first be briefly reviewed. Phagocyte complexity will then be unravelled (at least in terms of what we know about the origin, subsets, ambivalent roles, functional capacities, and transductional pathways of this cell and how to explore them). The core subject of this review will be the many possible interactions between antibacterial agents and phagocytes, classified according to demonstrated or potential clinical relevance (e.g., neutropenia, intracellular accumulation, and modulation of bacterial virulence). A detailed review of direct in vitro effects will be provided for the various antibacterial drug families, followed by a discussion of the clinical relevance of these effects in two particular settings: immune deficiency and inflammatory diseases. The prophylactic and therapeutic use of immunomodulatory antibiotics will be considered before conclusions are drawn about the emerging (optimistic) vision of future therapeutic prospects to deal with largely unknown new diseases and new pathogens by using new agents, new techniques, and a better understanding of the phagocyte in particular and the immune system in general.
Collapse
Affiliation(s)
- M T Labro
- INSERM U 479, Faculté Xavier Bichat, 75018 Paris, France.
| |
Collapse
|