1
|
A Simple Whole-Plasmid PCR Method to Construct High-Diversity Synthetic Phage Display Libraries. Mol Biotechnol 2022; 64:791-803. [PMID: 35107752 PMCID: PMC9217769 DOI: 10.1007/s12033-021-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Phage display technology utilises peptide and antibody libraries with very high diversities to select ligands with specific binding properties. The production of such libraries can be labour intensive and technically challenging and whilst there are commercial sources of libraries, the exploitation of the resulting binders is constrained by ownership of the libraries. Here, a peptide library of ~ 1 × 109 variants for display on gene VIII was produced alongside three VHH antibody libraries with similar diversity, where 12mer, 16mer or 21mer CDR3s were introduced into the highly stable cAbBCII10 scaffold displayed on gene III. The cloning strategy used a simple whole-plasmid PCR method and type IIS restriction enzyme assembly that facilitate the seamless insertion of diversity into any suitable phage coat protein or antibody scaffold. This method reproducibly produced 1 × 109 variants from just 10 transformations and the four libraries had relatively low bias with 82 to 86% of all sequences present as single copies. The functionality of both peptide and antibody libraries were demonstrated by selection of ligands with specific binding properties by biopanning. The peptide library was used to epitope map a monoclonal antibody. The VHH libraries were pooled and used to select an antibody to recombinant human collagen type 1.
Collapse
|
2
|
Fang YM, Lin DQ, Yao SJ. Tetrapeptide ligands screening for antibody separation and purification by molecular simulation and experimental verification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Spiliotopoulos A, Blokpoel Ferreras L, Densham RM, Caulton SG, Maddison BC, Morris JR, Dixon JE, Gough KC, Dreveny I. Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 2019; 294:424-436. [PMID: 30373771 PMCID: PMC6333900 DOI: 10.1074/jbc.ra118.004469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 μm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.
Collapse
Affiliation(s)
- Anastasios Spiliotopoulos
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD
| | - Lia Blokpoel Ferreras
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ruth M Densham
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - Simon G Caulton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ben C Maddison
- ADAS, School of Veterinary Medicine and Science, Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Joanna R Morris
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - James E Dixon
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Kevin C Gough
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD,
| | - Ingrid Dreveny
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD,
| |
Collapse
|
4
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
5
|
Mapping polyclonal antibody responses to bacterial infection using next generation phage display. Sci Rep 2016; 6:24232. [PMID: 27072017 PMCID: PMC4829855 DOI: 10.1038/srep24232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 11/08/2022] Open
Abstract
Mapping polyclonal antibody responses to infectious diseases to identify individual epitopes has the potential to underpin the development of novel serological assays and vaccines. Here, phage-peptide library panning coupled with screening using next generation sequencing was used to map antibody responses to bacterial infections. In the first instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated. IgG samples from twelve infected pigs were probed in parallel and phage binding compared to that with equivalent IgG from pre-infected animals. Seventy-seven peptide mimotopes were enriched specifically against sera from multiple infected animals. Twenty-seven of these peptides were tested in ELISA and twenty-two were highly discriminatory for sera taken from pigs post-infection (P < 0.05) indicating that these peptides are mimicking epitopes from the bacteria. In order to further test this methodology, it was applied to differentiate antibody responses in poultry to infections with distinct serovars of Salmonella enterica. Twenty-seven peptides were identified as being enriched specifically against IgY from multiple animals infected with S. Enteritidis compared to those infected with S. Hadar. Nine of fifteen peptides tested in ELISA were highly discriminatory for IgY following S. Enteritidis infection (p < 0.05) compared to infections with S. Hadar or S. Typhimurium.
Collapse
|
6
|
Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 2014; 89:1-37. [PMID: 24751193 DOI: 10.1016/b978-0-12-800172-1.00001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and tobacco mosaic virus (TMV) CP-tobacco mild green mosaic virus (TMGMV) CP as expression vectors into tobacco plants. Expressed recombinant protein has not only been confirmed as a therapeutic but also as a diagnostic tool. Herpes simplex virus 2 (HSV-2), HSV-2 gD, and HSV-2 VP16 subunits were transfected into tobacco plants, using TMV CP-TMGMV CP expression vectors.
Collapse
Affiliation(s)
- Aboul-Ata E Aboul-Ata
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Ahmad K El-Attar
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Giuseppina Piazzolla
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Cosimo Tortorella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Olof Olson
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Sandra A Wright
- Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
7
|
Zhao H, Feng X, Han W, Diao Y, Han D, Tian X, Gao Y, Liu S, Zhu S, Yao C, Gu J, Sun C, Lei L. Enhanced binding to and killing of hepatocellular carcinoma cellsin vitroby melittin when linked with a novel targeting peptide screened from phage display. J Pept Sci 2013; 19:639-50. [DOI: 10.1002/psc.2542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/10/2013] [Accepted: 06/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Honglei Zhao
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Xin Feng
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Wenyu Han
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Yuwen Diao
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Dong Han
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Xiaofeng Tian
- The Second Affiliated Hospital of Jilin University; Changchun; 130041; China
| | - Yu Gao
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Shanshan Liu
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Seng Zhu
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Cuimei Yao
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Jingmin Gu
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Changjiang Sun
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| | - Liancheng Lei
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; 130062; China
| |
Collapse
|
8
|
Kushwaha R, Payne CM, Downie AB. Uses of phage display in agriculture: a review of food-related protein-protein interactions discovered by biopanning over diverse baits. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:653759. [PMID: 23710253 PMCID: PMC3655605 DOI: 10.1155/2013/653759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions.
Collapse
Affiliation(s)
- Rekha Kushwaha
- Department of Horticulture, Agricultural Science Center North, University of Kentucky, Room 308J, Lexington, KY 40546, USA
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Room 159, F. Paul Anderson Tower, Lexington, KY 40546, USA
- Center for Computational Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - A. Bruce Downie
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Room 401A, Plant Science Building, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Castel G, Chtéoui M, Heyd B, Tordo N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules 2011; 16:3499-518. [PMID: 21522083 PMCID: PMC6263255 DOI: 10.3390/molecules16053499] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/14/2022] Open
Abstract
Given the growing number of diseases caused by emerging or endemic viruses, original strategies are urgently required: (1) for the identification of new drugs active against new viruses and (2) to deal with viral mutants in which resistance to existing antiviral molecules has been selected. In this context, antiviral peptides constitute a promising area for disease prevention and treatment. The identification and development of these inhibitory peptides require the high-throughput screening of combinatorial libraries. Phage-display is a powerful technique for selecting unique molecules with selective affinity for a specific target from highly diverse combinatorial libraries. In the last 15 years, the use of this technique for antiviral purposes and for the isolation of candidate inhibitory peptides in drug discovery has been explored. We present here a review of the use of phage display in antiviral research and drug discovery, with a discussion of optimized strategies combining the strong screening potential of this technique with complementary rational approaches for identification of the best target. By combining such approaches, it should be possible to maximize the selection of molecules with strong antiviral potential.
Collapse
Affiliation(s)
| | | | | | - Noël Tordo
- Unité Postulante des Stratégies Antivirales, CNRS URA-3015, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
10
|
Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA. Virus-PEDOT nanowires for biosensing. NANO LETTERS 2010; 10:4858-62. [PMID: 21038915 PMCID: PMC3116991 DOI: 10.1021/nl1025826] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The separate fields of conducting polymer-based electrochemical sensors and virus-based molecular recognition offer numerous advantages for biosensing. Grafting M13 bacteriophage into an array of poly (3,4-ethylenedioxythiophene) (PEDOT) nanowires generated hybrids of conducting polymers and viruses. The virus incorporation into the polymeric backbone of PEDOT occurs during electropolymerization via lithographically patterned nanowire electrodeposition. The resultant arrays of virus-PEDOT nanowires enable real-time, reagent-free electrochemical biosensing of analytes in physiologically relevant buffers.
Collapse
Affiliation(s)
| | | | | | - Reginald M. Penner
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Gregory A. Weiss
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| |
Collapse
|
11
|
Park HY, Kim J, Cho JH, Moon JY, Lee SJ, Yoon MY. Phage Display Screen for Peptides That Bind Bcl-2 Protein. ACTA ACUST UNITED AC 2010; 16:82-9. [DOI: 10.1177/1087057110385816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Joungmok Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - June-Haeng Cho
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Ji Young Moon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Su-Jae Lee
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Moon-Young Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
12
|
Park HY, Park HC, Yoon MY. Screening for peptides binding on Phytophthora capsici extracts by phage display. J Microbiol Methods 2009; 78:54-8. [PMID: 19389430 DOI: 10.1016/j.mimet.2009.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 04/14/2009] [Indexed: 11/24/2022]
Abstract
Phytophthora blight of pepper is a completely destructive plant disease caused by the oomycete pathogen Phytophthora capsici Leonian. Phytophthora disease is responsible for major losses in pepper production and the pathogen can survive in soil in the absence of the host plant for many years. Currently, there are no early diagnostic reagents available that specifically target P. capsici. Therefore, diagnostic tools that can detect Phytophthora are required. In the present study, we screened for P. capsici-binding peptides using M13 phage display. After five rounds of biopanning, we identified P. capsici-binding peptides from a random peptide library that showed high binding affinity and specificity toward P. capsici in the picomolar range. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
13
|
Ooi DJM, Dzulkurnain A, Othman RY, Lim SH, Harikrishna JA. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus. J Virol Methods 2006; 136:160-5. [PMID: 16781785 DOI: 10.1016/j.jviromet.2006.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/21/2006] [Accepted: 05/02/2006] [Indexed: 11/25/2022]
Abstract
A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.
Collapse
Affiliation(s)
- Diana Jia Miin Ooi
- Biotechnology Program, Malaysia University of Science and Technology, Block C, Kelana Square, 17 Jalan SS7/26, 47301 Petaling Jaya, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
14
|
Tan WS, Tan GH, Yusoff K, Seow HF. A phage-displayed cyclic peptide that interacts tightly with the immunodominant region of hepatitis B surface antigen. J Clin Virol 2005; 34:35-41. [PMID: 16087122 DOI: 10.1016/j.jcv.2005.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/10/2005] [Accepted: 01/24/2005] [Indexed: 12/18/2022]
Abstract
The surface antigen (HBsAg) of hepatitis B virus (HBV) is highly conformational and generally evokes protective humoral immune response in human. A disulfide constrained random heptapeptide library displayed on the coat protein III of filamentous bacteriophage M13 was employed to select specific ligands that interact with HBsAg subtype ad. Fusion phages carrying the amino acid sequence ETGAKPH and other related sequences were isolated. The binding site of peptide ETGAKPH was located on the immunodominant region of HBsAg. An equilibrium binding assay in solution showed that the phage binds tightly to HBsAg with a relative dissociation constant (KDrel) of 2.9+/-0.9 nM. The phage bearing this peptide has the potential to be used as a diagnostic reagent and two assays for detecting HBsAg in blood samples are described.
Collapse
Affiliation(s)
- Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
15
|
De J, Chang YC, Samli KN, Schisler JC, Newgard CB, Johnston SA, Brown KC. Isolation of a mycoplasma-specific binding peptide from an unbiased phage-displayed peptide library. MOLECULAR BIOSYSTEMS 2005; 1:149-57. [PMID: 16880978 DOI: 10.1039/b504572j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An important goal in medicine is the development of methods for cell-specific targeting of therapeutic molecules to pathogens or pathogen-infected cells. However, little progress has been made in cell-specific targeting of bacterially infected cells. Using a phage display approach, we have isolated a 20-mer peptide that binds to Mycoplasma arginini infected pancreatic beta-cells in tissue culture. This peptide binds to M. arginini infected beta-cells 200 times better than a control phage and is specific for the infected cells. Furthermore, transferring the M. arginini contamination to another cell line renders the newly infected cell line susceptible to peptide binding. Immunolocalization experiments suggest that the peptide is binding to M. arginini adhered to the cell surface. The free synthetic peptide retains its binding in the absence of the phage vehicle and tetramerization of the peptide increases its affinity for the infected cells. Efforts have been made to use this peptide to eliminate Mycoplasma from infected cell lines using ferromagnetic beads coated with the selected peptide. A ten-fold reduction of infection was accomplished with one fractionation via this approach. Our results suggest that this peptide, isolated from an unbiased selection, may be of utility for the detection and reduction of Mycoplasma infection in cultured cells. Furthermore, a general implication of our findings is that phage display methods may be useful for identifying peptides that target a broad array of other biological pathogens in a specific fashion.
Collapse
Affiliation(s)
- Jitakshi De
- Center for Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Petrenko VA, Sorokulova IB. Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods 2004; 58:147-68. [PMID: 15234514 DOI: 10.1016/j.mimet.2004.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/03/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 253 Greene Hall, Auburn, AL 36849, USA.
| | | |
Collapse
|
17
|
Abstract
The essential element of any immuno-based detector device is the probe that binds analyte and, as a part of the analytical platform, generates a measurable signal. The present review summarizes the state of the art in development of the probes for detection of the biological threat agents: toxins, bacteria, spores and viruses. Traditionally, the probes are antibodies, which are isolated from sera of immunized animals or culture media of hybridomas. However, the "natural" antibodies may have limited application in the new generation of real-time field detectors and monitoring systems, where stress-resistant and inexpensive long-livers are required. Phage display is a newcomer in the detection area, whose expertise is development of molecular probes for targeting of various biological structures. The probes can be selection from about billion clone libraries of recombinant phages expressing on their surface a vast variety of peptides and proteins, including antigen-binding fragments of antibodies. The selection procedure, like kind of affinity chromatography, allows separating of phage binders, which are propagated in Escherichia coli bacterial cells and purified using inexpensive technology. Although phage display traditionally is focused more on development of medical preparations and studying molecular recognition in biological systems, there are some examples of its successful use for detection, which are presented in the review. To be used as probes for detection, peptides and antibodies identified by phage display are usually chemically synthesized or produced in bacteria. Another interesting aspect is using of the selected phage itself as a probe in detector devices, like sort of substitute antibodies. This idea is illustrated in the review by "detection" of beta-galactosidase from E. coli with "landscape" phage displaying a dense array of peptide binders on the surface.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 253 Greene Hall, Auburn, AL 36849-5519, USA.
| | | |
Collapse
|
18
|
Bishop-Hurley SL, Mounter SA, Laskey J, Morris RO, Elder J, Roop P, Rouse C, Schmidt FJ, English JT. Phage-displayed peptides as developmental agonists for Phytophthora capsici zoospores. Appl Environ Microbiol 2002; 68:3315-20. [PMID: 12089009 PMCID: PMC126814 DOI: 10.1128/aem.68.7.3315-3320.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of its pathogenic life cycle, Phytophthora capsici disperses to plants through a motile zoospore stage. Molecules on the zoospore surface are involved in reception of environmental signals that direct preinfection behavior. We developed a phage display protocol to identify peptides that bind to the surface molecules of P. capsici zoospores in vitro. The selected phage-displayed peptides contained an abundance of polar amino acids and proline but were otherwise not conserved. About half of the selected phage that were tested concomitantly induced zoospore encystment in the absence of other signaling agents. A display phage was shown to bind to the zoospore but not to the cyst form of P. capsici. Two free peptides corresponding to active phage were similarly able to induce encystment of zoospores, indicating that their ability to serve as signaling ligands did not depend on their exact molecular context. Isolation and subsequent expression of peptides that act on pathogens could allow the identification of receptor molecules on the zoospore surface, in addition to forming the basis for a novel plant disease resistance strategy.
Collapse
Affiliation(s)
- Sharon L Bishop-Hurley
- Department of Plant Microbiology and Patholog, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Medeiros RB, Rasochova L, German TL. Simplified, rapid method for cloning of virus-binding polypeptides (putative receptors) via the far-western screening of a cDNA expression library using purified virus particles. J Virol Methods 2000; 86:155-66. [PMID: 10785290 DOI: 10.1016/s0166-0934(00)00143-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A simplified, alternative method for cloning virus-binding polypeptides (receptor candidates) is described. The method is based on a far-Western assay using purified tomato spotted wilt tospovirus (TSWV, Bunyaviridae) for screening a lambda-phage cDNA expression library. The western flower thrips, Frankliniella occidentalis Pergande, the principal vector of TSWV, in which the virus replicates, was used for library construction. Using this method several virus-binding polypeptides were identified, it eliminated the need for (a) a cellular infection or binding system, (b) the identification, cloning and expression of a functional viral attachment protein, or (c) the purification of the virus receptor. Using this method, virus-binding polypeptides can be selected and cloned in a very short period of time and used in subsequent experiments for determination of their biological relevance as virus receptors and/or tested for potential usefulness as inhibitors of virus transmission and/or infection.
Collapse
Affiliation(s)
- R B Medeiros
- Dept. Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|