1
|
LaBelle J, Wyatt T, Woo S. Endodermal cells use contact inhibition of locomotion to achieve uniform cell dispersal during zebrafish gastrulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543209. [PMID: 37333383 PMCID: PMC10274714 DOI: 10.1101/2023.06.01.543209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The endoderm is one of the three primary germ layers that ultimately gives rise to the gastrointestinal and respiratory epithelia and other tissues. In zebrafish and other vertebrates, endodermal cells are initially highly migratory with only transient interactions among one other, but later converge together to form an epithelial sheet. Here, we show that during their early, migratory phase, endodermal cells actively avoid each other through contact inhibition of locomotion (CIL), a characteristic response consisting of 1) actin depolymerization and membrane retraction at the site of contact, 2) preferential actin polymerization along a cell-free edge, and 3) reorientation of migration away from the other cell. We found that this response is dependent on the Rho GTPase RhoA. Expression of dominant-negative (DN) RhoA attenuated migration reorientation after cell-cell contact and increased the amount of time cells spent in contact with each other - behaviors consistent with a loss of CIL. Computational modeling predicted that CIL is required to achieve the efficient and uniform dispersal characteristic of endodermal cells. Consistent with our model, we found that loss of CIL via DN RhoA expression resulted in irregular clustering of cells within the endoderm. Finally, using a combination of pharmacological and genetic perturbations, we identify EphA2 as the cell surface receptor mediating endodermal CIL. Together, our results suggest that endodermal cells use EphA2- and RhoA-dependent CIL as a cell dispersal and spacing mechanism, demonstrating how tissue-scale patterns can emerge from local cell-cell interactions.
Collapse
Affiliation(s)
- Jesselynn LaBelle
- Quantiative and Systems Biology, University of California, Merced, CA USA
| | - Tom Wyatt
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, France
| | - Stephanie Woo
- Quantiative and Systems Biology, University of California, Merced, CA USA
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| |
Collapse
|
2
|
Sanit J, Intakhad J, Kittilukkana A, Vachiraarunwong A, Wongpoomchai R, Pilapong C. Enhanced axon guidance and synaptic markers in rat brains using ferric-tannic nanoparticles. Metallomics 2024; 16:mfae031. [PMID: 38936837 DOI: 10.1093/mtomcs/mfae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines. A single intravenous injection of a safe dose of FTs has been shown to activate a protein expression of axon attractant Netrin-1 and neurotransmitter receptor GABRA4 in the cerebral cortexes of male Wistar rats. According to RNA-seq with targeted analysis, axon guidance and synapses have been enriched and Ephrin membered genes have been identified as coordinating a network of genes for such processes. In vitro, as expected, FTs are also found to activate axon guidance markers and promote neuronal tubes in neuronal cell lines. At the same time, pre-synaptic markers (synaptophysin), post-synaptic markers (synapsin), and GABRA4 neurotransmitter receptors have been found to be activated by FTs. Interestingly, synaptophysin has been found to localize along the promoted neuronal tubes, suggesting that enhanced axon guidance is associated with the formation and transportation of pre-synaptic vesicles. Preliminarily, repeated injection of FTs into adult rats every 3 days for 10 times could enhance an expression of synaptophysin in the cerebral cortex, as compared to control rats. This work demonstrates that FTs can be used for activating brain function associated with axon guidance and synaptic function.
Collapse
Affiliation(s)
- Jantira Sanit
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jannarong Intakhad
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aiyarin Kittilukkana
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermchai Pilapong
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Wang J, Zhang Z, Fu S, Li X, Li X, Wang S, Yuan L. Overexpression of EphB4 promotes neurogenesis, but inhibits neuroinflammation in mice with acute ischemic stroke. Mol Med Rep 2021; 24:756. [PMID: 34476505 PMCID: PMC8436223 DOI: 10.3892/mmr.2021.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke is one of the most common diseases that has a high rate of mortality, and has become a burden to the healthcare system. Previous research has shown that EPH receptor B4 (EphB4) promotes neural stem cell proliferation and differentiation in vitro. However, little is known regarding its role in the neurogenesis of ischemic stroke in vivo. Thus, the present study aimed to verify whether EphB4 was a key regulator of neurogenesis in ischemic stroke in vivo. Cerebral ischemia was induced in C57BL/6J mice via middle cerebral artery occlusion (MCAO), followed by reperfusion. Immunofluorescence staining was performed to evaluate the effect of EphB4 on the neurogenesis in cerebral cortex. The levels of inflammatory cytokines were determined using an ELISA kit. The expression levels of ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1)/Cyclin D1 signaling pathway-related proteins were detected via western blotting. The current findings indicated that EphB4 expression was significantly increased in the cerebral cortex of MCAO model mice in comparison with sham-operated mice. Moreover, EphB4 appeared to be expressed in neural stem cells (Nestin+), and persisted as these cells became neuronal progenitors (Sox2+), neuroblasts [doublecortin (DCX)+], and eventually mature neurons [neuronal nuclei (NeuN)+]. Overexpression of EphB4 elevated the number of proliferating (bromodeoxyuridine+, Ki67+) and differentiated cells (Nestin+, Sox2+, DCX+ and NeuN+), indicating the promoting effect of EphB4 on the neurogenesis of ischemic stroke. Furthermore, EphB4 overexpression alleviated the inflammation injury in MCAO model mice. The expression levels of proteins-related to the ABL1/Cyclin D1 signaling pathway were significantly increased by the overexpression of EphB4, which suggested that restoration of EphB4 promoted the activation of the ABL1/Cyclin D1 signaling pathway. In conclusion, this study contributes to the current understanding of the mechanisms of EphB4 in exerting neurorestorative effects and may recommend a potential new strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jin Wang
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Zun Zhang
- Department of Orthopedics, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Shaojing Fu
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Xiaojie Li
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Xinhui Li
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014016, P.R. China
| | - Shaobin Wang
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Lihe Yuan
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| |
Collapse
|
4
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
5
|
García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020; 9:cells9102226. [PMID: 33023072 PMCID: PMC7601110 DOI: 10.3390/cells9102226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Intimate interactions between thymic epithelial cells (TECs) and thymocytes (T) have been repeatedly reported as essential for performing intrathymic T-cell education. Nevertheless, it has been described that animals exhibiting defects in these interactions were capable of a proper positive and negative T-cell selection. In the current review, we first examined distinct types of TECs and their possible role in the immune surveillance. However, EphB-deficient thymi that exhibit profound thymic epithelial (TE) alterations do not exhibit important immunological defects. Eph and their ligands, the ephrins, are implicated in cell attachment/detachment and govern, therefore, TEC–T interactions. On this basis, we hypothesized that a few normal TE areas could be enough for a proper phenotypical and functional maturation of T lymphocytes. Then, we evaluated in vivo how many TECs would be necessary for supporting a normal T-cell differentiation, concluding that a significantly low number of TEC are still capable of supporting normal T lymphocyte maturation, whereas with fewer numbers, T-cell maturation is not possible.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-4979
| |
Collapse
|
6
|
García-Ceca J, Montero-Herradón S, Zapata AG. Thymus aging in mice deficient in either EphB2 or EphB3, two master regulators of thymic epithelium development. Dev Dyn 2020; 249:1243-1258. [PMID: 32506584 DOI: 10.1002/dvdy.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The epithelial microenvironment is involved in thymus aging, but the possible role of EphB receptors that govern the thymic epithelium development has not been investigated. Herein, we study the changes undergone by the thymus of EphB-deficient mice throughout their life. RESULTS Immune alterations occurring throughout life were more severe in mutant than in wild-type (WT) mice. Mutant thymuses exhibit lower cellularity than WT ones, as well as lower proportions of early thymic progenitors cells and double-positive (CD4+ CD8+ ) thymocytes, but higher of double-negative (CD4- CD8- ) and single-positive (CD4+ CD8- , CD4- CD8+ ) cells. Throughout life, CD4+ naïve cells decreased particularly in mutant mice. In correlation, memory T cells, largely CD8+ cells, increased. Aged thymic epithelium undergoes changes including appearance of big epithelial free areas, decrease of K8+ K5- areas, which, however, contain higher proportions of Ly51+ UEA1- cortical epithelial cells, in correlation with reduced Aire+ medullary epithelial cells. Also, aged thymuses particularly those derived from mutant mice exhibited increased collagen IV, fat-storing cells, and connective cells. CONCLUSIONS The absence of EphB accelerates the alterations undergone throughout life by both thymic epithelium and thymocytes, and the proportions of peripheral naïve and memory T cells, all of which are hallmarks of immune aging.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
7
|
Dong J, Pan YB, Wu XR, He LN, Liu XD, Feng DF, Xu TL, Sun S, Xu NJ. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. SCIENCE ADVANCES 2019; 5:eaav4416. [PMID: 30820459 PMCID: PMC6392779 DOI: 10.1126/sciadv.aav4416] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
The quiescence of radial neural stem cells (rNSCs) in adult brain is regulated by environmental stimuli. However, little is known about how the neurogenic niche couples the external signal to regulate activation and transition of quiescent rNSCs. Here, we reveal that long-term excitation of hippocampal dentate granule cells (GCs) upon voluntary running leads to activation of adult rNSCs in the subgranular zone and thereby generation of newborn neurons. Unexpectedly, the role of these excited GC neurons in NSCs depends on direct GC-rNSC interaction in the local niche, which is through down-regulated ephrin-B3, a GC membrane-bound ligand, and attenuated transcellular EphB2 kinase-dependent signaling in the adjacent rNSCs. Furthermore, constitutively active EphB2 kinase sustains the quiescence of rNSCs during running. These findings thus elucidate the physiological significance of GC excitability on adult rNSCs under external environments and indicate a key-lock switch regulation via cell-cell contact for functional transition of rNSCs.
Collapse
Affiliation(s)
- Jian Dong
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Rong Wu
- Department of Neurology, Institute of Neurology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Na He
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Yao JJ, Zhao QR, Lu JM, Mei YA. Functions and the related signaling pathways of the neurotrophic factor neuritin. Acta Pharmacol Sin 2018; 39:1414-1420. [PMID: 29595190 PMCID: PMC6289377 DOI: 10.1038/aps.2017.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.
Collapse
Affiliation(s)
- Jin-Jing Yao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qian-Ru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun-Mei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Muñoz JJ, García-Ceca J, Montero-Herradón S, Sánchez del Collado B, Alfaro D, Zapata A. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi. Front Endocrinol (Lausanne) 2018; 9:135. [PMID: 29666605 PMCID: PMC5891583 DOI: 10.3389/fendo.2018.00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023] Open
Abstract
For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T) and thymic epithelial cells (TECs), have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T-TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.
Collapse
Affiliation(s)
- Juan José Muñoz
- Center for Cytometry and Fluorescence Microscopy, Complutense University of Madrid, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín Zapata
- Center for Cytometry and Fluorescence Microscopy, Complutense University of Madrid, Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Gey M, Wanner R, Schilling C, Pedro MT, Sinske D, Knöll B. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 2017; 6:rsob.160091. [PMID: 27581653 PMCID: PMC5008009 DOI: 10.1098/rsob.160091] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022] Open
Abstract
Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types.
Collapse
Affiliation(s)
- Manuel Gey
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Renate Wanner
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Corinna Schilling
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Bezirkskrankenhaus Günzburg, Ulm University, 89081 Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
12
|
Knöll B, Beck H. The cytoskeleton and nucleus: the role of actin as a modulator of neuronal gene expression. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13295-010-0013-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Actin, arranged for example in stress fibres, provides a fundamental cytoskeletal framework function to all cell types. Notably, there is now mounting evidence that, in addition to cytoplasmic cytoskeletal regulation, actin treadmilling provides a signal modulating nuclear gene expression. In altering gene regulation, cytoplasmic and most likely also a nucleus-resident actin provides an additional (gene) regulatory twist to cell motility. So far, the transcription factor serum response factor (SRF) alongside its myocardin-related transcription factor (MRTF) cofactors has emerged as the main target of actin dynamics. In this review, we discuss the impact of actin signalling on nuclear gene expression in the nervous system, where the actin-MRTF-SRF module contributes to various processes including neuronal motility.
Collapse
Affiliation(s)
- B. Knöll
- Institute for Physiological Chemistry, University of Ulm Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - H. Beck
- Institute for Physiological Chemistry, University of Ulm Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
13
|
Inverse Expression Levels of EphrinA3 and EphrinA5 Contribute to Dopaminergic Differentiation of Human SH-SY5Y Cells. J Mol Neurosci 2016; 59:483-92. [PMID: 27217159 DOI: 10.1007/s12031-016-0759-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Two key principles underlying successful cellular therapies for Parkinson's disease (PD) are appropriate differentiation of dopaminergic (DA) neurons from transplanted cells and precise axon growth. EphrinAs, a subclass of ephrins, act as axon guidance molecules and are highly expressed in DA brain regions. Existing evidences indicate that they act as either repulsion or attraction signals to guide axon growth. This study investigated whether ephrinAs are involved in DA neuron differentiation. Data from miRCURY™ LNA mRNAs/microRNAs microarrays and quantitative real-time polymerase chain reaction (qRT-PCR) showed upregulated ephrinA3 mRNA (EFNA3) and downregulated ephrinA5 mRNA (EFNA5) during DA neuron differentiation. In addition, hsa-miR-4271 was downregulated, which could influence EFNA3 translation. Furthermore, immunofluorescence (IF) and western blotting confirmed the mRNA results and showed increased ephrinA3 and decreased ephrinA5 protein levels in differentiating DA neurons. Taken together, our results indicate that inverse expression levels of ephrinA3 and ephrinA5, which are possibly influenced by microRNAs, contribute to DA neuron differentiation by guiding axon growth.
Collapse
|
14
|
Montero-Herradón S, García-Ceca J, Sánchez Del Collado B, Alfaro D, Zapata AG. Eph/ephrin-B-mediated cell-to-cell interactions govern MTS20(+) thymic epithelial cell development. Histochem Cell Biol 2016; 146:167-82. [PMID: 27060907 DOI: 10.1007/s00418-016-1431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Thymus development is a complex process in which cell-to-cell interactions between thymocytes and thymic epithelial cells (TECs) are essential to allow a proper maturation of both thymic cell components. Although signals that control thymocyte development are well known, mechanisms governing TEC maturation are poorly understood, especially those that regulate the maturation of immature TEC populations during early fetal thymus development. In this study, we show that EphB2-deficient, EphB2LacZ and EphB3-deficient fetal thymuses present a lower number of cells and delayed maturation of DN cell subsets compared to WT values. Moreover, deficits in the production of chemokines, known to be involved in the lymphoid seeding into the thymus, contribute in decreased proportions of intrathymic T cell progenitors (PIRA/B(+)) in the mutant thymuses from early stages of development. These features correlate with increased proportions of MTS20(+) cells but fewer MTS20(-) cells from E13.5 onward in the deficient thymuses, suggesting a delayed development of the first epithelial cells. In addition, in vitro the lack of thymocytes or the blockade of Eph/ephrin-B-mediated cell-to-cell interactions between either thymocytes-TECs or TECs-TECs in E13.5 fetal thymic lobes coursed with increased proportions of MTS20(+) TECs. This confirms, for the first time, that the presence of CD45(+) cells, corresponding at these stages to DN1 and DN2 cells, and Eph/ephrin-B-mediated heterotypic or homotypic cell interactions between thymocytes and TECs, or between TECs and themselves, contribute to the early maturation of MTS20(+) TECs.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040, Madrid, Spain
| | - Beatriz Sánchez Del Collado
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. Arthritis Res Ther 2016; 18:65. [PMID: 26980243 PMCID: PMC4791873 DOI: 10.1186/s13075-016-0965-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ephrins and their related receptors have been implicated in some developmental events. We have demonstrated that ephrin-B2 (EFNB2) could play a role in knee joint pathology associated with osteoarthritis (OA). Here, we delineate the in vivo role of EFNB2 in musculoskeletal growth, development, and in OA using a cartilage-specific EFNB2 knockout (EFNB2(Col2)KO) mouse model. METHODS EFNB2(Col2)KO was generated with Col2a1-Cre transgenic mice. The skeletal development was evaluated using macroscopy, immunohistochemistry, histomorphometry, radiology, densitometry, and micro-computed tomography. Analyses were performed at P0 (birth) and on postnatal days P15, P21, and on 8-week- and 1-year-old mice. RESULTS EFNB2(Col2)KO mice exhibited significant reduction in size, weight, length, and in long bones. At P0, the growth plates of EFNB2(Col2)KO mice displayed increased type X collagen, disorganized hyphertrophic zone, and decreased mineralization. At P15, mutant mice demonstrated a significant reduction in VEGF and TRAP at the chondro-osseous junction and a delay in the secondary ossification, including a decrease in bone volume and trabecular thickness. At P21 and 8 weeks old, EFNB2(Col2)KO mice exhibited reduced bone mineral density in the total skeleton, femur and spine. One-year-old EFNB2(Col2)KO mice demonstrated OA phenotypic features in both the knee and hip. By P15, 27 % of the EFNB2(Col2)KO mice developed a hip locomotor phenotype, which further experiments demonstrated reflected the neurological midline abnormality involving the corticospinal tract. CONCLUSION This in vivo study demonstrated, for the first time, that EFNB2 is essential for normal long bone growth and development and its absence leads to a knee and hip OA phenotype in aged mice.
Collapse
|
16
|
García-Ceca J, Alfaro D, Montero-Herradón S, Tobajas E, Muñoz JJ, Zapata AG. Eph/Ephrins-Mediated Thymocyte-Thymic Epithelial Cell Interactions Control Numerous Processes of Thymus Biology. Front Immunol 2015; 6:333. [PMID: 26167166 PMCID: PMC4481163 DOI: 10.3389/fimmu.2015.00333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
Numerous studies emphasize the relevance of thymocyte-thymic epithelial cell (TECs) interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase receptors, Ephs (erythropoietin-producing hepatocyte kinases) and their ligands, ephrins (Eph receptor interaction proteins), are molecules known to be involved in the regulation of numerous biological systems in which cell-to-cell interactions are particularly relevant. In the last years, we and other authors have demonstrated the importance of these molecules in the thymic functions and the T-cell development. In the present report, we review data on the effects of Ephs and ephrins in the functional maturation of both thymic epithelial microenvironment and thymocyte maturation as well as on their role in the lymphoid progenitor recruitment into the thymus.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Esther Tobajas
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Juan José Muñoz
- Cytometry and Fluorescence Microscopy Center, Complutense University, Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Cytometry and Fluorescence Microscopy Center, Complutense University, Madrid, Spain
| |
Collapse
|
17
|
Joly S, Jordi N, Schwab ME, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci 2014; 40:3021-31. [DOI: 10.1111/ejn.12677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Sandrine Joly
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Noémie Jordi
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Martin E. Schwab
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Vincent Pernet
- Brain Research Institute; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| |
Collapse
|
18
|
Weschenfelder M, Weth F, Knöll B, Bastmeyer M. The stripe assay: studying growth preference and axon guidance on binary choice substrates in vitro. Methods Mol Biol 2013; 1018:229-46. [PMID: 23681633 DOI: 10.1007/978-1-62703-444-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Stripe assays are frequently used for studying binary growth decisions of cells and axons towards surface-bound molecules in vitro. In particular in the fields of neurodevelopment and axon guidance, stripe assays have become a routine tool. Several variants of the stripe assay have been developed since its introduction by Bonhoeffer and colleagues in 1987 (Development 101:685-696, 1987). In all variants, however, the principle is the generation of a structured binary growth substrate, consisting of two sets of cues, arranged in alternating stripes. There are two major classes of stripe assays, mainly distinguished by the source material used for stripe pattern manufacturing: membrane stripe assays, where the stripe patterns are generated with membrane fractions isolated from tissue or cells, and stripe assays with purified proteins, also called modified stripe assays. In this chapter we describe in detail the classical membrane stripe assay, the commonly used modified stripe assay employing purified proteins, and a novel stripe assay for high-affinity interacting proteins, like receptor/ligand pairs.
Collapse
Affiliation(s)
- Markus Weschenfelder
- Department of Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
19
|
Brinkmann F, Hirtz M, Greiner AM, Weschenfelder M, Waterkotte B, Bastmeyer M, Fuchs H. Interdigitated multicolored bioink micropatterns by multiplexed polymer pen lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3266-3275. [PMID: 23554307 DOI: 10.1002/smll.201203183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/28/2013] [Indexed: 06/02/2023]
Abstract
Multiplexing, i.e., the application and integration of more than one ink in an interdigitated microscale pattern, is still a challenge for microcontact printing (μCP) and similar techniques. On the other hand there is a strong demand for interdigitated patterns of more than one protein on subcellular to cellular length scales in the lower micrometer range in biological experiments. Here, a new integrative approach is presented for the fabrication of bioactive microarrays and complex multi-ink patterns by polymer pen lithography (PPL). By taking advantage of the strength of microcontact printing (μCP) combined with the spatial control and capability of precise repetition of PPL in an innovative way, a new inking and writing strategy is introduced for PPL that enables true multiplexing within each repetitive subpattern. Furthermore, a specific ink/substrate platform is demonstrated that can be used to immobilize functional proteins and other bioactive compounds over a biotin-streptavidin approach. This patterning strategy aims specifically at application by cell biologists and biochemists addressing a wide range of relevant pattern sizes, easy pattern generation and adjustment, the use of only biofriendly, nontoxic chemicals, and mild processing conditions during the patterning steps. The retained bioactivity of the fabricated cm(2) area filling multiprotein patterns is demonstrated by showing the interaction of fibroblasts and neurons with multiplexed structures of fibronectin and laminin or laminin and ephrin, respectively.
Collapse
Affiliation(s)
- Falko Brinkmann
- Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany; Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Ward NL, Lamanna JC. The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 2013; 26:870-83. [PMID: 15727271 DOI: 10.1179/016164104x3798] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nervous and vascular systems contain many common organizational features and develop similarly in terms of anatomical patterning. During embryogenesis and in regions of the brain undergoing postnatal neurogenesis, neural stem cells and endothelial cells are found in close proximity, or within a so-called vascular niche. The similarities in patterning and proximity may reflect coordinated development based on responsiveness to similar growth factors such as vascular endothelial growth factor, semaphorin, and ephrins/Ephs: molecules involved in the development and maintenance of both the nervous and vascular systems. Despite the blatant similarities between the vascular and nervous systems, little is still known about the co-dependence and/or interactions between the two systems during development and following alterations in metabolic demand as seen during aging, exercise, and disease processes. The interactions between the two systems involving common growth factors suggest these two systems have evolved in an interconnected way.
Collapse
Affiliation(s)
- Nicole L Ward
- Department of Anatomy, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
21
|
Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol 2013; 33:1442-55. [PMID: 23382070 DOI: 10.1128/mcb.01618-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.
Collapse
|
22
|
Xia Y, Luo C, Dai S, Yao D. Increased EphA/ephrinA expression in hippocampus of pilocarpine treated mouse. Epilepsy Res 2013; 105:20-9. [PMID: 23352741 DOI: 10.1016/j.eplepsyres.2013.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 01/21/2023]
Abstract
PURPOSE EphA family receptor tyrosine kinases and their ephrinA ligands are involved in patterning axonal connections during brain development. Although it has been evidenced that these molecules continue to play a key role in synaptic reorganization and plasticity in normal and injured adult brains, their effect still remains unclear during epileptogenesis. Temporal lobe epilepsy (TLE) is the most common form of adult focal epilepsy and often associates with sclerosis of the hippocampus and mossy fiber sprouting (MFS). The purpose of this study is to evaluate the relationship between EphA/ephrinA molecules and epileptogenesis after status epilepticus (SE). METHOD A mouse model of chronic temporal lobe epilepsy was prepared by intraperitoneal administration of pilocarpine. EphAs/ephrinAs expression levels of the mouse hippocampus areas were detected at different time points after SE by PCR, in situ hybridization and immunohistochemistry. Mossy fiber sprouting was estimated by Neo-Timm staining. RESULT EphAs/ephrinAs were widely distributed in the hippocampus area. EphA10 and ephrinA4 were increased significantly following epileptogenesis, and mossy fiber sprouting appeared after SE. CONCLUSION The up-regulation of EphA/ephrinA expression after SE suggests that they are involved in the pilocarpine-induced epileptogenesis.
Collapse
Affiliation(s)
- Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | |
Collapse
|
23
|
Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 2012; 15:1399-406. [PMID: 22983209 PMCID: PMC3458152 DOI: 10.1038/nn.3212] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications.
Collapse
|
24
|
Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci U S A 2012; 109:E2523-32. [PMID: 22927399 DOI: 10.1073/pnas.1208141109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant mitochondrial function, morphology, and transport are main features of neurodegenerative diseases. To date, mitochondrial transport within neurons is thought to rely mainly on microtubules, whereas actin might mediate short-range movements and mitochondrial anchoring. Here, we analyzed the impact of actin on neuronal mitochondrial size and localization. F-actin enhanced mitochondrial size and mitochondrial number in neurites and growth cones. In contrast, raising G-actin resulted in mitochondrial fragmentation and decreased mitochondrial abundance. Cellular F-actin/G-actin levels also regulate serum response factor (SRF)-mediated gene regulation, suggesting a possible link between SRF and mitochondrial dynamics. Indeed, SRF-deficient neurons display neurodegenerative hallmarks of mitochondria, including disrupted morphology, fragmentation, and impaired mitochondrial motility, as well as ATP energy metabolism. Conversely, constitutively active SRF-VP16 induced formation of mitochondrial networks and rescued huntingtin (HTT)-impaired mitochondrial dynamics. Finally, SRF and actin dynamics are connected via the actin severing protein cofilin and its slingshot phosphatase to modulate neuronal mitochondrial dynamics. In summary, our data suggest that the SRF-cofilin-actin signaling axis modulates neuronal mitochondrial function.
Collapse
|
25
|
North HA, Clifford MA, Donoghue MJ. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation. Cereb Cortex 2012; 23:1765-73. [PMID: 22744705 DOI: 10.1093/cercor/bhs183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.
Collapse
Affiliation(s)
- Hilary A North
- Department of Biology and The Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
26
|
Lema Tomé CM, Palma E, Ferluga S, Lowther WT, Hantgan R, Wykosky J, Debinski W. Structural and functional characterization of monomeric EphrinA1 binding site to EphA2 receptor. J Biol Chem 2012; 287:14012-22. [PMID: 22362770 DOI: 10.1074/jbc.m111.311670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The EphA2 receptor is overexpressed in glioblastoma multiforme and has been to shown to contribute to cell transformation, tumor initiation, progression, and maintenance. EphrinA1 (eA1) is a preferred ligand for the receptor. Treatment with monomeric eA1, the form of eA1 found in the extracellular environment, causes receptor phosphorylation, internalization, and down-regulation with subsequent anti-tumor effects. Here, we investigated the structure-function relationship of a monomeric eA1 focusing on its G-H loop ((108)FQRFTPFTLGKEFKE(123)G), a highly conserved region among eAs that mediates binding to their receptors. Alanine substitution mutants of the G-H loop amino acids were transfected into U-251 MG glioblastoma multiforme cells, and functional activity of each mutant in conditioned media was assessed by EphA2 down-regulation, ERK and AKT activation and cellular response assays. Alanine substitutions at positions Pro-113 Thr-115, Gly-117, Glu-122, and also Gln-109 enhanced the EphA2 receptor down-regulation and decreased p-ERK and p-AKT. Substitution mutants of eA1 at positions Phe-108, Arg-110, Phe-111, Thr-112, Phe-114, Leu-116, Lys-118, Glu-119, and Phe-120 had a deleterious effect on EphA2 down-regulation when compared with eA1-WT. Mutants at positions Phe-108, Lys-18, Lys-121, Gly-123 retained similar properties to eA1-WT. Recombinant eA1-R110A, -T115A, -G117A, and -F120A have been found to exhibit the same characteristics as the ligands contained in the conditioned media mainly due to the differences in their binding to the receptor. Thus, we have identified variants of eA1 that possess either superagonistic or antagonistic properties. These new findings will be important in the understanding of the receptor/ligand interactions and in further design of anti-cancer therapies targeting the eA/EphA system.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Meier C, Anastasiadou S, Knöll B. Ephrin-A5 suppresses neurotrophin evoked neuronal motility, ERK activation and gene expression. PLoS One 2011; 6:e26089. [PMID: 22022520 PMCID: PMC3191169 DOI: 10.1371/journal.pone.0026089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 09/19/2011] [Indexed: 12/20/2022] Open
Abstract
During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system.
Collapse
Affiliation(s)
- Christin Meier
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Sofia Anastasiadou
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Bernd Knöll
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
28
|
Schnichels S, Heiduschka P, Julien S. RGMA and neogenin protein expression are influenced by lens injury following optic nerve crush in the rat retina. Graefes Arch Clin Exp Ophthalmol 2011; 250:39-50. [PMID: 21887516 DOI: 10.1007/s00417-011-1791-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The death and the failure of neurons to regenerate their axons after lesion of the central nervous system in mammals, as in the case of spinal cord injury and optic nerve trauma, remain a challenge. In this study, we focused on the repulsive guidance molecule A (RGMA) and its receptor neogenin. Since it was reported that RGMA+ cells accumulate in lesioned areas after spinal cord injury, brain trauma, and optic nerve crush, and curiously, anti-apoptotic effects of RGMA were also described, we investigated the role of RGMA and neogenin in the retina after optic nerve crush (ONC). METHODS We evaluated the spatial and temporal protein pattern of RGMA and neogenin in the rat retina without (non-regenerating model) or with (regenerating model) lens injury (LI). We investigated the presence of RGMA, neogenin and other proteins at up to nine time points (6 h-20 days post-surgery) by performing immunohistochemistry and Western blots. RESULTS Independent of the treatment, RGMA protein was present in the nuclear layers (NLs), plexiform layers (PLs), nerve fiber layer (NFL), and in retinal ganglion cells (RGCs) of the rat retina. RGC and nerve fibers were always RGMA+. Further RGMA+ cells in the retina were blood vessel endothelial cells, astrocytes, Müller cells, and some microglial cells. The RGMA pattern for the specific retinal cells resembled those of previously published data. The neogenin pattern was congruent to the RGMA pattern. Western blots of retinal tissue showed further RGMA+ products only in LI animals. Furthermore, a higher amount of RGMA was found in the retinae of ONC + LI rats compared to ONC rats. CONCLUSIONS Although a difference in the localization of RGMA is not obvious, the difference in the amount of RGMA is striking, the higher amount of RGMA in the retinae of ONC + LI rats compared to ONC rats indicates a role for RGMA during degeneration/regeneration processes. Our results are consistent with several reported neuroprotective effects of RGMA. Our new data showing the upregulation of RGMA after ONC in our regenerating model (plus LI) confirm these findings conducted in different settings.
Collapse
Affiliation(s)
- Sven Schnichels
- Centre for Ophthalmology, University Eye Hospital, Tübingen, Germany
| | | | | |
Collapse
|
29
|
Bi C, Yue X, Zhou R, Plummer MR. EphA activation overrides the presynaptic actions of BDNF. J Neurophysiol 2011; 105:2364-74. [PMID: 21411563 DOI: 10.1152/jn.00564.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adult pattern of neural connectivity is shaped by repulsive and attractive factors, many of which are modulated by activity. Although much is known about the actions of these factors when studied in isolation, little is known about how they interact. To address this question, we examined the effects of sequential or coapplication of brain-derived neurotrophic factor (BDNF) and Fc-conjugated ephrin-A5 or EphA5 in cultured embryonic hippocampal neurons. BDNF promotes neurite outgrowth and synapse formation, and when applied acutely, it elicits an increase in ongoing synaptic activity. Members of the ephrin family of ligands and receptors can be repulsive and prevent formation of synaptic contacts. Acute exposure to either ephrin-A5-Fc or EphA5-Fc transiently enhanced synaptic activity when applied alone, but when applied prior to BDNF, they dramatically reduced the electrophysiological effects of the neurotrophin. Conversely, BDNF had no effect on subsequently applied ephrin-A5-Fc or EphA5-Fc. Consistent with this, ephrin-A5-Fc also prevented BDNF-induced activation of p42/44 MAPK. The effect of ephrin-A5-Fc appears to be presynaptic, as it prevented the BDNF-induced increase in spontaneous miniature postsynaptic current frequency, whereas EphA5-Fc did not. These results suggest that these factors can be categorized differently, with the contact-mediated activation of EphA receptors by ephrin-A5 overriding the diffusion-mediated effect of BDNF.
Collapse
Affiliation(s)
- Caixia Bi
- Rutgers University, Department of Cell Biology & Neuroscience, Nelson Laboratories, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | |
Collapse
|
30
|
Endocytosis of EphA receptors is essential for the proper development of the retinocollicular topographic map. EMBO J 2011; 30:1593-607. [PMID: 21343910 DOI: 10.1038/emboj.2011.44] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/28/2011] [Indexed: 01/15/2023] Open
Abstract
Endocytosis of Eph-ephrin complexes may be an important mechanism for converting cell-cell adhesion to a repulsive interaction. Here, we show that an endocytosis-defective EphA8 mutant forms a complex with EphAs and blocks their endocytosis in cultured cells. Further, we used bacterial artificial chromosome transgenic (Tg) mice to recapitulate the anterior>posterior gradient of EphA in the superior colliculus (SC). In mice expressing the endocytosis-defective EphA8 mutant, the nasal axons were aberrantly shifted to the anterior SC. In contrast, in Tg mice expressing wild-type EphA8, the nasal axons were shifted to the posterior SC, as predicted for the enhanced repellent effect of ephrinA reverse signalling. Importantly, Rac signalling was shown to be essential for EphA-ephrinA internalization and the subsequent nasal axonal repulsion in the SC. These results indicate that endocytosis of the Eph-ephrin complex is a key mechanism by which axonal repulsion is generated for proper guidance and topographic mapping.
Collapse
|
31
|
Schnichels S, Heiduschka P, Julien S. Different spatial and temporal protein expressions of repulsive guidance molecule a and neogenin in the rat optic nerve after optic nerve crush with and without lens injury. J Neurosci Res 2011; 89:490-505. [DOI: 10.1002/jnr.22584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/10/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022]
|
32
|
Muñoz JJ, Cejalvo T, Alonso-Colmenar LM, Alfaro D, Garcia-Ceca J, Zapata A. Eph/Ephrin-mediated interactions in the thymus. Neuroimmunomodulation 2011; 18:271-80. [PMID: 21952679 DOI: 10.1159/000329490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we review available information on the relevance of Eph and ephrins in numerous processes occurring in the thymus that regulate not only T cell differentiation but also thymic epithelial cell (TEC) development and organization. Eph/ephrins are a large family of receptors and ligands involved in organogenesis and homeostasis of adult tissues. They are extensively expressed in the thymus and seem to be involved in the colonization of lymphoid progenitor cells and their migration throughout the thymic parenchyma necessary to provide an adequate topological location of developing thymocytes in the epithelial network that ensures their correct differentiation. In addition, EphB2 and EphB3 play a cell-autonomous role in regulating the transitions of double-negative to double-positive cells and of double-positive to single-positive thymocytes and the lack of these molecules or their ligands ephrin B1 and ephrin B2 induces profound alterations of the TEC maturation and in the arrangement of epithelial network. We emphasize that these results are largely reflecting the role played by this family of molecules in controlling thymocyte-TEC interactions within the thymus.
Collapse
Affiliation(s)
- Juan Jose Muñoz
- Cytometry and Fluorescence Microscopy Center, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The traditional view of cellular actin is a rather autarkic cytoskeletal framework function confined to the cytoplasm. However, there is now evidence that alterations in actin dynamics are sensed by the nucleus and subsequently modulate gene expression. In communicating with the nucleus, cytoplasmic, and most likely also nucleus-resident actin, provides a further (gene) regulatory loop to cell motility. A transcription module composed of MRTF (myocardin-related transcription factor) and SRF (serum response factor) emerges as prime target of such actin signaling. Here, I focus on the nervous system, where the actin-MRTF-SRF entity governs multiple aspects of neuronal motility.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany.
| |
Collapse
|
34
|
Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 2010; 5:e12486. [PMID: 20824214 PMCID: PMC2930854 DOI: 10.1371/journal.pone.0012486] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases. METHODOLOGY/PRINCIPAL FINDINGS Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents. CONCLUSIONS/SIGNIFICANCE These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation.
Collapse
|
35
|
Deschamps C, Morel M, Janet T, Page G, Jaber M, Gaillard A, Prestoz L. EphrinA5 protein distribution in the developing mouse brain. BMC Neurosci 2010; 11:105. [PMID: 20738842 PMCID: PMC2941684 DOI: 10.1186/1471-2202-11-105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022] Open
Abstract
Background EphrinA5 is one of the best-studied members of the Eph-ephrin family of guidance molecules, known to be involved in brain developmental processes. Using in situ hybridization, ephrinA5 mRNA expression has been detected in the retinotectal, the thalamocortical, and the olfactory systems; however, no study focused on the distribution of the protein. Considering that this membrane-anchored molecule may act far from the neuron soma expressing the transcript, it is of a crucial interest to localize ephrinA5 protein to better understand its function. Results Using immunohistochemistry, we found that ephrinA5 protein is highly expressed in the developing mouse brain from E12.5 to E16.5. The olfactory bulb, the cortex, the striatum, the thalamus, and the colliculi showed high intensity of labelling, suggesting its implication in topographic mapping of olfactory, retinocollicular, thalamocortical, corticothalamic and mesostriatal systems. In the olfactory nerve, we found an early ephrinA5 protein expression at E12.5 suggesting its implication in the guidance of primary olfactory neurons into the olfactory bulb. In the thalamus, we detected a dynamic graduated protein expression, suggesting its role in the corticothalamic patterning, whereas ephrinA5 protein expression in the target region of mesencephalic dopaminergic neurones indicated its involvement in the mesostriatal topographic mapping. Following E16.5, the signal faded gradually and was barely detectable at P0, suggesting a main role for ephrinA5 in primary molecular events in topographic map formation. Conclusion Our work shows that ephrinA5 protein is expressed in restrictive regions of the developing mouse brain. This expression pattern points out the potential sites of action of this molecule in the olfactory, retinotectal, thalamocortical, corticothalamic and mesostriatal systems, during development. This study is essential to better understand the role of ephrinA5 during developmental topographic mapping of connections and to further characterise the mechanisms involved in pathway restoration following cell transplantation in the damaged brain.
Collapse
Affiliation(s)
- Claire Deschamps
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Mrkusich EM, Osman ZB, Bates KE, Marchingo JM, Duman-Scheel M, Whitington PM. Netrin-guided accessory cell morphogenesis dictates the dendrite orientation and migration of a Drosophila sensory neuron. Development 2010; 137:2227-35. [PMID: 20530550 PMCID: PMC2882139 DOI: 10.1242/dev.047795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
Accessory cells, which include glia and other cell types that develop in close association with neurons, have been shown to play key roles in regulating neuron development. However, the underlying molecular and cellular mechanisms remain poorly understood. A particularly intimate association between accessory cells and neurons is found in insect chordotonal organs. We have found that the cap cell, one of two accessory cells of v'ch1, a chordotonal organ in the Drosophila embryo, strongly influences the development of its associated neuron. As it projects a long dorsally directed cellular extension, the cap cell reorients the dendrite of the v'ch1 neuron and tows its cell body dorsally. Cap cell morphogenesis is regulated by Netrin-A, which is produced by epidermal cells at the destination of the cap cell process. In Netrin-A mutant embryos, the cap cell forms an aberrant, ventrally directed process. As the cap cell maintains a close physical connection with the tip of the dendrite, the latter is dragged into an abnormal position and orientation, and the neuron fails to undergo its normal dorsal migration. Misexpression of Netrin-A in oenocytes, secretory cells that lie ventral to the cap cell, leads to aberrant cap cell morphogenesis, suggesting that Netrin-A acts as an instructive cue to direct the growth of the cap cell process. The netrin receptor Frazzled is required for normal cap cell morphogenesis, and mutant rescue experiments indicate that it acts in a cell-autonomous fashion.
Collapse
Affiliation(s)
- Eli M. Mrkusich
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Zalina B. Osman
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Karen E. Bates
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | - Julia M. Marchingo
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend and Department of Biological Sciences, University of Notre Dame, Raclin-Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 45517, USA
| | - Paul M. Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
37
|
Yoo S, Shin J, Park S. EphA8-ephrinA5 signaling and clathrin-mediated endocytosis is regulated by Tiam-1, a Rac-specific guanine nucleotide exchange factor. Mol Cells 2010; 29:603-9. [PMID: 20496116 DOI: 10.1007/s10059-010-0075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 01/08/2023] Open
Abstract
Recent studies indicate that endocytosis of Eph-ephrin complexes may be one of the mechanisms by which a high affinity cell-cell adhesion is converted to a repulsive interaction. In this study, we show that EphA8 undergoes clathrin-mediated endocytosis upon treatment with ephrin-A5, and that EphA8 is associated tightly with Tiam-1, a Rac-specific guanine nucleotide exchange factor. Analysis of EphA8 deletion mutants revealed that a juxtamembrane region in EphA8 is critically involved in endocytosis of EphA8-ephrinA5 complexes. An EphA8 mutant lacking this juxtamembrane portion was defective for endocytosis with ephrinA5, and also displayed a weak association with Tiam-1. Expression of an endocytosis-defective version of EphA8 resulted in a low level of Rac activity in response to ephrin-A5 stimulation. More importantly, down-regulation of Tiam-1 resulted in inefficient endocytosis of EphA8-ephrinA5 complexes. These results suggest that Tiam-1 plays a role in clathrin-dependent endocytosis of EphA8-ephrinA5 complexes.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | |
Collapse
|
38
|
Genome-wide identification of calcium-response factor (CaRF) binding sites predicts a role in regulation of neuronal signaling pathways. PLoS One 2010; 5:e10870. [PMID: 20523734 PMCID: PMC2877716 DOI: 10.1371/journal.pone.0010870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Calcium-Response Factor (CaRF) was first identified as a transcription factor based on its affinity for a neuronal-selective calcium-response element (CaRE1) in the gene encoding Brain-Derived Neurotrophic Factor (BDNF). However, because CaRF shares no homology with other transcription factors, its properties and gene targets have remained unknown. Here we show that the DNA binding domain of CaRF has been highly conserved across evolution and that CaRF binds DNA directly in a sequence-specific manner in the absence of other eukaryotic cofactors. Using a binding site selection screen we identify a high-affinity consensus CaRF response element (cCaRE) that shares significant homology with the CaRE1 element of Bdnf. In a genome-wide chromatin immunoprecipitation analysis (ChIP-Seq), we identified 176 sites of CaRF-specific binding (peaks) in neuronal genomic DNA. 128 of these peaks are within 10kB of an annotated gene, and 60 are within 1kB of an annotated transcriptional start site. At least 138 of the CaRF peaks contain a common 10-bp motif with strong statistical similarity to the cCaRE, and we provide evidence predicting that CaRF can bind independently to at least 64.5% of these motifs in vitro. Analysis of this set of putative CaRF targets suggests the enrichment of genes that regulate intracellular signaling cascades. Finally we demonstrate that expression of a subset of these target genes is altered in the cortex of Carf knockout (KO) mice. Together these data strongly support the characterization of CaRF as a unique transcription factor and provide the first insight into the program of CaRF-regulated transcription in neurons.
Collapse
|
39
|
Torre ER, Gutekunst CA, Gross RE. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 2010; 44:135-53. [PMID: 20298787 DOI: 10.1016/j.mcn.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022] Open
Abstract
Here we explore the role of semaphorin 3A and 3F (Sema3A, Sema3F) in the formation of the mesotelencephalic pathway. We show that Sema3A and 3F are expressed in the ventral mesencephalon (VM) of E13.5 rat embryos; the receptors Neuropilin 1 and Neuropilin 2, and co-receptors L1CAM, NrCAM, and Plexins A1 and A3 but not A4 are expressed by VM dopaminergic neurons; these neurons bind Sema3A and 3F in vitro which induces collapse of their growth cones and elicits, with different potencies, a repulsive response; and this response is absent in axons from Nrp1 and Nrp2 null embryos. Despite these in vitro effects, only very mild anatomical defects were detected in the organization of the mesotelencephalic pathway in embryonic and adult Nrp1 or Nrp2 null mice. However, the dopaminergic meso-habenular pathway and catecholaminergic neurons in the parafascicular and paraventricular nuclei of the thalamus were significantly affected in Nrp2 null mice. These data are consistent with a model whereby Sema3A and 3F, in combination with other guidance molecules, contributes to the navigation of DA axons to their final synaptic targets.
Collapse
Affiliation(s)
- Enrique R Torre
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
40
|
Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology 2010; 35:141-53. [PMID: 19674845 PMCID: PMC2795128 DOI: 10.1016/j.psyneuen.2009.07.010] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 12/11/2022]
Abstract
Because the brain undergoes dramatic changes during fetal development it is vulnerable to environmental insults. There is evidence that maternal stress and anxiety during pregnancy influences birth outcome but there are no studies that have evaluated the influence of stress during human pregnancy on brain morphology. In the current prospective longitudinal study we included 35 women for whom serial data on pregnancy anxiety was available at 19 (+/-0.83), 25 (+/-0.9) and 31 (+/-0.9) weeks gestation. When the offspring from the target pregnancy were between 6 and 9 years of age, their neurodevelopmental stage was assessed by a structural MRI scan. With the application of voxel-based morphometry, we found regional reductions in gray matter density in association with pregnancy anxiety after controlling for total gray matter volume, age, gestational age at birth, handedness and postpartum perceived stress. Specifically, independent of postnatal stress, pregnancy anxiety at 19 weeks gestation was associated with gray matter volume reductions in the prefrontal cortex, the premotor cortex, the medial temporal lobe, the lateral temporal cortex, the postcentral gyrus as well as the cerebellum extending to the middle occipital gyrus and the fusiform gyrus. High pregnancy anxiety at 25 and 31 weeks gestation was not significantly associated with local reductions in gray matter volume.This is the first prospective study to show that a specific temporal pattern of pregnancy anxiety is related to specific changes in brain morphology. Altered gray matter volume in brain regions affected by prenatal maternal anxiety may render the developing individual more vulnerable to neurodevelopmental and psychiatric disorders as well as cognitive and intellectual impairment.
Collapse
Affiliation(s)
- Claudia Buss
- Department of Psychiatry and Human Behavior, University of California, Irvine, Orange, CA 92868, United States
| | | | | | | | | |
Collapse
|
41
|
Harting K, Knöll B. SIRT2-mediated protein deacetylation: An emerging key regulator in brain physiology and pathology. Eur J Cell Biol 2009; 89:262-9. [PMID: 20004495 DOI: 10.1016/j.ejcb.2009.11.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein function is considerably altered by posttranslational modification. In recent years, cycles of acetylation/deacetylation emerged as fundamental regulators adjusting biological activity of many proteins. Particularly, protein deacetylation by Sirtuins, a family of atypical histone deacetylases (HDACs), was demonstrated to regulate fundamental cell biological processes including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function and cell motility. Given this wealth of biological functions, perhaps not unexpectedly then, pharmacological compounds targeting Sirtuin activity are now prime therapeutic agents for alleviating severity of major diseases encompassing diabetes, cancer, cardiovascular and neurodegenerative disorders in many organs. In this review, we will focus on the brain and its physiological and pathological processes governed by Sirtuin-mediated deacetylation. Besides discussing Sirtuin function in neurodegenerative diseases, emphasis will be given on the mounting evidence deciphering key developmental brain functions for Sirtuins in neuronal motility, neuroprotection and oligodendrocyte differentiation. In this respect, we will particularly highlight functions of the unconventional family member SIRT2 in post-mitotic neurons and glial cells.
Collapse
Affiliation(s)
- Kai Harting
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | |
Collapse
|
42
|
Barber CF, Jorquera RA, Melom JE, Littleton JT. Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains. ACTA ACUST UNITED AC 2009; 187:295-310. [PMID: 19822673 PMCID: PMC2768828 DOI: 10.1083/jcb.200903098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analogous to synaptotagmin 1, a calcium-sensitive regulator of presynaptic vesicle fusion, synaptotagmin 4 needs both of its calcium-binding sites to regulate synaptic plasticity via postsynaptic retrograde signaling. Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.
Collapse
Affiliation(s)
- Cynthia F Barber
- Department of Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
43
|
Deschamps C, Faideau M, Jaber M, Gaillard A, Prestoz L. Expression of ephrinA5 during development and potential involvement in the guidance of the mesostriatal pathway. Exp Neurol 2009; 219:466-80. [DOI: 10.1016/j.expneurol.2009.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 06/18/2009] [Accepted: 06/24/2009] [Indexed: 01/12/2023]
|
44
|
Norman LL, Stroka K, Aranda-Espinoza H. Guiding Axons in the Central Nervous System: A Tissue Engineering Approach. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:291-305. [DOI: 10.1089/ten.teb.2009.0114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Leann L. Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
45
|
Knöll B, Nordheim A. Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 2009; 32:432-42. [PMID: 19643506 DOI: 10.1016/j.tins.2009.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Individual transcription factors in the brain frequently display broad functional versatility, thereby controlling multiple cellular outputs. In accordance, neuron-restricted mutagenesis of the murine Srf gene, encoding the transcription factor serum response factor (SRF), revealed numerous SRF functions in the nervous system. First, SRF controls immediate early gene (IEG) activation associated with perception of synaptic activity, learning and memory. Second, processes linked to actin cytoskeletal dynamics are mediated by SRF, such as developmental neuronal migration, outgrowth and pathfinding of neurites, as well as synaptic targeting. Therefore, SRF seems to be instrumental in converting synaptic activity into plasticity-associated structural changes in neuronal connectivities. This highlights the decisive role of SRF in integrating cytoskeletal actin dynamics and nuclear gene expression. Finally, we relate SRF to the multi-functional transcription factor CREB and point out overlapping, distinct and concerted functions of these two transcriptional regulators in the brain.
Collapse
Affiliation(s)
- Bernd Knöll
- Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Interfaculty Institute for Cell Biology, Department of Molecular Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | | |
Collapse
|
46
|
Chen Y, Mohammadi M, Flanagan JG. Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels. Neuron 2009; 62:773-80. [PMID: 19555646 DOI: 10.1016/j.neuron.2009.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 03/06/2009] [Accepted: 05/12/2009] [Indexed: 02/02/2023]
Abstract
Graded guidance labels are widely used in neural map formation, but it is not well understood which potential strategy leads to their graded expression. In midbrain tectal map development, FGFs can induce an entire midbrain, but their protein distribution is unclear, nor is it known whether they may act instructively to produce graded gene expression. Using a receptor-alkaline phosphatase fusion probe, we find a long-range posterior > anterior FGF protein gradient spanning the midbrain. Heparan sulfate proteoglycan (HSPG) is required for this gradient. To test whether graded FGF concentrations can instruct graded gene expression, a quantitative tectal explant assay was developed. Engrailed-2 and ephrin-As, normally in posterior > anterior tectal gradients, showed graded upregulation. Moreover, EphAs, normally in anterior > posterior countergradients, showed coordinately graded downregulation. These results provide a mechanism to establish graded mapping labels and more generally provide a developmental strategy to coordinately induce a structure and pattern its cell properties in gradients.
Collapse
Affiliation(s)
- Yao Chen
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
47
|
A nuclear actin function regulates neuronal motility by serum response factor-dependent gene transcription. J Neurosci 2009; 29:4512-8. [PMID: 19357276 DOI: 10.1523/jneurosci.0333-09.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal motility relies on actin treadmilling. In addition to regulating cytoskeletal dynamics in the cytoplasm, actin modulates nuclear gene expression. We present a hitherto unappreciated cross talk of actin signaling with gene expression governing neuronal motility. Toward this end, we used a novel approach using mutant actins either favoring (G15S) or inhibiting (R62D) F-actin assembly. Overexpressing these mutant actins in mouse hippocampal neurons not only modulated growth-cone function but also neurite elongation, which was ambiguous by traditional pharmacological interference. G15S actin enhanced neurite outgrowth and filopodia number. In contrast, R62D reduced neurite length and impaired growth-cone filopodia formation. Growth-cone collapse induced by ephrin-As, a family of repulsive axon guidance molecules, is impaired upon R62D expression, resulting in perseverance of ring-shaped F-actin filaments. R62D-induced phenotypes strongly resemble neurons lacking SRF (Serum Response Factor). SRF controls gene transcription of various actin isoforms (e.g., Actb, Acta1) and actin-binding proteins (e.g., Gsn) and is the archetypical transcription factor to study actin interplay with transcription. We show that neuronal motility evoked by these actin mutants requires SRF activity. Further, constitutively active SRF partially rescues R62D-induced phenotypes. Conversely, actin signaling regulates neuronal SRF-mediated gene expression. Notably, a nucleus-resident actin (R62D(NLS)) also regulates SRF's transcriptional activity. Moreover, R62D(NLS) decreases neuronal motility similar to the cytoplasmic R62D actin mutant although R62D(NLS) has no access to cytoplasmic actin dynamics. Thus, herein we provide first evidence that neuronal motility not only depends on cytoplasmic actin dynamics but also on the availability of actin to modulate nuclear functions such as gene transcription.
Collapse
|
48
|
Reverse signaling by glycosylphosphatidylinositol-linked Manduca ephrin requires a SRC family kinase to restrict neuronal migration in vivo. J Neurosci 2009; 29:3404-18. [PMID: 19295147 DOI: 10.1523/jneurosci.5464-08.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reverse signaling via glycosylphosphatidylinositol (GPI)-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), whereas adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways.
Collapse
|
49
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
50
|
Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 2008; 27:7260-73. [PMID: 18794797 DOI: 10.1038/onc.2008.328] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ephrinA1 ligand exerts antioncogenic effects in tumor cells through activation and downregulation of the EphA2 receptor and has been described as a membrane-anchored protein requiring clustering for function. However, while investigating the ephrinA1/EphA2 system in the pathobiology of glioblastoma multiforme (GBM), we uncovered that ephrinA1 is released from GBM and breast adenocarcinoma cells as a soluble, monomeric protein and is a functional form of the ligand in this state. Conditioned media containing a soluble monomer of ephrinA1 caused EphA2 internalization and downregulation, dramatic alteration of cell morphology and suppression of the Ras-MAPK pathway. Moreover, soluble monomeric ephrinA1 was functional in a physiological context, eliciting collapse of embryonic neuronal growth cones. We also found that ephrinA1 is cleaved from the plasma membrane of GBM cells, an event which involves the action of a metalloprotease. Thus, the ephrinA1 ligand can, indeed, function as a soluble monomer and may act in a paracrine manner on the EphA2 receptor without the need for juxtacrine interactions. These findings have important implications for further deciphering the function of these proteins in pathology and physiology, as well as for the design of ephrinA1-based EphA2-targeted antitumor therapeutics.
Collapse
|