1
|
Oldfield CS, Grossrubatscher I, Chávez M, Hoagland A, Huth AR, Carroll EC, Prendergast A, Qu T, Gallant JL, Wyart C, Isacoff EY. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. eLife 2020; 9:e56619. [PMID: 32985972 PMCID: PMC7561350 DOI: 10.7554/elife.56619] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/26/2020] [Indexed: 01/16/2023] Open
Abstract
Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.
Collapse
Affiliation(s)
- Claire S Oldfield
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Irene Grossrubatscher
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | | | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Alex R Huth
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Andrew Prendergast
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Tony Qu
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Jack L Gallant
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Claire Wyart
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
2
|
Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci 2019; 20:ijms20061296. [PMID: 30875831 PMCID: PMC6471844 DOI: 10.3390/ijms20061296] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
For the past few years there has been an exponential increase in the use of animal models to confirm the pathogenicity of candidate disease-causing genetic variants found in patients. One such animal model is the zebrafish. Despite being a non-mammalian animal, the zebrafish model has proven its potential in recapitulating the phenotypes of many different human genetic disorders. This review will focus on recent advances in the modeling of neurodevelopmental disorders in zebrafish, covering aspects from early brain development to techniques used for modulating gene expression, as well as how to best characterize the resulting phenotypes. We also review other existing models of neurodevelopmental disorders, and the current efforts in developing and testing compounds with potential therapeutic value.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark and the Novo Nordisk Foundation for Stem cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
3
|
Loya CM, Van Vactor D, Fulga TA. Understanding neuronal connectivity through the post-transcriptional toolkit. Genes Dev 2010; 24:625-35. [PMID: 20360381 DOI: 10.1101/gad.1907710] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-transcriptional regulatory mechanisms have emerged as a critical component underlying the diversification and spatiotemporal control of the proteome during the establishment of precise neuronal connectivity. These mechanisms have been shown to be important for virtually all stages of assembling a neural network, from neurite guidance, branching, and growth to synapse morphogenesis and function. From the moment a gene is transcribed, it undergoes a series of post-transcriptional regulatory modifications in the nucleus and cytoplasm until its final deployment as a functional protein. Initially, a message is subjected to extensive structural regulation through alternative splicing, which is capable of greatly expanding the protein repertoire by generating, in some cases, thousands of functionally distinct isoforms from a single gene locus. Then, RNA packaging into neuronal transport granules and recognition by RNA-binding proteins and/or microRNAs is capable of restricting protein synthesis to selective locations and under specific input conditions. This ability of the post-transcriptional apparatus to expand the informational content of a cell and control the deployment of proteins in both spatial and temporal dimensions is a feature well adapted for the extreme morphological properties of neural cells. In this review, we describe recent advances in understanding how post-transcriptional regulatory mechanisms refine the proteomic complexity required for the assembly of intricate and specific neural networks.
Collapse
Affiliation(s)
- Carlos M Loya
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
4
|
Abstract
Gradients of axon guidance molecules have long been postulated to control the development of the organization of neural connections into topographic maps. We review progress in identifying molecules required for mapping and the mechanisms by which they act, focusing on the visual system, the predominant model for map development. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, remain the only molecules that meet all criteria for graded topographic guidance molecules, although others fulfill some criteria. Recent reports further define their modes of action and new roles for them, including EphB/ephrin-B control of dorsal-ventral mapping, bidirectional signaling of EphAs/ephrin-As, bifunctional action of ephrins as attractants or repellents in a context-dependent manner, and complex interactions between multiple guidance molecules. In addition, spontaneous patterned neural activity has recently been shown to be required for map refinement during a brief critical period. We speculate on additional activities required for map development and suggest a synthesis of molecular and cellular mechanisms within the context of the complexities of map development.
Collapse
Affiliation(s)
- Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
5
|
Barresi MJF, Hutson LD, Chien CB, Karlstrom RO. Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development 2005; 132:3643-56. [PMID: 16033800 DOI: 10.1242/dev.01929] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three major axon pathways cross the midline of the vertebrate forebrain early in embryonic development: the postoptic commissure (POC), the anterior commissure (AC) and the optic nerve. We show that a small population of Gfap+ astroglia spans the midline of the zebrafish forebrain in the position of, and prior to, commissural and retinal axon crossing. These glial ;bridges' form in regions devoid of the guidance molecules slit2 and slit3, although a subset of these glial cells express slit1a. We show that Hh signaling is required for commissure formation, glial bridge formation, and the restricted expression of the guidance molecules slit1a, slit2, slit3 and sema3d, but that Hh does not appear to play a direct role in commissural and retinal axon guidance. Reducing Slit2 and/or Slit3 function expanded the glial bridges and caused defasciculation of the POC, consistent with a ;channeling' role for these repellent molecules. By contrast, reducing Slit1a function led to reduced midline axon crossing, suggesting a distinct role for Slit1a in midline axon guidance. Blocking Slit2 and Slit3, but not Slit1a, function in the Hh pathway mutant yot (gli2DR) dramatically rescued POC axon crossing and glial bridge formation at the midline, indicating that expanded Slit2 and Slit3 repellent function is largely responsible for the lack of midline crossing in these mutants. This analysis shows that Hh signaling helps to pattern the expression of Slit guidance molecules that then help to regulate glial cell position and axon guidance across the midline of the forebrain.
Collapse
|
6
|
Ichijo H. Proteoglycans as cues for axonal guidance in formation of retinotectal or retinocollicular projections. Mol Neurobiol 2004; 30:23-33. [PMID: 15247486 DOI: 10.1385/mn:30:1:023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 12/15/2003] [Indexed: 12/25/2022]
Abstract
Understanding the formation of neuronal circuits has long been one of the basic problems in developmental neurobiology. Projections from the retina to their higher center, the optic tectum in nonmammalian vertebrates and the superior colliculus in mammals, are most amenable to experimental approaches; thus, much information has been accumulated about the mechanisms of axonal guidance. The retinal axons navigate along the appropriate pathway with the help of a series of guidance cues. Although much of the work has focused on proteinaceous factors, proteoglycans have been identified as playing important roles in retinal axon guidance. Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are involved in essential decisions of axon steering along the pathway. However, it has not been determined whether diversity of the carbohydrate chains results in differential effects and how their diversity is recognized by growth cones, which represent an important area of future research.
Collapse
Affiliation(s)
- Hiroyuki Ichijo
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
7
|
Abstract
Genetic screens in zebrafish have identified a large number of mutations that affect neural connectivity in the developing visual system. These mutants define genes essential for accurate retinal axon guidance in the eye and brain and the characterization of these mutants is helping to define the cellular and molecular mechanisms that guide axons in the vertebrate embryo. The combination of zebrafish genetic and embryological approaches promises to greatly increase our understanding of how multiple guidance mechanisms establish the complex neural interconnectivity of the vertebrate brain.
Collapse
Affiliation(s)
- James Culverwell
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
8
|
Abstract
Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.
Collapse
Affiliation(s)
- Christine Thisse
- Institut de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université Louis Pasteur, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France
| | | |
Collapse
|
9
|
Varga ZM, Amores A, Lewis KE, Yan YL, Postlethwait JH, Eisen JS, Westerfield M. Zebrafishsmoothenedfunctions in ventral neural tube specification and axon tract formation. Development 2001; 128:3497-509. [PMID: 11566855 DOI: 10.1242/dev.128.18.3497] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (Shh) signaling patterns many vertebrate tissues. shh mutations dramatically affect mouse ventral forebrain and floor plate but produce minor defects in zebrafish. Zebrafish have two mammalian Shh orthologs, sonic hedgehog and tiggy-winkle hedgehog, and another gene, echidna hedgehog, that could have overlapping functions. To examine the role of Hedgehog signaling in zebrafish, we have characterized slow muscle omitted (smu) mutants. We show that smu encodes a zebrafish ortholog of Smoothened that transduces Hedgehog signals. Zebrafish smoothened is expressed maternally and zygotically and supports specification of motoneurons, pituitary cells and ventral forebrain. We propose that smoothened is required for induction of lateral floor plate and a subpopulation of hypothalamic cells and for maintenance of medial floor plate and hypothalamic cells.
Collapse
Affiliation(s)
- Z M Varga
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Gahtan E, O'Malley DM. Rapid lesioning of large numbers of identified vertebrate neurons: applications in zebrafish. J Neurosci Methods 2001; 108:97-110. [PMID: 11459623 DOI: 10.1016/s0165-0270(01)00382-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Establishing a causal role between the activity of specific individual nerve cells and the behaviors they produce (or the neural computations they execute) is made difficult in vertebrate animals because of the large numbers of neurons involved. Traditional techniques for establishing causal roles, such as tract cutting and electrolytic lesions, are limited because they produce damage that affects a variety of different cell types, invariably intermingled, and often of uncertain identity. We propose here an alternative lesioning technique in which large numbers of neurons are lesioned, but the lesioned neurons are specifically identified by fluorescent labeling. We use the locomotor control system of the larval zebrafish to illustrate this approach. In this example, the technique involves injection of fluorescent dextrans into far-rostral spinal cord to label descending nerve fibers. Such injections appear to interrupt the descending nerve fibers, and therefore their accompanying locomotor control signals. This protocol is shown to produce significant behavioral deficits. Because the CNS of the larval zebrafish is transparent, the entire population of lesioned cells can be imaged in vivo and reconstructed using confocal microscopy. This large-scale lesioning technique is important, even in this relatively 'simple' vertebrate animal, because the ablation of smaller numbers of neurons, using more precise laser-ablation techniques, often fails to produce observable behavioral deficits. While this technique is most readily applied in simpler and transparent vertebrate animals, the approach is general in nature and might, in principle, be applied to any vertebrate nerve tract.
Collapse
Affiliation(s)
- E Gahtan
- Department of Biology, 414 Mugar Hall, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Thanos S, Mey J. Development of the visual system of the chick. II. Mechanisms of axonal guidance. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:205-45. [PMID: 11423155 DOI: 10.1016/s0165-0173(01)00049-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The quest to understand axonal guidance mechanisms requires exact and multidisciplinary analyses of axon navigation. This review is the second part of an attempt to synthesise experimental data with theoretical models of the development of the topographic connection of the chick retina with the tectum. The first part included classic ideas from developmental biology and recent achievements on the molecular level in understanding cytodifferentiation and histogenesis [J. Mey, S. Thanos, Development of the visual system of the chick. (I) Cell differentiation and histogenesis, Brain Res. Rev. 32 (2000) 343-379]. The present part deals with the question of how millions of fibres exit from the eye, traverse over several millimetres and spread over the optic tectum to assemble a topographic map, whose precision accounts for the sensory performance of the visual system. The following topics gained special attention in this review. (i) A remarkable conceptual continuity between classic embryology and recent molecular biology has revealed that positional cellular specification precedes and determines the formation of the retinotectal map. (ii) Graded expression of asymmetric genes, transcriptional factors and receptors for signal transduction during early development seem to play a crucial role in determining the spatial identity of neurons within surface areas of retina and optic tectum. (iii) The chemoaffinity hypothesis constitutes the conceptual framework for development of the retinotopic organisation of the primary visual pathway. Studies of repulsive factors in vitro developed the original hypothesis from a theoretical postulate of chemoattraction to an empirically supported concept based on chemorepulsion. (iv) The independent but synchronous development of retina and optic tectum in topo-chronologically corresponding patterns ensures that ingrowing retinal axons encounter receptive target tissue at appropriate locations, and at the time when connections are due to be formed. (v) The growth cones of the retino-fugal axons seem to be guided both by local cues on glial endfeet and within the extracellular matrix. On the molecular level, the ephrins and their receptors have emerged as the most likely candidates for the material substrate of a topographic projection along the anterior-posterior axis of the optic tectum. Yet, since a number of alternative molecules have been proposed for the same function, it remains the challenge for the near future to define the proportional contribution of each one of the individual mechanisms proposed by matching theoretical predictions with the experimental evidence.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Domagkstr. 15, 48149, Münster, Germany.
| | | |
Collapse
|
12
|
Foa L, Rajan I, Haas K, Wu GY, Brakeman P, Worley P, Cline H. The scaffold protein, Homer1b/c, regulates axon pathfinding in the central nervous system in vivo. Nat Neurosci 2001; 4:499-506. [PMID: 11319558 DOI: 10.1038/87447] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homer proteins are a family of multidomain cytosolic proteins that have been postulated to serve as scaffold proteins that affect responses to extracellular signals by regulating protein-protein interactions. We tested whether Homer proteins are involved in axon pathfinding in vivo, by expressing both wild-type and mutant isoforms of Homer in Xenopus optic tectal neurons. Time-lapse imaging demonstrated that interfering with the ability of endogenous Homer to form protein-protein interactions resulted in axon pathfinding errors at stereotypical choice points. These data demonstrate a function for scaffold proteins such as Homer in axon guidance. Homer may facilitate signal transduction from cell-surface receptors to intracellular proteins that govern the establishment of axon trajectories.
Collapse
Affiliation(s)
- L Foa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The establishment of ordered neuronal connections is supposed to take place under the control of specific cell adhesion molecules (CAM) which guide neuroblasts and axons to their appropriate destination. The extreme complexity of the nervous system does not provide a favorable medium for the development of deterministic connections. Simon's [112] theorems offer a mean to approach the high level of complexity of the nervous system. The basic tenet is that complex systems are hierarchically organized and decomposable. Such systems can arise by selective trial and error mechanisms. Subsystems in complex systems only interact in an aggregate manner, and no significant information is lost if the detail of aggregate interactions is ignored. A number of nervous activities, which qualify for these requirements, are shown. The following sources of selection are considered: internal and external feedbacks, previous experience, plasticity in simple structures, and the characteristic geometry of dendrites. The role played by CAMs and other membrane-associated molecules is discussed in the sense that they are either inductor molecules that turn on different homeobox genes, or downstream products of genes, or both. These molecules control cellular and tissular differentiation in the developing brain creating sources of selection required for the trial and error process in the organization of the nervous tissue.
Collapse
Affiliation(s)
- G Székely
- Department of Anatomy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
14
|
Affiliation(s)
- J Malicki
- Dept. of Ophthalmology, Harvard Medical School/MEEI, Boston, Massachusetts 02114, USA
| |
Collapse
|
15
|
Lutz BS, Ma SF, Chuang DC, Chan KH, Wei FC. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats. Plast Reconstr Surg 2001; 107:116-23. [PMID: 11176609 DOI: 10.1097/00006534-200101000-00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite highest standards in nerve repair, functional recovery following nerve transection still remains unsatisfactory. Nonspecific reinnervation of target organs caused by misdirected axonal growth at the repair site is regarded as one reason for a poor functional outcome. This study was conducted to establish a method for preventing aberrant reinnervation between transected and repaired nerves in adjacency. Rat sciatic nerve was transected and repaired as follows: epineural sutures of the sciatic nerve (group A, n = 6), fascicular repair of tibial and peroneal nerves respectively (group B, n = 8), and, as in group B, separating both nerves using a pedicle fat flap as barrier (group C, n = 8). As control only, the tibial nerve was transected and repaired (group D, n = 5). Muscle contraction force of the gastrocnemius muscle was significantly higher in group C as compared with groups A and B after 4 months. Muscle weight showed significantly lower values in group A as compared with groups B, C, and D. Histologic examination in group C revealed little growth of axons from the tibial to the peroneal nerve and vice versa. This axon crossing was observed only when gaps between the fat cells were available. These findings were confirmed by a significantly lower rate of misdirected axonal growth as compared with groups A and B using sequential retrograde double labeling technique of the soleus motoneuron pool. We conclude that a pedicle fat flap significantly prevents aberrant reinnervation between repaired adjacent nerves resulting in significantly improved motor recovery in rats. Clinically, this is of importance for brachial plexus, sciatic nerve, and facial nerve repair.
Collapse
Affiliation(s)
- B S Lutz
- Department of Plastic Surgery, Medical Center Orebro, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Furley AJ. The trappist's approach to pathfinding: elucidating brain wiring using secretory-trap mutagenesis. Genome Biol 2001; 2:REVIEWS1026. [PMID: 11574063 PMCID: PMC138964 DOI: 10.1186/gb-2001-2-9-reviews1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A key problem in using genetics to dissect the wiring of the mammalian brain lies in discovering which of the billions of neural connections have been disrupted by a particular mutation. A novel gene-trap approach targets the genes involved in brain wiring and labels the axons of neurons expressing those genes, enabling the effects of mutations to be observed directly.
Collapse
Affiliation(s)
- A J Furley
- Centre for Developmental Genetics, School of Medicine and Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
17
|
Malicki J. Harnessing the power of forward genetics--analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci 2000; 23:531-41. [PMID: 11074262 DOI: 10.1016/s0166-2236(00)01655-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The seven major cell classes of the vertebrate retina are organized with remarkable precision into distinct layers. The appearance of this architecture during embryogenesis raises two questions of general importance. How do individual cell classes acquire their specialized structures and functions if they all originate from a morphologically uniform cell population? What mechanisms are responsible for the formation of such a complex and exact pattern? Recent advances present an opportunity to apply the tools of forward genetic analysis to identify mutations that affect these mechanisms in zebrafish. Molecular characterization will follow, providing insight into the basis of neuronal patterning in the vertebrate CNS.
Collapse
Affiliation(s)
- J Malicki
- Dept of Ophthalmology, Harvard Medical School, Boston, MA 02134, USA. www.howelaboratory.harvard.edu/malicki/htm
| |
Collapse
|
18
|
Molnár Z, Hannan AJ. Development of thalamocortical projections in normal and mutant mice. Results Probl Cell Differ 2000; 30:293-332. [PMID: 10857195 DOI: 10.1007/978-3-540-48002-0_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Z Molnár
- Institut de Biologie Cellulaire et de Morphologie, Lausanne, Switzerland
| | | |
Collapse
|
19
|
Odenthal J, van Eeden FJ, Haffter P, Ingham PW, Nüsslein-Volhard C. Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol 2000; 219:350-63. [PMID: 10694427 DOI: 10.1006/dbio.1999.9589] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The floor plate is a morphologically distinct structure of epithelial cells situated along the midline of the ventral spinal cord in vertebrates. It is a source of guidance molecules directing the growth of axons along and across the midline of the neural tube. In the zebrafish, the floor plate is about three cells wide and composed of cuboidal cells. Two cell populations can be distinguished by the expression patterns of several marker genes, including sonic hedgehog (shh) and the fork head-domain gene fkd4: a single row of medial floor plate (MFP) cells, expressing both shh and fkd4, is flanked by rows of lateral floor plate (LFP) cells that express fkd4 but not shh. Systematic mutant searches in zebrafish embryos have identified a number of genes, mutations in which visibly reduce the floor plate. In these mutants either the MFP or the LFP cells are absent, as revealed by the analysis of the shh and fkd4 expression patterns. MFP cells are absent, but LFP cells are present, in mutants of cyclops, one-eyed pinhead, and schmalspur, whose development of midline structures is affected. LFP cells are absent, but MFP cells are present, in mutants of four genes, sonic you, you, you-too, and chameleon, collectively called the you-type genes. This group of mutants also shows defects in patterning of the paraxial mesoderm, causing U- instead of V-shaped somites. One of the you-type genes, sonic you, was recently shown to encode the zebrafish Shh protein, suggesting that the you-type genes encode components of the Shh signaling pathway. It has been shown previously that in the zebrafish shh is required for the induction of LFP cells, but not for the development of MFP cells. This conclusion is supported by the finding that injection of shh RNA causes an increase in the number of LFP, but not MFP cells. Embryos mutant for iguana, detour, and umleitung share the lack of LFP cells with you-type mutants while somite patterning is not severely affected. In mutants that fail to develop a notochord, MFP cells may be present, but are always surrounded by LFP cells. These data indicate that shh, expressed in the notochord and/or the MFP cells, induces the formation of LFP cells. In embryos doubly mutant for cyclops (cyc) and sonic you (syu) both LFP and MFP cells are deleted. The number of primary motor neurons is strongly reduced in cyc;syu double mutants, while almost normal in single mutants, suggesting that the two different pathways have overlapping functions in the induction of primary motor neurons.
Collapse
Affiliation(s)
- J Odenthal
- MPI für Entwicklungsbiologie, Spemannstrasse 35/III, Tübingen, 72076, Germany.
| | | | | | | | | |
Collapse
|
20
|
Dunlop SA, Tee LB, Beazley LD. Topographic order of retinofugal axons in a marsupial: Implications for map formation in visual nuclei. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001204)428:1<33::aid-cne4>3.0.co;2-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Ichijo H. Differentiation of the chick retinotectal topographic map by remodeling in specificity and refinement in accuracy. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:199-211. [PMID: 10567738 DOI: 10.1016/s0165-3806(99)00126-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand the development of the retinotopic map, differentiation of the topographic map was quantitatively examined in the chick. Labeling the retinal ganglion cell (RGC) axons anterogradely with the local injections of DiI revealed the relative anteroposterior positions of their growth cones (GCs) on the tecta as a function of the nasotemporal positions of the injected sites in the retinae, which allowed a graphic representation of the map. The topographic map was depicted by combination of two parameters: specificity which indicates strictness of the topographic relationship between locations of the RGC bodies and their GCs on the tectum, and accuracy which indicates an extent of the GC displacement on the tectum. A crude projection with low specificity emerged at embryonic day 11 (E11). The initial crude projection was remodeled into the inaccurate map with high specificity by E13; thereafter, it was refined to the accurate map with higher specificity by E15. The results suggest that the elements of the guidance mechanism operate stage by stage through the formation of the crude projection, the remodeling in specificity, and the refinement in accuracy to establish the final topographic map.
Collapse
Affiliation(s)
- H Ichijo
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
22
|
O'Leary DD, Yates PA, McLaughlin T. Molecular development of sensory maps: representing sights and smells in the brain. Cell 1999; 96:255-69. [PMID: 9988220 DOI: 10.1016/s0092-8674(00)80565-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- D D O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
23
|
Bernhardt RR. Cellular and molecular bases of axonal pathfinding during embryogenesis of the fish central nervous system. JOURNAL OF NEUROBIOLOGY 1999; 38:137-60. [PMID: 10027569 DOI: 10.1002/(sici)1097-4695(199901)38:1<137::aid-neu11>3.0.co;2-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accessibility of the zebrafish embryo offers unique possibilities to study the mechanisms that guide growing axons in the developing vertebrate central nervous system. This review examines the current understanding of the pathfinding decisions by the growing axons, their substrates, and the recognition molecules that mediate axon-substrate interactions. The detailed analysis of pathfinding at the level of individual axons demonstrates that growing axons chose their paths unerringly. To do so, they rely on cues presented by their environment, in particular by neuroepithelial cells. Our understanding of the molecular bases of axon-substrate interactions is increasing. Members of most classes of recognition molecules have been identified in fish. Experimental evidence for the functions of these molecules in the zebrafish nervous system is accumulating. In the future, this analysis is expected to profit greatly from genetic screens that have recently been initiated.
Collapse
Affiliation(s)
- R R Bernhardt
- Department of Neurobiology Swiss Federal Institute of Technology, Zürich, Switzerland.
| |
Collapse
|
24
|
Abstract
Axon order throughout the visual pathway of the quokka wallaby (Setonix brachyurus) was determined after localised retinal applications of the tracers DiI and/or DiASP. Postnatal days (P) 22-90 were studied to encompass the development and refinement of retinal projections. Order was essentially similar at all stages. Axons entered the optic nerve head true to their sector of retinal origin. In the optic nerve, nasal and temporal axons continued to reflect their retinal origin, dominating, respectively, the medial and lateral halves. By contrast, dorsal and ventral axons exchanged locations between the retrobulbar level and one-third the distance along the nerve; thus, the inversion of the dorsoventral retinal axis, imposed by the lens, was corrected. Decussating axons maintained their relative locations through the chiasm. At the base of the optic tract, nasal and temporal axons underwent an axial rotation to lie on the medial and lateral sides, respectively; thus nasal overlapped with ventral axons and temporal with dorsal axons. Axons maintained their alignments throughout the tract, and as a result, nasal and ventral axons invaded the superior colliculus medially, whereas temporal and dorsal axons invaded laterally. Each retinal quadrant terminated preferentially in its retinotopically appropriate sector of the colliculus. The arrangement of axons in the quokka visual pathway displays several novel features. Axon order is distinct throughout, involving a well-demarcated exchange of dorsal and ventral axons in the nerve and an axial rotation of nasal and temporal axons at the base of the tract; these relocations suggest decision regions for growing axons. The organisation presumably underlies the less extensive searching within the developing superior colliculus to generate retinotopic maps in the quokka and also in tammar wallaby [Marotte, J. Comp Neurol. 293:524-539, 1990] than in the rat [Simon and O'Leary, J. Neurosci. 12:1212-1232, 1992].
Collapse
|
25
|
Abstract
In a search for novel tyrosine kinases involved in vertebrate development, we have isolated cDNAs corresponding to three distinct members of the Eph-family of receptor tyrosine kinases. Whole mount RNA in situ hybridization analysis showed all three genes were most abundantly expressed in the developing nervous system. zek1 (zebrafish Eph-like kinase1) encodes a 981 amino acid polypeptide closely related to the murine Sek1 and Bsk receptors. Cos-1 cells transfected with zek1 produce a 141 kilodalton tyrosine phosphorylated protein which is recognized by antibodies raised against two predicted Zek1 peptides. These antibodies also recognized a protein of the same apparent molecular weight in lysates from zebrafish embryos and adults. Widespread expression of zek1 in the developing brain and neural tube suggested a generalized function of the Zek1 receptor in neuronal cell ontogeny.
Collapse
Affiliation(s)
- D E Bovenkamp
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|