1
|
Matsuura R, Hamano SI, Koichihara R, Takeda R, Takeuchi H, Hirata Y, Kikuchi K, Oka A. Serum matrix metallopeptidase-9 levels in infantile epileptic spasms syndrome of unknown etiology. Epilepsy Res 2024; 207:107454. [PMID: 39342693 DOI: 10.1016/j.eplepsyres.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Epileptic spasms are the primary symptom of infantile epileptic spasms syndrome (IESS); however, their direct impact on blood-brain barrier (BBB) function is unknown. Matrix metallopeptidase-9 (MMP-9), degrades type IV collagen, a key component of the blood-brain barrier, while tissue inhibitor of metalloproteinase-1 (TIMP-1) suppresses its activity, protecting BBB integrity. This study aimed to assess serum MMP-9 and TIMP-1 levels in patients with IESS of unknown etiology. METHODS We prospectively assessed serum MMP-9 and TIMP-1 levels prior to administering vigabatrin or adrenocorticotropic hormone therapy in patients with IESS of unknown etiology at Saitama Children's Medical Center between February 2012 and December 2023. We compared these biomarkers between patients with epileptic spasms and age-matched controls and performed a curve regression analysis between the biomarkers and the frequency of epileptic spasms. Additionally, we assessed whether MMP-9 and TIMP-1 levels were diagnostic predictors of IESS. RESULTS This study included 22 patients with IESS (11 males) and 12 controls. Serum MMP-9 and MMP-9/TIMP-1 ratios were higher in patients with IESS than in controls (p < 0.001 and p = 0.002, respectively). A high frequency of epileptic spasms also led to higher serum MMP-9 levels (y = 0.0871x2 + 0.195x + 195.15, R² = 0.77, p < 0.001). Using MMP >188 ng/mL as the cutoff level, the sensitivity for diagnosing IESS was 95.5 %, the specificity was 75.0 %, the positive likelihood ratio was 3.82 (95 % confidence interval (CI) 1.43-10.22), and the relative risk was 8.75 (95 % CI 1.36-56.5). CONCLUSION Patients with IESS had elevated serum MMP-9 levels, suggesting an association between epileptic spasms and blood-brain barrier dysfunction. MMP-9 level measurement may be useful for diagnosing suspected patients.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| | - Reiko Koichihara
- Division of Child Health and Human Development, Saitama Children's Medical Center, Saitama, Japan.
| | - Rikako Takeda
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| | - Hirokazu Takeuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
| | - Akira Oka
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| |
Collapse
|
2
|
Matsuura R, Hamano SI, Takeuchi H, Takeda R, Horita H, Hirata Y, Koichihara R, Kikuchi K, Oka A. Adrenocorticotropic hormone therapy alters Q-albumin ratios in patients with infantile epileptic spasms syndrome of unknown etiology. J Neurol Sci 2024; 465:123187. [PMID: 39173325 DOI: 10.1016/j.jns.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Infantile epileptic spasms syndrome (IESS) with epileptic spasms as the main seizure type, is treated with adrenocorticotropic hormone (ACTH). This study, for the first time, examines the effects of epileptic spasms and ACTH on blood-brain barrier (BBB) permeability in patients with IESS of unknown etiology. METHODS We prospectively evaluated the changes in BBB permeability in patients with IESS of unknown etiology at the Saitama Children's Medical Center between February 2012 and February 2024. We compared the levels of serum-albumin, cerebrospinal fluid (CSF)-albumin, Q-albumin, and CSF-neuron-specific enolase (NSE) before and after ACTH therapy. We also assessed the correlation between the frequency of epileptic spasms and these markers. RESULTS Overall, 16 patients with IESS (8 males) were included in the study. The median age at IESS onset was 5 (range, 2-9) months. The median duration between the epileptic spasms onset and the serum and CSF sample examination before ACTH therapy was 26 (range, 1-154) days. After ACTH therapy, CSF-albumin and Q-albumin levels significantly decreased (CSF-albumin: 13.5 (9.0-32.0) mg/dL vs 11.0 (7.0-19.0) mg/dL, p = 0.001. Q-albumin: 3.7× 10-3 (2.2 × 10-3-7.3 × 10-3) vs 2.8× 10-3 (1.9 × 10-3-4.5 × 10-3), p = 0.003). No correlation was observed between the epileptic spasms frequency and levels of serum-albumin, CSF-albumin, Q-albumin, and CSF-NSE (Spearman's coefficient: r = 0.291, r = 0.141, r = 0.094, and r = -0.471, respectively). CONCLUSION ACTH therapy is one of the factors that play a role in restoring BBB permeability in patients with IESS of unknown etiology. Our findings may be useful in elucidating the mechanism of ACTH action and IESS pathophysiology.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| | - Hirokazu Takeuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Rikako Takeda
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Haruhito Horita
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Reiko Koichihara
- Division of Child Health and Human Development, Saitama Children's Medical Center, Saitama, Japan.
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Akira Oka
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| |
Collapse
|
3
|
Pechlivanidou E, Chatzikyriakos A, Zisi MA, Paraskevopoulos N, Kaltsa S, Konstantas OK, Zogakis P, Catsouli A, Sekouris N, Margariti RE. Gabapentin-Induced Adrenal Insufficiency: The Hypothalamic-Pituitary-Adrenal Axis Stress Misresponse and Risk of Infection: A Case Report and Literature Review. Pharmaceuticals (Basel) 2024; 17:1174. [PMID: 39338336 PMCID: PMC11435122 DOI: 10.3390/ph17091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
This literature review, in light of the presented case report, explores the complex interplay between gabapentin (GBP), a gamma-aminobutyric acid (GABA) analog, and the hypothalamic-pituitary-adrenal (HPA) axis in patients undergoing major surgical procedures. It specifically investigates the potential impact of GBP on cortisol levels, stress responses, and infection risk, illustrated by a detailed clinical case. This review combines a comprehensive literature search with a case report of a 17-year-old male with osteosarcoma who experienced transient adrenal insufficiency and infections while receiving GBP. The case is analyzed in the context of the existing literature on GBP and the HPA axis. The findings highlight the intricate relationship between GBP use, adrenal insufficiency, and infection susceptibility. It underscores the need for further research and clinical vigilance when prescribing GBP to patients with underlying medical conditions, particularly in the context of major surgical procedures. The review underscores the need for further research and clinical vigilance when prescribing GBP, particularly in perioperative settings. In conclusion, GBP's effects on the HPA axis and immune responses are complex and multifaceted. Clinicians should exercise caution when prescribing GBP, especially for patients with underlying conditions undergoing major surgery. Further research is needed to elucidate the mechanisms of GBP's influence on cortisol levels and stress responses.
Collapse
Affiliation(s)
- Evmorfia Pechlivanidou
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | | | - Maria Anna Zisi
- Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | | | - Semeli Kaltsa
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| | - Orestis K Konstantas
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| | - Panteleimon Zogakis
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| | - Aikaterini Catsouli
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| | - Nick Sekouris
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| | - Rodanthi E Margariti
- 1st Department of Orthopaedics, P. & A. Kyriakou Children's Hospital, 115 27 Athens, Greece
| |
Collapse
|
4
|
Russo A, Mazzone S, Landolina L, Colucci R, Baccari F, Fetta A, Boni A, Cordelli DM. Efficacy and Safety of Pulse Intravenous Methylprednisolone in Pediatric Epileptic Encephalopathies: Timing and Networks Consideration. J Clin Med 2024; 13:2497. [PMID: 38731025 PMCID: PMC11084200 DOI: 10.3390/jcm13092497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Epileptic encephalopathies (EE) are characterized by severe drug-resistant seizures, early onset, and unfavorable developmental outcomes. This article discusses the use of intravenous methylprednisolone (IVMP) pulse therapy in pediatric patients with EE to evaluate its efficacy and tolerability. Methods: This is a retrospective study from 2020 to 2023. Inclusion criteria were ≤18 years at the time of IVMP pulse therapy and at least 6 months of follow-up. Efficacy and outcome, defined as seizure reduction > 50% (responder rate), were evaluated at 6 and 9 months of therapy, and 6 months after therapy suspension; quality of life (QoL) was also assessed. Variables predicting positive post-IVMP outcomes were identified using statistical analysis. Results: The study included 21 patients, with a responder rate of 85.7% at 6 and 9 months of therapy, and 80.9% at 6 months after therapy suspension. Variables significantly predicting favorable outcome were etiology (p = 0.0475) and epilepsy type (p = 0.0475), with the best outcome achieved in patients with genetic epilepsy and those with encephalopathy related to electrical status epilepticus during slow-wave sleep (ESES). All patients evidenced improvements in QoL at the last follow-up, with no relevant adverse events reported. Conclusions: Our study confirmed the efficacy and high tolerability of IVMP pulse therapy in pediatric patients with EE. Genetic epilepsy and ESES were positive predictors of a favorable clinical outcome. QOL, EEG tracing, and postural-motor development showed an improving trend as well. IVMP pulse therapy should be considered earlier in patients with EE.
Collapse
Affiliation(s)
- Angelo Russo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
| | - Serena Mazzone
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
| | - Laura Landolina
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40126 Bologna, Italy
| | - Roberta Colucci
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40126 Bologna, Italy
| | - Flavia Baccari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOS Epidemiologia e Biostatistica, 40139 Bologna, Italy;
| | - Anna Fetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40126 Bologna, Italy
| | - Antonella Boni
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
| | - Duccio Maria Cordelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell’età Pediatrica, 40139 Bologna, Italy; (S.M.); (L.L.); (R.C.); (A.F.); (A.B.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Dezsi G, Ozturk E, Harris G, Paul C, O'Brien TJ, Jones NC. Metyrapone abolishes spike-wave discharge seizures in genetic absence epilepsy rats from Strasbourg by reducing stress hormones. Epilepsia 2023. [PMID: 36916834 DOI: 10.1111/epi.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias. Here, we used genetic absence epilepsy rats from Strasbourg (GAERS), a genetic rat model of absence epilepsy, to explore the influence of stress and stress hormones on spontaneous seizures. METHODS Adult male GAERS (n = 38) and nonepileptic control (NEC) rats (n = 4) were used. First, rats were subjected to 30-min restraint stress to assess hypothalamic-pituitary-adrenal axis function. Next, we assessed the effects of 30-min noise stress, and cage tilt stress, on spike-wave discharge seizures in GAERS. We then performed pharmacological experiments to assess the direct effects of stress hormones on seizures, including corticosterone, metyrapone, and deoxycorticosterone. RESULTS GAERS exhibited elevated baseline corticosterone levels, compared to NEC rats. Noise stress and cage tilt stress significantly enhanced seizure incidence (p < .05), but only during stress periods. Exogenous corticosterone administration also significantly increased seizure occurrence (p < .05). Metyrapone, an inhibitor of corticosterone synthesis, completely abolished seizures in GAERS, and seizures remained suppressed for >2 h. However, deoxycorticosterone, the precursor of corticosterone, increased seizures. SIGNIFICANCE These results suggest that GAERS exhibit elevations in stress hormones, and this may contribute to seizures. Inhibiting corticosterone synthesis with metyrapone prevents seizures in GAERS, and shows potential for repurposing this drug as a future antiseizure medication.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ezgi Ozturk
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia Harris
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Cornelius Paul
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
7
|
Matsuura R, Hamano SI, Daida A, Horiguchi A, Nonoyama H, Kubota J, Ikemoto S, Hirata Y, Koichihara R, Kikuchi K. Serum matrix metallopeptidase-9 and tissue inhibitor of metalloproteinase-1 levels may predict response to adrenocorticotropic hormone therapy in patients with infantile spasms. Brain Dev 2022; 44:114-121. [PMID: 34429218 DOI: 10.1016/j.braindev.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate whether serum matrix metallopeptidase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels predict response to adrenocorticotropic hormone (ACTH) therapy in patients with infantile spasms. METHODS We prospectively evaluated patients with infantile spasms who were referred to Saitama Children's Medical Center from January 2011 to December 2020. We measured Q-albumin and serum MMP-9 and TIMP-1 levels before ACTH therapy. Patients were divided into three groups based on the etiology of their infantile spasms: those with an unknown etiology and normal development (unknown-normal group); those with a structural and acquired etiology (structural-acquired group); and those with a structural and congenital, genetic, metabolic, or unknown etiology with developmental delay (combined-congenital group). Responders were defined as those having complete cessation of spasms for more than 3 months with the resolution of hypsarrhythmia on electroencephalography during ACTH therapy. RESULTS We collected serum from 36 patients with West syndrome and five patients with infantile spasms without hypsarrhythmia before ACTH therapy. Twenty-three of 41 patients (56.1%) were responders, including 8/8 (100%) in the unknown-normal group, 6/9 (66.7%) in the structural-acquired group, and 9/24 (37.5%) in the combined-congenital group. The serum MMP-9 level and MMP-9/TIMP-1 ratio were significantly higher in responders than in nonresponders (P = 0.001 for both). CONCLUSION A therapeutic response to ACTH was associated with a higher serum MMP-9 level and higher MMP-9/TIMP-1 ratio in patients with infantile spasms. Therefore, these biomarkers may predict responses to ACTH therapy in this patient population.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Ayumi Horiguchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Hazuki Nonoyama
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Jun Kubota
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Satoru Ikemoto
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Reiko Koichihara
- Division of Child Health and Human Development, Saitama Children's Medical Center, Saitama, Japan
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| |
Collapse
|
8
|
Matsuura R, Hamano SI, Ikemoto S, Daida A, Takeda R, Horiguchi A, Hirata Y, Koichihara R, Kikuchi K. Adjunctive perampanel therapy for patients with epileptic spasms. Pediatr Int 2022; 64:e15364. [PMID: 36564346 DOI: 10.1111/ped.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Perampanel is an antiepileptic drug. Some studies have documented the efficacy of perampanel in epileptic spasms. We aimed to evaluate the efficacy and safety of adjunctive perampanel therapy (PT) in patients with epileptic spasms. METHODS We retrospectively surveyed the efficacy and safety of adjunctive PT in 14 patients with epileptic spasms at the Saitama Children's Medical Center between June 2016 and September 2021. Seizure outcomes and safety were evaluated 12 months after commencing PT. Response to perampanel was defined as complete remission of epileptic spasms for more than 3 months. RESULTS The median age at onset of epileptic spasms was 0.4 years (range, 0.1-1.3 years). The etiology was structural in 11 patients, genetic in two, and unknown in one. The median age at the commencement of PT was 3.2 years (1.5-10.3 years). The initial and maintenance doses of perampanel were administered at 0.04 (range, 0.02-0.05) mg/kg/day and 0.12 (range, 0.03-0.24) mg/kg/day, respectively. Five of the 14 patients (35.7%) showed remission of epileptic spasms for more than 3 months at 12 months after PT; these patients had a structural etiology. The median duration between commencement of perampanel and spasm remission was 2 months (range, 1-6 months). No serious adverse effects occurred. CONCLUSIONS This is the first case series evaluating adjunctive PT for epileptic spasms. PT is worth investigating to treat epileptic spasms in patients with structural etiologies. As our study population primarily comprised children aged 2 years and older, PT may be useful for epileptic spasms beyond infancy.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Rikako Takeda
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Ayumi Horiguchi
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Reiko Koichihara
- Division of Child Health and Human Development, Saitama Children's Medical Center, Saitama, Japan
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Akyuz E, Eroglu E. Envisioning the crosstalk between environmental enrichment and epilepsy: A novel perspective. Epilepsy Behav 2021; 115:107660. [PMID: 33328107 DOI: 10.1016/j.yebeh.2020.107660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Epilepsies are a diverse group of neurological disorders characterized by an unprovoked seizure and a brain that has an enduring predisposition to seizures. The lack of disease-modifying treatment strategies against the same has led to the exploration of novel treatment strategies that could halt epileptic seizures. In this regard, environmental enrichment (EE) has gained increased attention in recent days. EE modulates the effects of interactions between the genes and the environment on the structure and function of the brain. EE therapy can improve seizure-related symptoms in neurological diseases such as epilepsy. EE therapy can have a significant effect on cognitive disorders such as learning and memory impairments associated with seizures. EE therapy in epileptic hippocampus tissue can improve seizure-related symptoms by inducing enhanced neurogenesis and neuroprotective mechanisms. In this context, the efficiency of EE is regulated in the epilepsy by the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK) signaling pathway regulated by extracellular signaling. Herein, we provide experimental evidence supporting the beneficial effects of EE in epileptic seizures and its underlying mechanism.
Collapse
Affiliation(s)
- Enes Akyuz
- Yozgat Bozok University, Medical School, Department of Biophysics, 66100 Yozgat, Turkey.
| | - Ece Eroglu
- Yozgat Bozok University, Medical School, 66100 Yozgat, Turkey.
| |
Collapse
|
10
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
11
|
Methylprednisolone pulse therapy in 31 patients with refractory epilepsy: A single-center retrospective analysis. Epilepsy Behav 2020; 109:107116. [PMID: 32388139 DOI: 10.1016/j.yebeh.2020.107116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE We investigated the efficacy of methylprednisolone pulse therapy (MP) and responder characteristics in patients with refractory epilepsy. METHODS We reviewed medical records of our center to identify patients with refractory epilepsy treated with MP other than continuous spikes and waves during slow sleep (CSWS), Landau-Kleffner syndrome (LKS), or Rasmussen's syndrome (RS) between 2004 and 2015. A course of MP consisted of intravenous methylprednisolone (30 mg/kg/day) on three consecutive days. Patients received multiple courses at intervals of four weeks. We examined seizure outcome, developmental outcome, antibodies to N-methyl-d-aspartate (NMDA)-type glutamate receptors (GluRs), cerebral spinal fluid (CSF)-albumin/serum-albumin ratio, and interictal electroencephalograms (EEGs). Responder to MP was defined as maintaining seizure reduction rate (SRR) ≥50% for three months after the first course of MP. RESULTS Thirty-one consecutive patients treated with MP at our center were studied. Seizure types were focal onset impaired awareness seizure (FIAS) only (n = 23), FIAS with epileptic spasms (ES) (n = 7), and ES only (n = 1). Responder rate was 32.2% (10/31 patients), and seizure-free rate was 9.7% (3/31). Responders constituted 43.5% of patients without ES. No patient with ES was responder. Behavior and cognition also improved in 6 of 10 responders. History of seizure aggravation after inactivated vaccine before MP was found significantly higher rate in responder patients, comparing with nonresponder patients (p = 0.01). CONCLUSION Methylprednisolone pulse therapy may be considered for possible treatment in patients with focal epilepsy with drug-resistant seizures without ES, and it may improve cognitive function and behavioral comorbidities.
Collapse
|
12
|
Liening AN, Epps SA. In Up to My Ears and Temporal Lobes: Effects of Early Life Stress on Epilepsy Development. Curr Top Behav Neurosci 2020; 55:17-40. [PMID: 33454921 DOI: 10.1007/7854_2020_190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy and stress are each significant concerns in today's society, bearing heavy impacts on mental and physical health and overall quality of life. Unfortunately, the intersection between these is potentially even more concerning, as stress is a frequent trigger of seizures and may contribute to neural hyperexcitability. A growing body of research suggests a connection between early life stress (occurring in the prenatal or postnatal stage) and later development of epilepsy. While the larger part of this literature suggests that early life stress increases vulnerability for epilepsy development, there are a number of interacting factors influencing this relationship. These factors include developmental stage at which both stressor and seizure assessment occur, type of stressor, sex effects, and type of seizure (convulsive or non-convulsive). Additionally, a number of potential mechanisms have been identified, including activation of the hypothalamic-pituitary-adrenal axis, neuroinflammation, altered inhibitory/excitatory balance, and temporal lobe structures. Developing a clearer understanding of this relationship between early life stress and epilepsy, the factors that influence it, and underlying mechanisms that may serve as targets for intervention is crucial to improving quality of life for persons with epilepsy.
Collapse
Affiliation(s)
- Avery N Liening
- Department of Psychology, Whitworth University, Spokane, WA, USA
| | - S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, USA.
| |
Collapse
|
13
|
Gorantla VR, Thomas SE, Millis RM. Environmental Enrichment and Brain Neuroplasticity in the Kainate Rat Model of Temporal Lobe Epilepsy. J Epilepsy Res 2019; 9:51-64. [PMID: 31482057 PMCID: PMC6706649 DOI: 10.14581/jer.19006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Environmental enrichment (EE) improves brain function and ameliorates cognitive impairments; however, whether EE can reverse the learning and memory deficits seen following seizures remains unknown. Methods We tested the hypothesis that EE augments neurogenesis and attenuates the learning and memory deficits in rats subjected to kainate-induced seizures in hippocampus, amygdala and motor cortex. EE consisted of daily exposures immediately after KA lesioning (early EE) and after a 60-day period (late EE). Morphometric counting of neuron numbers (NN), dendritic branch-points and intersections (DDBPI) were performed. Spatial learning in a T-maze test was described as percent correct responses and memory in a passive-avoidance test was calculated as time spent in the small compartment where they were previously exposed to an aversive stimulus. Results EE increased NN and DDBPI in the normal control and in the KA-lesioned rats in all brain areas studied, after both early and late exposure to EE. Late EE resulted in significantly fewer surviving neurons than early EE in all brain areas (p < 0.0001). EE increased the percent correct responses and decreased time spent in the small compartment, after both early and late EE. The timing of EE (early vs. late) had no effect on the behavioral measurements. Conclusions These findings demonstrate that, after temporal lobe and motor cortex epileptic seizures in rats, EE improves neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the EE treatment is delayed for 60 days. Future studies should determine whether EE is a useful therapeutic strategy for patients affected by seizures.
Collapse
Affiliation(s)
- Vasavi R Gorantla
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Sneha E Thomas
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Richard M Millis
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda.,Department of Medical Physiology, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| |
Collapse
|
14
|
Davis EP, Hankin BL, Glynn LM, Head K, Kim DJ, Sandman CA. Prenatal Maternal Stress, Child Cortical Thickness, and Adolescent Depressive Symptoms. Child Dev 2019; 91:e432-e450. [PMID: 31073997 DOI: 10.1111/cdev.13252] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prenatal maternal stress predicts subsequent elevations in youth depressive symptoms, but the neural processes associated with these links are unclear. This study evaluated whether prenatal maternal stress is associated with child brain development, and adolescent depressive symptoms using a prospective design with 74 mother child pairs (40 boys). Maternal stress was assessed during pregnancy, child cortical thickness at age 7, and depressive symptoms at age 12. Prenatal maternal stress was associated with less cortical thickness primarily in frontal and temporal regions and with elevated depressive symptoms; child cortical thickness additionally correlated with adolescent depressive symptoms. The observed associations are consistent with the possibility that cortical thickness in superior frontal regions links associations between prenatal maternal stress and adolescent depressive symptoms.
Collapse
|
15
|
Feng Y, Wang L, Liu X, Wu Q, Zhang H, Hu F, Sun X. Human corticotrophin releasing factor inhibits cell proliferation and promotes apoptosis through upregulation of tumor protein p53 in human glioma. Oncol Lett 2018; 15:8378-8386. [PMID: 29805572 PMCID: PMC5950518 DOI: 10.3892/ol.2018.8406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/21/2017] [Indexed: 11/28/2022] Open
Abstract
Corticotropin-releasing factor (CRF) and its receptors have been detected in numerous tumors and have an important role in tumorigenesis and proliferation. However, the role of these peptides has not been established in human glioma and malignant glioma cell lines. The present study evaluated for the first time, the expression of CRF receptor 1 (CRFR1) in 35 human glioma samples, 13 normal brain tissues and human U87 glioma cells using immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Levels of CRFR1 were identified to be significantly increased in human glioma and U87 cells and higher levels of CRFR1 were observed in glioma tissues of higher grade. The biological functions of human CRF (hCRF) on U87 cells glioma cells were investigated by cell counting, a bromodeoxyuridine assay and flow cytometry. The U87 cells under hCRF treatment exhibited reduced proliferation, increased apoptosis and a cell cycle arrest in S and G2/M phase. The tumor protein p53 (p53) gene may participate in the activation of hCRF via CRFR1 in U87 cells, therefore p53 mRNA and protein were evaluated using RT-qPCR and western blot analysis. Finally, the present results suggest that hCRF inhibits proliferation and induces cell-cycle arrest and apoptosis in U87 cells via the CRFR1-mediated p53 signaling pathway. Therefore, the present study also suggests that hCRF may be used therapeutically, and CRFR1 may be a putative therapeutic target for human glioma.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liqun Wang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xin Liu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiang Wu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haofeng Zhang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fuguang Hu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaofeng Sun
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
16
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Thébault-Dagher F, Herba CM, Séguin JR, Muckle G, Lupien SJ, Carmant L, Simard MN, Shapiro GD, Fraser WD, Lippé S. Age at first febrile seizure correlates with perinatal maternal emotional symptoms. Epilepsy Res 2017. [DOI: 10.1016/j.eplepsyres.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Taketo M, Matsuda H. Short-term inhibition of GABAergic IPSCs induced by association of pre- and postsynaptic activation in the neonatal hippocampus. Neuropharmacology 2017; 121:39-48. [DOI: 10.1016/j.neuropharm.2017.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
19
|
Curran MM, Sandman CA, Poggi Davis E, Glynn LM, Baram TZ. Abnormal dendritic maturation of developing cortical neurons exposed to corticotropin releasing hormone (CRH): Insights into effects of prenatal adversity? PLoS One 2017; 12:e0180311. [PMID: 28658297 PMCID: PMC5489219 DOI: 10.1371/journal.pone.0180311] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Corticotropin releasing hormone (CRH) produced by the hypothalamus initiates the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the body's stress response. CRH levels typically are undetectable in human plasma, but during pregnancy the primate placenta synthesizes and releases large amounts of CRH into both maternal and fetal circulations. Notably, placental CRH synthesis increases in response to maternal stress signals. There is evidence that human fetal exposure to high concentrations of placental CRH is associated with behavioral consequences during infancy and into childhood, however the direct effects on of the peptide on the human brain are unknown. In this study, we used a rodent model to test the plausibility that CRH has direct effects on the developing cortex. Because chronic exposure to CRH reduces dendritic branching in hippocampal neurons, we tested the hypothesis that exposure to CRH would provoke impoverishment of dendritic trees in cortical neurons. This might be reflected in humans as cortical thinning. We grew developing cortical neurons in primary cultures in the presence of graded concentrations of CRH. We then employed Sholl analyses to measure dendritic branching and total dendritic length of treated cells. A seven-day exposure to increasing levels of CRH led to a significant, dose-dependent impoverishment of the branching of pyramidal-like cortical neurons. These results are consistent with the hypothesis that, rather than merely being a marker of prenatal stress, CRH directly decreases dendritic branching. Because dendrites comprise a large portion of cortical volume these findings might underlie reduced cortical thickness and could contribute to the behavioral consequences observed in children exposed to high levels of CRH in utero.
Collapse
Affiliation(s)
- Megan M. Curran
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Elysia Poggi Davis
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Psychology, University of Denver, Denver, Colorado, United States of America
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States of America
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
- Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
20
|
Shandra O, Moshé SL, Galanopoulou AS. Inflammation in Epileptic Encephalopathies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:59-84. [PMID: 28427564 PMCID: PMC5753773 DOI: 10.1016/bs.apcsb.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West syndrome (WS) is an infantile epileptic encephalopathy that manifests with infantile spasms (IS), hypsarrhythmia (in ~60% of infants), and poor neurodevelopmental outcomes. The etiologies of WS can be structural-metabolic pathologies (~60%), genetic (12%-15%), or of unknown origin. The current treatment options include hormonal treatment (adrenocorticotropic hormone and high-dose steroids) and the GABA aminotransferase inhibitor vigabatrin, while ketogenic diet can be given as add-on treatment in refractory IS. There is a need to identify new therapeutic targets and more effective treatments for WS. Theories about the role of inflammatory pathways in the pathogenesis and treatment of WS have emerged, being supported by both clinical and preclinical data from animal models of WS. Ongoing advances in genetics have revealed numerous genes involved in the pathogenesis of WS, including genes directly or indirectly involved in inflammation. Inflammatory pathways also interact with other signaling pathways implicated in WS, such as the neuroendocrine pathway. Furthermore, seizures may also activate proinflammatory pathways raising the possibility that inflammation can be a consequence of seizures and epileptogenic processes. With this targeted review, we plan to discuss the evidence pro and against the following key questions. Does activation of inflammatory pathways in the brain cause epilepsy in WS and does it contribute to the associated comorbidities and progression? Can activation of certain inflammatory pathways be a compensatory or protective event? Are there interactions between inflammation and the neuroendocrine system that contribute to the pathogenesis of WS? Does activation of brain inflammatory signaling pathways contribute to the transition of WS to Lennox-Gastaut syndrome? Are there any lead candidates or unexplored targets for future therapy development for WS targeting inflammation?
Collapse
Affiliation(s)
- Oleksii Shandra
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States.
| |
Collapse
|
21
|
Zhang B. Consequences of early adverse rearing experience(EARE) on development: insights from non-human primate studies. Zool Res 2017; 38:7-35. [PMID: 28271667 PMCID: PMC5368383 DOI: 10.13918/j.issn.2095-8137.2017.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022] Open
Abstract
Early rearing experiences are important in one's whole life, whereas early adverse rearing experience(EARE) is usually related to various physical and mental disorders in later life. Although there were many studies on human and animals, regarding the effect of EARE on brain development, neuroendocrine systems, as well as the consequential mental disorders and behavioral abnormalities, the underlying mechanisms remain unclear. Due to the close genetic relationship and similarity in social organizations with humans, non-human primate(NHP) studies were performed for over 60 years. Various EARE models were developed to disrupt the early normal interactions between infants and mothers or peers. Those studies provided important insights of EARE induced effects on the physiological and behavioral systems of NHPs across life span, such as social behaviors(including disturbance behavior, social deficiency, sexual behavior, etc), learning and memory ability, brain structural and functional developments(including influences on neurons and glia cells, neuroendocrine systems, e.g., hypothalamic-pituitary-adrenal(HPA) axis, etc). In this review, the effects of EARE and the underlying epigenetic mechanisms were comprehensively summarized and the possibility of rehabilitation was discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China; National Institute of Health, Bethesda, Maryland, USA.
| |
Collapse
|
22
|
Alcántara-Alonso V, Panetta P, de Gortari P, Grammatopoulos DK. Corticotropin-Releasing Hormone As the Homeostatic Rheostat of Feto-Maternal Symbiosis and Developmental Programming In Utero and Neonatal Life. Front Endocrinol (Lausanne) 2017; 8:161. [PMID: 28744256 PMCID: PMC5504167 DOI: 10.3389/fendo.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.
Collapse
Affiliation(s)
- Viridiana Alcántara-Alonso
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Pamela Panetta
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
| | - Patricia de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Dimitris K. Grammatopoulos
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
- Clinical Biochemistry, Coventry and Warwickshire Pathology Service, UHCW NHS Trust, Coventry, United Kingdom
- *Correspondence: Dimitris K. Grammatopoulos,
| |
Collapse
|
23
|
Musicogenic Epilepsy and Treatment of Affective Disorders: Case Report and Review of Pathogenesis. Cogn Behav Neurol 2016; 29:212-216. [PMID: 27984259 DOI: 10.1097/wnn.0000000000000109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Musicogenic epilepsy is a rare syndrome in which music triggers seizures. Affective network processing appears to play a key role in epileptogenesis. Many people with epilepsy suffer from comorbid affective disorders, the shared basis of which involves similar pathophysiologies, including deficiencies of serotonergic and noradrenergic function. Seizures and mood disorders may thus have reciprocal effects on one another, particularly in emotionally precipitated syndromes such as musicogenic epilepsy. I report a man with long-standing depression and anxiety who developed focal epilepsy that evolved into musicogenic seizures. His case suggests a pathophysiologic basis for this shared phenomenon.
Collapse
|
24
|
Yang XL, Chen B, Zhang XQ, Chen X, Yang MH, Zhang W, Chen HR, Zang ZL, Li W, Yang H, Liu SY. Upregulations of CRH and CRHR1 in the Epileptogenic Tissues of Patients with Intractable Infantile Spasms. CNS Neurosci Ther 2016; 23:57-68. [PMID: 27534449 DOI: 10.1111/cns.12598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023] Open
Abstract
AIM Infantile spasms (IS) are an age-specific epileptic syndrome with specific clinical symptom and electroencephalogram (EEG) features, lacking treatment options, and a poor prognosis. Excessive endogenous corticotropin-releasing hormone (CRH) in infant brain might result in IS. However, the data from human IS are limited. In our study, we investigated the expressions of CRH and its receptor type 1 (CRHR1) in surgical tissues from patients with IS and autopsy controls. METHODS Specimens surgically removed from 17 patients with IS, and six autopsy controls were included in the study. Real-time PCR, Western blotting, and immunostaining were used to detect the expressions of mRNA, protein expression, and distribution. The correlation between variates was analyzed by Spearman rank correlation. RESULTS The expressions of CRH and CRHR1 were significantly upregulated in the epileptogenic tissues of IS patients compared with the control group. CRH was distributed mainly in neurons, while CRHR1 was distributed in neurons, astrocytes, and microglia. The expression levels of CRH and CRHR1 were positively correlated with the frequency of epileptic spasms. Moreover, the expression of protein kinase C (PKC), which was an important downstream factor of CRHR1, was significantly upregulated in the epileptogenic tissues of patients with IS and was positively correlated with the CRHR1 expression levels and the frequency of epileptic spasms. CONCLUSION These results suggest that the CRH signal transduction pathway might participate in the epileptogenesis of IS, supporting the hypothesis that CRH is related to the pathogenesis of IS.
Collapse
Affiliation(s)
- Xiao-Lin Yang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qing Zhang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xin Chen
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Mei-Hua Yang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wei Zhang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Huan-Ran Chen
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Le Zang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wei Li
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Second affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy. Cardiovasc Psychiatry Neurol 2016; 2016:3915767. [PMID: 27313873 PMCID: PMC4893441 DOI: 10.1155/2016/3915767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/24/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed.
Collapse
|
26
|
Dezsi G, Ozturk E, Salzberg MR, Morris M, O'Brien TJ, Jones NC. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety. Neurobiol Dis 2016; 93:129-36. [PMID: 27185593 DOI: 10.1016/j.nbd.2016.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/02/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. METHODS GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. RESULTS Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. CONCLUSIONS Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Ezgi Ozturk
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Michael R Salzberg
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Margaret Morris
- Department of Pharmacology and Physiology, University of New South Wales, Sydney, New South Wales, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Tu YF, Wang LW, Wang ST, Yeh TF, Huang CC. Postnatal Steroids and Febrile Seizure Susceptibility in Preterm Children. Pediatrics 2016; 137:peds.2015-3404. [PMID: 27012746 DOI: 10.1542/peds.2015-3404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate risk factors, seizure characteristics, and outcomes of febrile seizure (FS) in children born very preterm. METHODS This study used a prospective registry data set of 844 preterm infants (birth weight <1500 g and gestational age <32 weeks) admitted to NICUs from 2001 to 2009 in southern Taiwan. We investigated the prevalence, risks, seizure patterns, and outcomes of FS in children aged 5 years. RESULTS Among 575 children (follow-up rate, 85.8%) followed up for 5 years, 35 (6.1%) developed FS. The FS and non-FS groups were comparable regarding their mean gestational age, birth weight, 5-minute Apgar score <6, and prenatal and postnatal complications. No difference was observed in the use of prenatal corticosteroids between the 2 groups. The FS group had a significantly higher rate of postnatal corticosteroid treatment than the non-FS group, even after adjusting for confounding factors (odds ratio, 5.4 [95% confidence interval, 1.9-15.8]; P = .006). No differences were observed in IQs or subsequent epilepsy rates between the 2 groups. Although no difference was observed in the age of FS onset or neurodevelopmental outcomes between the 2 groups, children with FS who received postnatal corticosteroid treatment had a significantly lower mean body temperature during the first FS attack compared with those who did not receive postnatal corticosteroid treatment (38.6 ± 0.4°C vs 39.2 ± 0.6°C; P = .034). CONCLUSIONS Children born very preterm have a higher rate of FS, and postnatal corticosteroid treatment was associated with FS susceptibility in these children.
Collapse
Affiliation(s)
- Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, Institute of Clinical Medicine, and
| | - Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan; and Departments of Pediatrics, College of Medicine, and
| | - Shan-Tair Wang
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsu-Fu Yeh
- Departments of Pediatrics, College of Medicine, and
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, Departments of Pediatrics, College of Medicine, and Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Vercruysse DCM, Deprez S, Sunaert S, Van Calsteren K, Amant F. Effects of prenatal exposure to cancer treatment on neurocognitive development, a review. Neurotoxicology 2016; 54:11-21. [PMID: 26952827 DOI: 10.1016/j.neuro.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/28/2016] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Due to the increasing incidence of cancer during pregnancy, the need to better understand long-term outcome after prenatal exposure to chemo- and/or radiotherapy has become more urgent. This manuscript focuses on the neurocognitive development after prenatal exposure to cancer treatment. We will review possible pathways for brain damage that could explain the subtle changes in neurocognition and behavior found after in utero exposure to cancer treatment. Contrary to radiation, which has a direct effect on the developing nervous system, chemotherapy has to pass the placental and blood brain barrier to reach the fetal brain. However, there are also indirect effects such as inflammation and oxidative stress. Furthermore, the indirect effects of the cancer itself and its treatment, e.g., poor maternal nutrition and high maternal stress, as well as prematurity, can be related to cognitive impairment. Although the available evidence suggests that cancer treatment can be administered during pregnancy without jeopardizing the fetal chances, larger numbers and longer follow up of these children are needed.
Collapse
Affiliation(s)
- Dorothée C-M Vercruysse
- KU Leuven-University of Leuven, Department of Oncology, University Hospitals Leuven, Department of Obstetrics and Gynecology, Gynecological Oncology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Sabine Deprez
- KU Leuven-University of Leuven, Department of Radiology, University Hospitals Leuven, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven-University of Leuven, Department of Radiology, University Hospitals Leuven, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Kristel Van Calsteren
- KU Leuven-University of Leuven, Department of Obstetrics and Gynecology, University Hospitals Leuven, Department of Obstetrics and Gynecology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Frederic Amant
- KU Leuven-University of Leuven, Department of Oncology, B-3000 Leuven, Belgium; The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Gafford GM, Ressler KJ. GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Horm Behav 2015; 76:136-42. [PMID: 25888455 PMCID: PMC4844457 DOI: 10.1016/j.yhbeh.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 01/07/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Beginning with Vale and Colleagues in 1981, corticotropin releasing factor (CRF) also called corticotropin releasing hormone (CRH) has repeatedly been identified as an important contributor to fear and anxiety behavior. These findings have proven useful to further our understanding of disorders that have significant fear-dysregulation, such as post-traumatic stress, as well as other stress- and anxiety-related disorders. Unfortunately, the data are not all in agreement. In particular the role of CRF in fear learning is controversial, with studies pointing to contradictory effects from CRF manipulation even within the same brain structure. Further, very few studies address the potentially promising role of CRF manipulation in fear extinction behavior. Here, we briefly review the role of CRF in anxiety, fear learning and extinction, focusing on recent cell-type and neurotransmitter-specific studies in the amygdala and bed nucleus of the stria terminalis (BNST) that may help to synthesize the available data on the role of CRF in fear and anxiety-related behaviors.
Collapse
Affiliation(s)
- Georgette M Gafford
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA; Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
30
|
Bakker DP, Catsman-Berrevoets CE, Neuteboom RF. Effectiveness of a hybrid corticosteroid treatment regimen on refractory childhood seizures and a review of other corticosteroid treatments. Eur J Paediatr Neurol 2015; 19:553-60. [PMID: 25976064 DOI: 10.1016/j.ejpn.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/20/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Many different corticosteroid treatment schedules have been used in order to treat refractory epileptic seizures with encouraging effects on seizure reduction in many epileptic syndromes. OBJECTIVE The objective is to report our experience with a hybrid treatment regimen for refractory seizures in children with epilepsies other than West and Landau-Kleffner syndrome. We hypothesized that a pulse of corticosteroids effectively reduces seizures while low-dosage maintenance treatment reduces side effects. The results are compared with results from a review of reported corticosteroid and ACTH treatments. METHODS In this retrospective observational study, 26 children diagnosed with epilepsy with refractory seizures other than West syndrome and Landau-Kleffner syndrome were eligible for a treatment regimen consisting of three days intravenous methylprednisolone (20 mg per kilogram per day) followed by twelve weeks oral prednisolone (0.5 mg per kilogram on alternate days), concluded with a taper phase. Data on effectiveness and side effects were obtained. End-points were the percentages of patients who became seizure free or responded well. RESULTS Twenty-one patients received the study treatment. Nine (43%) responded well and 6 (29%) became seizure free. All but one patient had a relapse of seizures. Four patients had reversible adverse effects. Data extracted from the literature were consistent with a good response in 48% of 192 children treated with different corticosteroids and in 69% of 103 patients treated with ACTH. CONCLUSION This new hybrid therapy of a pulse of intravenous methylprednisolone and alternate day oral prednisolone is effective with a favourable side effect profile. Results on efficacy and safety justify a randomized controlled trial.
Collapse
Affiliation(s)
- Dewi P Bakker
- Erasmus University Hospital-Sophia Children's Hospital, The Netherlands
| | | | - Rinze F Neuteboom
- Erasmus University Hospital-Sophia Children's Hospital, The Netherlands.
| |
Collapse
|
31
|
Jensen FE. Developmental factors in the pathogenesis of neonatal seizures. JOURNAL OF PEDIATRIC NEUROLOGY 2015; 7:5-12. [PMID: 20191097 DOI: 10.3233/jpn-2009-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonatal seizures are inherently different from seizures in the child and the adult. The phenotype, often exhibiting electroclinical dissociation, is unique: neonatal seizures can be refractory to antiepileptic drugs otherwise effect for older patients. Recent experimental and human-based research reveals that the mechanism of neonatal seizures, as well as their long-term sequelae on later brain development, appears to involve a large number of age-specific factors. These observations help explain the resistance of neonatal seizures to conventional therapy as well as identify potential areas of risk for later neurocognitive development. Emerging targets from this research may suggest new therapies for this unique population of patients.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, and Program in Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus 2015; 26:41-53. [PMID: 26135556 DOI: 10.1002/hipo.22487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 12/23/2022]
Abstract
A subset of corticotropin-releasing hormone (CRH) neurons was previously identified in the hippocampus with unknown function. Here we demonstrate that hippocampal CRH neurons represent a novel subtype of interneurons in the hippocampus, exhibiting unique morphology, electrophysiological properties, molecular markers, and connectivity. This subset of hippocampal CRH neurons in the mouse reside in the CA1 pyramidal cell layer and tract tracing studies using AAV-Flex-ChR2-tdTomato reveal dense back-projections of these neurons onto principal neurons in the CA3 region of the hippocampus. These hippocampal CRH neurons express both GABA and GAD67 and using in vitro optogenetic techniques, we demonstrate that these neurons make functional connections and release GABA onto CA3 principal neurons. The location, morphology, and importantly the functional connectivity of these neurons demonstrate that hippocampal CRH neurons represent a unique subtype of hippocampal interneurons. The connectivity of these neurons has significant implications for hippocampal function.
Collapse
Affiliation(s)
- Andrew Hooper
- Graduate Program in Neuroscience, Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Jones K, Snead OC, Boyd J, Go C. Adrenocorticotropic hormone versus prednisolone in the treatment of infantile spasms post vigabatrin failure. J Child Neurol 2015; 30:595-600. [PMID: 24965788 DOI: 10.1177/0883073814533148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Child Neurology Society/American Academy of Neurology practice parameter has recommended adrenocorticotropic hormone or vigabatrin in the short-term treatment of infantile spasms. When vigabatrin is unavailable or ineffective and adrenocorticotropic hormone is not a treatment option because of the prohibitive cost, other forms of corticosteroids have been considered in the treatment of infantile spasms. This retrospective study reviewed the Hospital for Sick Children's experience with the short-term effectiveness of prednisolone versus adrenocorticotropic hormone in patients with infantile spasms who have failed vigabatrin. The results showed that while adrenocorticotropic hormone was more likely to lead to short-term spasm freedom, there was no difference in the likelihood of longer-term spasm resolution without relapse. These findings can guide clinicians in the treatment of infantile spasms post vigabatrin failure.
Collapse
Affiliation(s)
- Kevin Jones
- The Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Carter Snead
- The Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Boyd
- The Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cristina Go
- The Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
35
|
Johnson MR, Behmoaras J, Bottolo L, Krishnan ML, Pernhorst K, Santoscoy PLM, Rossetti T, Speed D, Srivastava PK, Chadeau-Hyam M, Hajji N, Dabrowska A, Rotival M, Razzaghi B, Kovac S, Wanisch K, Grillo FW, Slaviero A, Langley SR, Shkura K, Roncon P, De T, Mattheisen M, Niehusmann P, O'Brien TJ, Petrovski S, von Lehe M, Hoffmann P, Eriksson J, Coffey AJ, Cichon S, Walker M, Simonato M, Danis B, Mazzuferi M, Foerch P, Schoch S, De Paola V, Kaminski RM, Cunliffe VT, Becker AJ, Petretto E. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun 2015; 6:6031. [PMID: 25615886 DOI: 10.1038/ncomms7031] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/04/2014] [Indexed: 01/20/2023] Open
Abstract
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.
Collapse
Affiliation(s)
- Michael R Johnson
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Leonardo Bottolo
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
| | - Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| | - Katharina Pernhorst
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Paola L Meza Santoscoy
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Tiziana Rossetti
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Doug Speed
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, MRC/PHE Centre for Environment and Health, Imperial College London, St Mary's Hospital, Norfolk Place, W21PG London, UK
| | - Nabil Hajji
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aleksandra Dabrowska
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maxime Rotival
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Banafsheh Razzaghi
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Stjepana Kovac
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Klaus Wanisch
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federico W Grillo
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna Slaviero
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Sarah R Langley
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy
| | - Tisham De
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Manuel Mattheisen
- Department of Genomics, Life and Brain Center, University of Bonn, D-53127 Bonn, Germany.,Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany.,Institute for Genomic Mathematics, University of Bonn, D-53127 Bonn, Germany
| | - Pitt Niehusmann
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Terence J O'Brien
- Department of Medicine, RMH, University of Melbourne, Royal Melbourne Hospital, Royal Parade, Parkville, Victoria 3050, Australia
| | - Slave Petrovski
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Parkville, Victoria 3050, Australia
| | - Marec von Lehe
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Johan Eriksson
- Folkhälsan Research Centre, Topeliusgatan 20, 00250 Helsinki, Finland.,Helsinki University Central Hospital, Unit of General Practice, Haartmaninkatu 4, Helsinki 00290, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, 407, PO Box 20, Tukholmankatu 8 B, Helsinki 00014, Finland
| | - Alison J Coffey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Matthew Walker
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bénédicte Danis
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Manuela Mazzuferi
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Patrik Foerch
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Susanne Schoch
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany.,Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, Bonn D-53127, Germany
| | - Vincenzo De Paola
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Rafal M Kaminski
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Vincent T Cunliffe
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Albert J Becker
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Enrico Petretto
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.,Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
36
|
Abstract
Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to ‘brain programming’, influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.
Collapse
|
37
|
Jason LA, Zinn ML, Zinn MA. Myalgic Encephalomyelitis: Symptoms and Biomarkers. Curr Neuropharmacol 2015; 13:701-34. [PMID: 26411464 PMCID: PMC4761639 DOI: 10.2174/1570159x13666150928105725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/09/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) continues to cause significant morbidity worldwide with an estimated one million cases in the United States. Hurdles to establishing consensus to achieve accurate evaluation of patients with ME continue, fueled by poor agreement about case definitions, slow progress in development of standardized diagnostic approaches, and issues surrounding research priorities. Because there are other medical problems, such as early MS and Parkinson's Disease, which have some similar clinical presentations, it is critical to accurately diagnose ME to make a differential diagnosis. In this article, we explore and summarize advances in the physiological and neurological approaches to understanding, diagnosing, and treating ME. We identify key areas and approaches to elucidate the core and secondary symptom clusters in ME so as to provide some practical suggestions in evaluation of ME for clinicians and researchers. This review, therefore, represents a synthesis of key discussions in the literature, and has important implications for a better understanding of ME, its biological markers, and diagnostic criteria. There is a clear need for more longitudinal studies in this area with larger data sets, which correct for multiple testing.
Collapse
Affiliation(s)
- Leonard A. Jason
- Department of Psychology, Center for Community Research, DePaul University, Chicago, Illinois, United States
| | | | | |
Collapse
|
38
|
In vivo effects of bumetanide at brain concentrations incompatible with NKCC1 inhibition on newborn DGC structure and spontaneous EEG seizures following hypoxia-induced neonatal seizures. Neuroscience 2014; 286:203-15. [PMID: 25463517 DOI: 10.1016/j.neuroscience.2014.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
Neonatal seizures caused by perinatal asphyxia and hypoxic-ischemic encephalopathy can be refractory to conventional anticonvulsants. This may be due to the depolarizing effects of gamma-aminobutyric acid (GABA) achieved by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). The aim of this study is to evaluate the long-term effects of bumetanide, a NKCC1 inhibitor, on hippocampal neurogenesis and seizure susceptibility in hypoxia-induced neonatal seizure model. Wistar rats were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Following acute seizures, the rats were treated with intraperitoneal injection (i.p.) of bumetanide at a dose of 0.5mg/kg for 3 weeks. In later adulthood, hypoxia-induced seizures increased the number of newborn dentate gyrus cells (DGCs), promoted mossy fiber sprouting (MFS) and reduced the apical dendritic complexity of newborn DGCs 1 month after the insults. In addition, these seizures resulted in long-lasting consequences, such as spontaneous electroencephalography (EEG) seizures, though spatial learning impairments were not seen. Bumetanide treatments significantly enhanced cell proliferation and dendritic development of newborn DGCs after neonatal seizures, accompanied by the decreased seizure activity. However, systemic administration of bumetanide resulted in much lower brain concentrations, and was incompatible with NKCC1 inhibition in blood-brain barrier (BBB)-protected brain tissue. Our results suggested that bumetanide might have long-term effects in suppressing seizure activity, and altering the neurogenesis after neonatal seizures. These effects of bumetanide may be mediated by the targets outside the BBB-protected central nerve system (CNS) or CNS-located target(s) other than NKCC1.
Collapse
|
39
|
Tottenham N. The importance of early experiences for neuro-affective development. Curr Top Behav Neurosci 2014; 16:109-29. [PMID: 24264369 DOI: 10.1007/7854_2013_254] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter considers the functional utility of the prolonged period of immaturity in human brain development. Development of the amygdala and its connections with the prefrontal cortex is used as an example system for discussing the special role of sensitive periods in shaping neural functional architecture. The argument is made that neural immaturity during childhood may be important and confer a longer period of neuroplasticity, which can increase learning from the environment.
Collapse
Affiliation(s)
- Nim Tottenham
- University of California, Franz Hall, Psychology Department, 502 Portola Plaza, Los Angeles, CA, 90095, USA,
| |
Collapse
|
40
|
Puskarjov M, Kahle KT, Ruusuvuori E, Kaila K. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures. Epilepsia 2014; 55:806-18. [PMID: 24802699 PMCID: PMC4284054 DOI: 10.1111/epi.12620] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School, Massachusetts General HospitalBoston, Massachusetts, U.S.A
| | - Eva Ruusuvuori
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
41
|
Regev L, Baram TZ. Corticotropin releasing factor in neuroplasticity. Front Neuroendocrinol 2014; 35:171-9. [PMID: 24145148 PMCID: PMC3965598 DOI: 10.1016/j.yfrne.2013.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/28/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
Stress is among the strongest signals promoting neuroplasticity: Stress signals, indicating real or perceived danger, lead to alterations of neuronal function and often structure, designed to adapt to the changed conditions and promote survival. Corticotropin releasing factor (CRF) is expressed and released in several types of neuronal populations that are involved in cognition, emotion and the regulation of autonomic and endocrine function. CRF expressing neurons undergo functional and structural plasticity during stress and, in addition, the peptide acts via specific receptors to promote plasticity of target neurons.
Collapse
Affiliation(s)
- Limor Regev
- Departments of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA; Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
42
|
Huang LT. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms. Front Mol Neurosci 2014; 7:8. [PMID: 24574961 PMCID: PMC3918912 DOI: 10.3389/fnmol.2014.00008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 01/03/2023] Open
Abstract
Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed.
Collapse
Affiliation(s)
- Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine Kaohsiung, Taiwan ; Department of Traditional Chinese Medicine, Chang Gung University Linkou, Taiwan
| |
Collapse
|
43
|
Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One 2014; 9:e88109. [PMID: 24505399 PMCID: PMC3913751 DOI: 10.1371/journal.pone.0088109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.
Collapse
|
44
|
Cope JL, Regev L, Chen Y, Korosi A, Rice CJ, Ji S, Rogge GA, Wood MA, Baram TZ. Differential contribution of CBP:CREB binding to corticotropin-releasing hormone expression in the infant and adult hypothalamus. Stress 2014; 17:39-50. [PMID: 23768074 PMCID: PMC3869921 DOI: 10.3109/10253890.2013.806907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) contributes crucially to the regulation of central and peripheral responses to stress. Because of the importance of a finely tuned stress system, CRH expression is tightly regulated in an organ- and brain region-specific manner. Thus, in the hypothalamus, CRH is constitutively expressed and this expression is further enhanced by stress; however, the underlying regulatory mechanisms are not fully understood. The regulatory region of the crh gene contains several elements, including the cyclic-AMP response element (CRE), and the role of the CRE interaction with the cyclic-AMP response element binding protein (CREB) in CRH expression has been a focus of intensive research. Notably, whereas thousands of genes contain a CRE, the functional regulation of gene expression by the CRE:CREB system is limited to ∼100 genes, and likely requires additional proteins. Here, we investigated the role of a member of the CREB complex, CREB binding protein (CBP), in basal and stress-induced CRH expression during development and in the adult. Using mice with a deficient CREB-binding site on CBP, we found that CBP:CREB interaction is necessary for normal basal CRH expression at the mRNA and protein level in the nine-day-old mouse, prior to onset of functional regulation of hypothalamic CRH expression by glucocorticoids. This interaction, which functions directly on crh or indirectly via regulation of other genes, was no longer required for maintenance of basal CRH expression levels in the adult. However, CBP:CREB binding contributed to stress-induced CRH expression in the adult, enabling rapid CRH synthesis in hypothalamus. CBP:CREB binding deficiency did not disrupt basal corticosterone plasma levels or acute stress-evoked corticosterone release. Because dysregulation of CRH expression occurs in stress-related disorders including depression, a full understanding of the complex regulation of this gene is important in both health and disease.
Collapse
Affiliation(s)
- Jessica L. Cope
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Limor Regev
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA
| | - Aniko Korosi
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Courtney J. Rice
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Sung Ji
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - George A. Rogge
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Iacobas DA, Iacobas S, Chachua T, Goletiani C, Sidyelyeva G, Velíšková J, Velíšek L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms. J Neuroendocrinol 2013; 25:964-79. [PMID: 23763471 PMCID: PMC3855178 DOI: 10.1111/jne.12061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/25/2013] [Accepted: 06/09/2013] [Indexed: 12/16/2022]
Abstract
Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction. We have exploited this feature to develop a model of human infantile spasms by using repeated prenatal exposure to betamethasone and a postnatal trigger of developmentally relevant spasms with NMDA. The spasms triggered in prenatally primed rats are more severe compared to prenatally saline-injected ones and respond to ACTH, a treatment of choice for infantile spasms in humans. Using autoradiography and immunohistochemistry, we have identified a link between the spasms in our model and the hypothalamus, especially the arcuate nucleus. Transcriptomic analysis of the arcuate nucleus after prenatal priming with betamethasone but before trigger of spasms indicates that prenatal betamethasone exposure down-regulates genes encoding several important proteins participating in glutamatergic and GABAergic transmission. Interestingly, there were significant sex-specific alterations after prenatal betamethasone in synapse-related gene expression but no such sex differences were found in prenatally saline-injected controls. A pairwise relevance analysis revealed that, although the synapse gene expression in controls was independent of sex, these genes form topologically distinct gene fabrics in males and females and these fabrics are altered by betamethasone in a sex-specific manner. These findings may explain the sex differences with respect to both normal behaviour and the occurrence and severity of infantile spasms. Changes in transcript expression and their coordination may contribute to a molecular substrate of permanent neurodevelopmental changes (including infantile spasms) found after prenatal exposure to corticosteroids.
Collapse
Affiliation(s)
- D A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci U S A 2013; 110:15638-43. [PMID: 24019460 DOI: 10.1073/pnas.1307893110] [Citation(s) in RCA: 608] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Under typical conditions, medial prefrontal cortex (mPFC) connections with the amygdala are immature during childhood and become adult-like during adolescence. Rodent models show that maternal deprivation accelerates this development, prompting examination of human amygdala-mPFC phenotypes following maternal deprivation. Previously institutionalized youths, who experienced early maternal deprivation, exhibited atypical amygdala-mPFC connectivity. Specifically, unlike the immature connectivity (positive amygdala-mPFC coupling) of comparison children, children with a history of early adversity evidenced mature connectivity (negative amygdala-mPFC coupling) and thus, resembled the adolescent phenotype. This connectivity pattern was mediated by the hormone cortisol, suggesting that stress-induced modifications of the hypothalamic-pituitary-adrenal axis shape amygdala-mPFC circuitry. Despite being age-atypical, negative amygdala-mPFC coupling conferred some degree of reduced anxiety, although anxiety was still significantly higher in the previously institutionalized group. These findings suggest that accelerated amygdala-mPFC development is an ontogenetic adaptation in response to early adversity.
Collapse
|
47
|
Abstract
Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.
Collapse
|
48
|
Sansoni V, Forcella M, Mozzi A, Fusi P, Ambrosini R, Ferini-Strambi L, Combi R. Functional characterization of a CRH missense mutation identified in an ADNFLE family. PLoS One 2013; 8:e61306. [PMID: 23593457 PMCID: PMC3623861 DOI: 10.1371/journal.pone.0061306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg) located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.
Collapse
Affiliation(s)
- Veronica Sansoni
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Monza, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Alessandra Mozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Roberto Ambrosini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Romina Combi
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
49
|
Jones NC, O'Brien TJ. Stress, epilepsy, and psychiatric comorbidity: how can animal models inform the clinic? Epilepsy Behav 2013; 26:363-9. [PMID: 23099287 DOI: 10.1016/j.yebeh.2012.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022]
Abstract
Psychiatric complaints afflict many patients with epilepsy, and these contribute significantly to the impaired quality of life experienced by sufferers of this common group of neurological conditions. Psychiatric disorders in epilepsy patients are under-diagnosed and under-treated. Moreover, evidence suggests that the psychiatric disorders may act as risk factors for some types of epilepsy and exacerbate disease progression in established cases, promoting the case for a bidirectional relationship between epilepsy and psychopathology. While cause and effect relationships can be difficult to establish in human studies, appropriate animal models provide valuable tools with which to study the interactions between epilepsy and stress-related disorders. Indeed, many epilepsy models exhibit behavioral phenotypes which are reflective of psychiatric disorders, and, conversely, stressful environments appear to promote a vulnerability to developing epilepsy. This review summarizes this research area, exploring the behavioral phenotypes in animal models of epilepsy and then examining the influence of stressful environments on susceptibility to seizures and epilepsy. The ultimate goal of this line of research is to be able to translate these findings to humans. Understanding the relationships between epilepsy and associated psychiatric disorders will facilitate effective treatment of mood disorders in epilepsy, inform about the pathophysiology of each individually, and potentially open up novel therapeutic disease-modifying strategies for patients with epilepsy.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| | | |
Collapse
|
50
|
Jones NC, Lee HE, Yang M, Rees SM, Morris MJ, O'Brien TJ, Salzberg MR. Repeatedly stressed rats have enhanced vulnerability to amygdala kindling epileptogenesis. Psychoneuroendocrinology 2013; 38:263-70. [PMID: 22749310 DOI: 10.1016/j.psyneuen.2012.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 01/07/2023]
Abstract
Psychiatric disorders associated with elevated stress levels, such as depression, are present in many epilepsy patients, including those with mesial Temporal Lobe Epilepsy (mTLE). Evidence suggests that these psychiatric disorders can predate the onset of epilepsy, suggesting a causal/contributory role. Prolonged exposure to elevated corticosterone, used as a model of chronic stress/depression, accelerates limbic epileptogenesis in the amygdala kindling model. The current study examined whether exposure to repeated stress could similarly accelerate experimental epileptogenesis. Female adult non-epileptic Wistar rats were implanted with a bipolar electrode into the left amygdala, and were randomly assigned into stressed (n=18) or non-stressed (n=19) groups. Rats underwent conventional amygdala kindling (two electrical stimulations per day) until 5 Class V seizures had been experienced ('the fully kindled state'). Stressed rats were exposed to 30min restraint immediately prior to each kindling stimulation, whereas non-stressed rats received control handling. Restraint stress increased circulating corticosterone levels (pre-stress: 122±17ng/ml; post-stress: 632±33ng/ml), with no habituation observed over the experiment. Stressed rats reached the 'fully kindled state' in significantly fewer stimulations than non-stressed rats (21±1 vs 33±3 stimulations; p=0.022; ANOVA), indicative of a vulnerability to epileptogenesis. Further, seizure durations were significantly longer in stressed rats (p<0.001; ANOVA). These data demonstrate that exposure to repeated experimental stress accelerates the development of limbic epileptogenesis, an effect which may be related to elevated corticosterone levels. This may have implications for understanding the effects of chronic stress and depression in disease onset and progression of mTLE in humans.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|