1
|
Niu J, Zhu G, Zhang J. Ginseng in delaying brain aging: Progress and Perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156587. [PMID: 40049102 DOI: 10.1016/j.phymed.2025.156587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The Shennong Bencao Jing (Shennong's Classic of Materia Medica) records that Panax ginseng C. A. Mey (ginseng) 'lightens the body and prolongs life'. Many investigations have documented that ginseng exerts neuroprotective effects by mitigating the aging of the brain. However, a comprehensive review of the impacts of ginseng on brain aging remains lacking. PURPOSE This study aims to review the advances in ginseng research regarding its role in delaying brain aging, focusing on its bioactive constituents, underlying mechanisms and potential side effects. The findings provide scientific pieces of evidence to support the medical utilization of ginseng in the delaying senescence and the management of aging-related diseases. METHODS This review includes studies on ginseng and brain aging in humans, retrieved from English-language research articles published between 2017 and the present in the PubMed and Web of Science databases. The work focused on ginseng, brain aging, and aging-related diseases, utilizing keywords such as "Ginseng", "Brain aging", "central nervous system", "intracellular homeostasis", "peripheral system", etc. RESULTS: Ginseng comprises a varied spectrum of biologically bioactive constituents, such as ginsenosides, Maillard reaction products, ginseng polysaccharides, volatile oils, amino acids, proteins, etc. These components work to contribute to their significant medicinal value. Based on the traditional Chinese medicine (TCM) theory that "the heart and brain are interconnected, the liver and brain are mutually supportive, the brain and spleen are related, the brain and lung are linked, and the brain and kidney work in harmony," we summarize that ginseng may sustain neural homeostasis through both central and peripheral perspectives. Additionally, the potential toxic side effects of ginseng are minimal. CONCLUSION Ginseng and its bioactive constituents exhibit considerable promise in delaying brain aging and treating neurodegenerative diseases. Future research should prioritize exploring the direct targets of ginseng and its active ingredients, and work toward establishing precise drug-target-efficacy relationships. This approach will facilitate the translation of these findings into clinically viable therapeutic approaches.
Collapse
Affiliation(s)
- Jingwen Niu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Junjie Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
2
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Soni D, Jamwal S, Chawla R, Singh SK, Singh D, Singh TG, Khurana N, Kanwal A, Dureja H, Patil UK, Singh R, Kumar P. Nutraceuticals Unveiled a Multifaceted Neuroprotective Mechanisms for Parkinson’s Disease: Elixir for the Brain. FOOD REVIEWS INTERNATIONAL 2024; 40:3079-3102. [DOI: 10.1080/87559129.2024.2337766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rakesh Chawla
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Deependra Singh
- Univesity Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Raipur, Chhattisgarh, India
| | | | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. eLife 2024; 12:RP91002. [PMID: 39255192 PMCID: PMC11386957 DOI: 10.7554/elife.91002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - YuNing Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
5
|
Meadow ME, Broas S, Hoare M, Alimohammadi F, Welle KA, Swovick K, Hryhorenko JR, Martinez JC, Biashad SA, Seluanov A, Gorbunova V, Buchwalter A, Ghaemmaghami S. Proteome Birthdating Reveals Age-Selectivity of Protein Ubiquitination. Mol Cell Proteomics 2024; 23:100791. [PMID: 38797438 PMCID: PMC11260378 DOI: 10.1016/j.mcpro.2024.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.
Collapse
Affiliation(s)
- Michael E Meadow
- Department of Biology, University of Rochester, New York, USA; Medical Scientist Training Program, University of Rochester, New York, USA
| | - Sarah Broas
- Department of Biology, University of Rochester, New York, USA
| | - Margaret Hoare
- Department of Biology, University of Rochester, New York, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin A Welle
- University of Rochester Mass Spectrometry Resource Laboratory, New York, USA
| | - Kyle Swovick
- University of Rochester Mass Spectrometry Resource Laboratory, New York, USA
| | | | - John C Martinez
- Department of Biology, University of Rochester, New York, USA
| | | | - Andrei Seluanov
- Department of Biology, University of Rochester, New York, USA; Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, New York, USA; Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, New York, USA; University of Rochester Mass Spectrometry Resource Laboratory, New York, USA.
| |
Collapse
|
6
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
7
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.556394. [PMID: 37745492 PMCID: PMC10515868 DOI: 10.1101/2023.09.12.556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues from ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
|
8
|
Picard C, Miron J, Poirier J. Association of TMEM106B with Cortical APOE Gene Expression in Neurodegenerative Conditions. Genes (Basel) 2024; 15:416. [PMID: 38674351 PMCID: PMC11049136 DOI: 10.3390/genes15040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The e4 allele of the apolipoprotein E gene is the strongest genetic risk factor for sporadic Alzheimer's disease. Nevertheless, how APOE is regulated is still elusive. In a trans-eQTL analysis, we found a genome-wide significant association between transmembrane protein 106B (TMEM106B) genetic variants and cortical APOE mRNA levels in human brains. The goal of this study is to determine whether TMEM106B is mis-regulated in Alzheimer's disease or in other neurodegenerative conditions. Available genomic, transcriptomic and proteomic data from human brains were downloaded from the Mayo Clinic Brain Bank and the Religious Orders Study and Memory and Aging Project. An in-house mouse model of the hippocampal deafferentation/reinnervation was achieved via a stereotaxic lesioning surgery to the entorhinal cortex, and mRNA levels were measured using RNAseq technology. In human temporal cortices, the mean TMEM106B expression was significantly higher in Alzheimer's disease compared to cognitively unimpaired individuals. In the mouse model, hippocampal Tmem106b reached maximum levels during the early phase of reinnervation. These results suggest an active response to tissue damage that is consistent with compensatory synaptic and terminal remodeling.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| |
Collapse
|
9
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
10
|
Suresh K, Mattern M, Goldberg MS, Butt TR. The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. Neuromolecular Med 2023; 25:313-329. [PMID: 36739586 DOI: 10.1007/s12017-023-08738-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.
Collapse
Affiliation(s)
- Kumar Suresh
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Michael Mattern
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| |
Collapse
|
11
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
12
|
FMRP, FXR1 protein and Dlg4 mRNA, which are associated with fragile X syndrome, are involved in the ubiquitin-proteasome system. Sci Rep 2023; 13:1956. [PMID: 36732356 PMCID: PMC9894842 DOI: 10.1038/s41598-023-29152-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a proteolytic pathway that is essential for life maintenance and vital functions, and its disruption causes serious impairments, e.g., disease development. Thus, the UPS is properly regulated. Here we show novel UPS-related factors: the fragile X mental retardation 1 (FMR1) and Fmr1 autosomal homolog 1 (FXR1) proteins and discs large MAGUK scaffold protein 4 (Dlg4) mRNA, which are associated with Fragile X syndrome, are involved in UPS activity. Fmr1-, Fxr1- and Dlg4-knockdown and Fmr1- and Fxr1-knockdown resulted in increased ubiquitination and proteasome activity, respectively. FXR1 protein was further confirmed to be associated with proteasomes, and Dlg4 mRNA itself was found to be involved in the UPS. Knockdown of these genes also affected neurite outgrowth. These findings provide new insights into the regulatory mechanism of the UPS and into the interpretation of the pathogenesis of diseases in which these genes are involved as UPS-related factors.
Collapse
|
13
|
Abu-Hijleh HM, Al-Zoubi RM, Zarour A, Al- Ansari A, Bawadi H. The Therapeutic Role of Curcumin in Inflammation and Post-Surgical Outcomes. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haya M. Abu-Hijleh
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of biomedical Sciences, college of health Science, QU-Health, Qatar University, Doha, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Zarour
- Acute care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al- Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Thellung S, Corsaro A, Dellacasagrande I, Nizzari M, Zambito M, Florio T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front Neurosci 2022; 16:966019. [PMID: 36148145 PMCID: PMC9485628 DOI: 10.3389/fnins.2022.966019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Irene Dellacasagrande
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Martina Zambito
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Tullio Florio
| |
Collapse
|
15
|
KPNB1 modulates the Machado-Joseph disease protein ataxin-3 through activation of the mitochondrial protease CLPP. Cell Mol Life Sci 2022; 79:401. [PMID: 35794401 PMCID: PMC9259533 DOI: 10.1007/s00018-022-04372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Machado–Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.
Collapse
|
16
|
Characterization of the chimeric protein cUBC1 engineered by substituting the linker of E2-25K into UBC1 enzyme of Saccharomyces cerevisiae. Int J Biol Macromol 2022; 209:991-1000. [PMID: 35429515 DOI: 10.1016/j.ijbiomac.2022.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Ubiquitination is an important posttranslational modification of proteins in eukaryotic cells, wherein ubiquitin molecules are conjugated to target proteins. Ubiquitination is catalyzed by the cascade of ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3). The number of E2s encoded in eukaryotes partly explains their contribution to the inherent specificity of the ubiquitin system. The ubiquitin conjugating enzyme UBC1 of Saccharomyces cerevisiae participates the degradation of short-lived and abnormal proteins. UBC1 consists of two well-defined domains separated by a long flexible linker. E2-25K, the human homolog of UBC1 is crucial to neurons and its failure leads to neurodegenerative disorders. The linker of UBC1 is of 22 amino acids, while that of E2-25K has 6 amino acids. To understand the importance of the linker, the chimeric protein, cUBC1 was constructed by substituting the linker of E2-25K in UBC1. cUBC1 shows minor changes in its secondary structure. cUBC1 expression in ubc1 deletion mutants showed no effect over growth, thermotolerance and resistance to antibiotic stress. However, survival under heat stress was enhanced with cUBC1. Western blot analysis of the enzymatic activity showed cUBC1 performed equally well as UBC1. Hence, cUBC1 demonstrates that the shorter linker increased the stability of UBC1.
Collapse
|
17
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 2021; 28:570-590. [PMID: 33414510 PMCID: PMC7862249 DOI: 10.1038/s41418-020-00706-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterised by progressive damage to the nervous system including the selective loss of vulnerable populations of neurons leading to motor symptoms and cognitive decline. Despite millions of people being affected worldwide, there are still no drugs that block the neurodegenerative process to stop or slow disease progression. Neuronal death in these diseases is often linked to the misfolded proteins that aggregate within the brain (proteinopathies) as a result of disease-related gene mutations or abnormal protein homoeostasis. There are two major degradation pathways to rid a cell of unwanted or misfolded proteins to prevent their accumulation and to maintain the health of a cell: the ubiquitin–proteasome system and the autophagy–lysosomal pathway. Both of these degradative pathways depend on the modification of targets with ubiquitin. Aging is the primary risk factor of most neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. With aging there is a general reduction in proteasomal degradation and autophagy, and a consequent increase of potentially neurotoxic protein aggregates of β-amyloid, tau, α-synuclein, SOD1 and TDP-43. An often over-looked yet major component of these aggregates is ubiquitin, implicating these protein aggregates as either an adaptive response to toxic misfolded proteins or as evidence of dysregulated ubiquitin-mediated degradation driving toxic aggregation. In addition, non-degradative ubiquitin signalling is critical for homoeostatic mechanisms fundamental for neuronal function and survival, including mitochondrial homoeostasis, receptor trafficking and DNA damage responses, whilst also playing a role in inflammatory processes. This review will discuss the current understanding of the role of ubiquitin-dependent processes in the progressive loss of neurons and the emergence of ubiquitin signalling as a target for the development of much needed new drugs to treat neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Marlene F Schmidt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Zhong Yan Gan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
20
|
Sharkey LM, Sandoval-Pistorius SS, Moore SJ, Gerson JE, Komlo R, Fischer S, Negron-Rios KY, Crowley EV, Padron F, Patel R, Murphy GG, Paulson HL. Modeling UBQLN2-mediated neurodegenerative disease in mice: Shared and divergent properties of wild type and mutant UBQLN2 in phase separation, subcellular localization, altered proteostasis pathways, and selective cytotoxicity. Neurobiol Dis 2020; 143:105016. [PMID: 32653673 DOI: 10.1016/j.nbd.2020.105016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin-binding proteasomal shuttle protein UBQLN2 is implicated in common neurodegenerative disorders due to its accumulation in disease-specific aggregates and, when mutated, directly causes familial frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). Like other proteins linked to FTD/ALS, UBQLN2 undergoes phase separation to form condensates. The relationship of UBQLN2 phase separation and accumulation to neurodegeneration, however, remains uncertain. Employing biochemical, neuropathological and behavioral assays, we studied the impact of overexpressing WT or mutant UBQLN2 in the CNS of transgenic mice. Expression of UBQLN2 harboring a pathogenic mutation (P506T) elicited profound and widespread intraneuronal inclusion formation and aggregation without prominent neurodegenerative or behavioral changes. Both WT and mutant UBQLN2 formed ubiquitin- and P62-positive inclusions in neurons, supporting the view that UBQLN2 is intrinsically prone to phase separate, with the size, shape and frequency of inclusions depending on expression level and the presence or absence of a pathogenic mutation. Overexpression of WT or mutant UBQLN2 resulted in a dose-dependent decrease in levels of a key interacting chaperone, HSP70, as well as dose-dependent profound degeneration of the retina. We conclude that, at least in mice, robust aggregation of a pathogenic form of UBQLN2 is insufficient to cause neuronal loss recapitulating that of human FTD/ALS. Our results nevertheless support the view that altering the normal cellular balance of UBQLN2, whether wild type or mutant protein, has deleterious effects on cells of the CNS and retina that likely reflect perturbations in ubiquitin-dependent protein homeostasis.
Collapse
Affiliation(s)
- Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America.
| | - Stephanie S Sandoval-Pistorius
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Shannon J Moore
- Michigan Neuroscience Institute and Department of Physiology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Julia E Gerson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Robert Komlo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Keyshla Y Negron-Rios
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Emily V Crowley
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Francisco Padron
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Ronak Patel
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Geoffrey G Murphy
- Michigan Neuroscience Institute and Department of Physiology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, United States of America.
| |
Collapse
|
21
|
Dunlop RA, Carney JM. Mechanisms of L-Serine-Mediated Neuroprotection Include Selective Activation of Lysosomal Cathepsins B and L. Neurotox Res 2020; 39:17-26. [PMID: 32242285 DOI: 10.1007/s12640-020-00168-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
L-serine is a naturally occurring dietary amino acid that has recently received renewed attention as a potential therapy for the treatment of amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), hereditary sensory autonomic neuropathy type I (HSAN1), and sleep induction and maintenance. We have previously reported L-serine functions as a competitive inhibitor of L-BMAA toxicity in cell cultures and have since progressed to examine the neuroprotective effects of L-serine independent of L-BMAA-induced neurotoxicity. For example, in a Phase I, FDA-approved human clinical trial of 20 ALS patients, our lab reported 30 g L-serine/day was safe, well-tolerated, and slowed the progression of the disease in a group of 5 patients. Despite increasing evidence for L-serine being useful in the clinic, little is known about the mechanism of action of the observed neuroprotection. We have previously reported, in SH-SY5Y cell cultures, that L-serine alone can dysregulate the unfolded protein response (UPR) and increase the translation of the chaperone protein disulfide isomerase (PDI), and these mechanisms may contribute to the clearance of mis- or unfolded proteins. Here, we further explore the pathways involved in protein clearance when L-serine is present in low and high concentrations in cell culture. We incubated SH-SY5Y cells in the presence and absence of L-serine and measured changes in the activity of proteolytic enzymes from the autophagic-lysosomal system, cathepsin B, cathepsin L, and arylsulfatase and specific activities of the proteasome, peptidylglutamyl-peptide hydrolyzing (PGPH) (also called caspase-like), chymotrypsin, and trypsin-like. Under our conditions, we report that L-serine selectively induced the activity of autophagic-lysosomal enzymes, cathepsins B and L, but not any of the proteasome-hydrolyzing activities. To enable comparison with previous work, we also incubated cells with L-BMAA and report no effect on the activity of the autophagic lysosomes or the proteasomes. We also developed an open-source script for the automation of linear regression calculations of kinetic data. Autophagy impairment or failure is characteristic of many neurodegenerative disease; thus, activation of autophagic-lysosomal proteolysis may contribute to the neuroprotective effect of L-serine, which has been reported in cell culture and human clinical trials.
Collapse
Affiliation(s)
- Rachael A Dunlop
- Brain Chemistry Labs, The Institute for Ethnomedicine, Suite 3, 1130 S Highway 89, Jackson, WY, USA.
| | - John M Carney
- Brain Chemistry Labs, The Institute for Ethnomedicine, Suite 3, 1130 S Highway 89, Jackson, WY, USA
| |
Collapse
|
22
|
Rudich P, Watkins S, Lamitina T. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions. PLoS One 2020; 15:e0227464. [PMID: 32240172 PMCID: PMC7117740 DOI: 10.1371/journal.pone.0227464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Expanded CAG nucleotide repeats are the underlying genetic cause of at least 14 incurable diseases, including Huntington’s disease (HD). The toxicity associated with many CAG repeat expansions is thought to be due to the translation of the CAG repeat to create a polyQ protein, which forms toxic oligomers and aggregates. However, recent studies show that HD CAG repeats undergo a non-canonical form of translation called Repeat-associated non-AUG dependent (RAN) translation. RAN translation of the CAG sense and CUG anti-sense RNAs produces six distinct repeat peptides: polyalanine (polyAla, from both CAG and CUG repeats), polyserine (polySer), polyleucine (polyLeu), polycysteine (polyCys), and polyglutamine (polyGln). The toxic potential of individual CAG-derived RAN polypeptides is not well understood. We developed pure C. elegans protein models for each CAG RAN polypeptide using codon-varied expression constructs that preserve RAN protein sequence but eliminate repetitive CAG/CUG RNA. While all RAN polypeptides formed aggregates, only polyLeu was consistently toxic across multiple cell types. In GABAergic neurons, which exhibit significant neurodegeneration in HD patients, codon-varied (Leu)38, but not (Gln)38, caused substantial neurodegeneration and motility defects. Our studies provide the first in vivo evaluation of CAG-derived RAN polypeptides in a multicellular model organism and suggest that polyQ-independent mechanisms, such as RAN-translated polyLeu peptides, may have a significant pathological role in CAG repeat expansion disorders.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
24
|
Ageta H, Tsuchida K. Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs. Cell Mol Life Sci 2019; 76:4829-4848. [PMID: 31363817 PMCID: PMC11105257 DOI: 10.1007/s00018-019-03246-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Exosomes, a type of small extracellular vesicles (sEVs), are secreted membrane vesicles that are derived from various cell types, including cancer cells, mesenchymal stem cells, and immune cells via multivesicular bodies (MVBs). These sEVs contain RNAs (mRNA, miRNA, lncRNA, and rRNA), lipids, DNA, proteins, and metabolites, all of which mediate cell-to-cell communication. This communication is known to be implicated in a diverse set of diseases such as cancers and their metastases and degenerative diseases. The molecular mechanisms, by which proteins are modified and sorted to sEVs, are not fully understood. Various cellular processes, including degradation, transcription, DNA repair, cell cycle, signal transduction, and autophagy, are known to be associated with ubiquitin and ubiquitin-like proteins (UBLs). Recent studies have revealed that ubiquitin and UBLs also regulate MVBs and protein sorting to sEVs. Ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) acts as a post-translational modification (PTM) factor to regulate efficient protein sorting to sEVs. In this review, we focus on the mechanism of PTM by ubiquitin and UBLs and the pathway of protein sorting into sEVs and discuss the potential biological significance of these processes.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
25
|
Kang JB, Park DJ, Koh PO. Identification of proteins differentially expressed by glutamate treatment in cerebral cortex of neonatal rats. Lab Anim Res 2019; 35:24. [PMID: 32257912 PMCID: PMC7081608 DOI: 10.1186/s42826-019-0026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Glutamate leads to neuronal cell damage by generating neurotoxicity during brain development. The objective of this study is to identify proteins that differently expressed by glutamate treatment in neonatal cerebral cortex. Sprague-Dawley rat pups (post-natal day 7) were intraperitoneally injected with vehicle or glutamate (10 mg/kg). Brain tissues were isolated 4 h after drug treatment and fixed for morphological study. Moreover, cerebral cortices were collected for protein study. Two-dimensional gel electrophoresis and mass spectrometry were carried out to identify specific proteins. We observed severe histopathological changes in glutamate-exposed cerebral cortex. We identified various proteins that differentially expressed by glutamate exposure. Identified proteins were thioredoxin, peroxiredoxin 5, ubiquitin carboxy-terminal hydrolase L1, proteasome subunit alpha proteins, isocitrate dehydrogenase, and heat shock protein 60. Heat shock protein 60 was increased in glutamate exposed condition. However, other proteins were decreased in glutamate-treated animals. These proteins are related to anti-oxidant, protein degradation, metabolism, signal transduction, and anti-apoptotic function. Thus, our findings can suggest that glutamate leads to neonatal cerebral cortex damage by regulation of specific proteins that mediated with various functions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
26
|
Kelley AR, Bach SB, Perry G. Analysis of post-translational modifications in Alzheimer's disease by mass spectrometry. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2040-2047. [DOI: 10.1016/j.bbadis.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 01/09/2023]
|
27
|
Wang CY, Deneen B, Tzeng SF. BRCA1/BRCA2-containing complex subunit 3 controls oligodendrocyte differentiation by dynamically regulating lysine 63-linked ubiquitination. Glia 2019; 67:1775-1792. [PMID: 31184779 DOI: 10.1002/glia.23660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023]
Abstract
Oligodendrocytes (OLs) provide the myelin sheath surrounding axons that propagates action potentials in the central nervous system (CNS). The metabolism of myelinated membranes and proteins is strictly regulated in the OLs and is closely associated with OL differentiation and maturation. The ubiquitination-associated proteasome and endosomal system have not yet been well studied during OL differentiation and maturation. Here, we determined the functions of the Lys63-linked ubiquitination (K63Ub) and K63-specific deubiquitination (DUB) systems regulated by BRCA1/BRCA2-containing complex subunit 3 (BRCC3) during OL differentiation. The competitive inhibition of K63Ub by overexpression of mutant ubiquitin (K63R) in oligodendrocyte precursor cells (OPCs) indicated that the two major CNS myelin proteins, myelin basic protein (MBP) and proteolipid protein (PLP), were upregulated in OLs derived from K63R OPCs. In contrast, the knockdown of BRCC3 (BRCC3-KD) through the application of lentivirus-mediated shRNA delivery system into OPCs suppressed OL differentiation by decreasing MBP expression and PLP production. Further immunoprecipitation assays revealed higher levels of sphingolipid GalC, MBP, and PLP, which were associated with K63Ub-immunoprecipitants and detected in endosome/lysosomal compartments, in BRCC3-KD OLs than those in OLs transfected with the scrambled shRNA (scramble OLs). The differentiation of OLs from BRCC3-KD OPCs was impaired in the demyelinating corpus callosum of rats receiving a cuprizone-containing diet. In the demyelinating tissues from human patients suffering from multiple sclerosis, we detected a decreased number of BRCC3-expressing OLs at the lesion site, accompanied by a greater number of OLs expressing EEA1 and K63Ub at high levels. Altogether, the counterbalance of the K63Ub machinery and BRCC3-triggered DUB machinery are important for the cellular trafficking of myelin proteins and OL differentiation.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Lehrbach NJ, Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. eLife 2019; 8:44425. [PMID: 30973820 PMCID: PMC6459674 DOI: 10.7554/elife.44425] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023] Open
Abstract
Unfolded protein responses (UPRs) safeguard cellular function during proteotoxic stress and aging. In a previous paper (Lehrbach and Ruvkun, 2016) we showed that the ER-associated SKN-1A/Nrf1 transcription factor activates proteasome subunit expression in response to proteasome dysfunction, but it was not established whether SKN-1A/Nrf1 adjusts proteasome capacity in response to other proteotoxic insults. Here, we reveal that misfolded endogenous proteins and the human amyloid beta peptide trigger activation of proteasome subunit expression by SKN-1A/Nrf1. SKN-1A activation is protective against age-dependent defects caused by accumulation of misfolded and aggregation-prone proteins. In a C. elegans Alzheimer’s disease model, SKN-1A/Nrf1 slows accumulation of the amyloid beta peptide and delays adult-onset cellular dysfunction. Our results indicate that SKN-1A surveys cellular protein folding and adjusts proteasome capacity to meet the demands of protein quality control pathways, revealing a new arm of the cytosolic UPR. This regulatory axis is critical for healthy aging and may be a target for therapeutic modulation of human aging and age-related disease.
Collapse
Affiliation(s)
- Nicolas J Lehrbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
29
|
Bodewes ILA, van der Spek PJ, Leon LG, Wijkhuijs AJM, van Helden-Meeuwsen CG, Tas L, Schreurs MWJ, van Daele PLA, Katsikis PD, Versnel MA. Fatigue in Sjögren's Syndrome: A Search for Biomarkers and Treatment Targets. Front Immunol 2019; 10:312. [PMID: 30863411 PMCID: PMC6399420 DOI: 10.3389/fimmu.2019.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease, where patients often suffer from fatigue. Biological pathways underlying fatigue are unknown. In this study aptamer-based SOMAscan technology is used to identify potential biomarkers and treatment targets for fatigue in pSS. Methods: SOMAscan® Assay 1.3k was performed on serum samples of healthy controls (HCs) and pSS patients characterized for interferon upregulation and fatigue. Differentially expressed proteins (DEPs) between pSS patients and HC or fatigued and non-fatigued pSS patients were validated and discriminatory capacity of markers was tested using independent technology. Results: Serum concentrations of over 1,300 proteins were compared between 63 pSS patients and 20 HCs resulting in 58 upregulated and 46 downregulated proteins. Additionally, serum concentrations of 30 interferon positive (IFNpos) and 30 interferon negative (IFNneg) pSS patients were compared resulting in 25 upregulated and 13 downregulated proteins. ELISAs were performed for several DEPs between pSS patients and HCs or IFNpos and IFNneg all showing a good correlation between protein levels measured by ELISA and relative fluorescence units (RFU) measured by the SOMAscan. Comparing 22 fatigued and 23 non-fatigued pSS patients, 16 serum proteins were differentially expressed, of which 14 were upregulated and 2 were downregulated. Top upregulated DEPs included neuroactive synaptosomal-associated protein 25 (SNAP-25), alpha-enolase (ENO1) and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1). Furthermore, the proinflammatory mediator IL36a and several complement factors were upregulated in fatigued compared to non-fatigued pSS patients. ROC analysis indicated that DEPs showed good capacity to discriminate fatigued and non-fatigued pSS patients. Conclusion: In this study we validated the use of aptamer-based proteomics and identified a novel set of proteins which were able to distinguish fatigued from non-fatigued pSS patients and identified a so-called “fatigue signature.”
Collapse
Affiliation(s)
- Iris L A Bodewes
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Leticia G Leon
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Annemarie J M Wijkhuijs
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | | - Liselotte Tas
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Marco W J Schreurs
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Paul L A van Daele
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
30
|
Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Babich J, Figueiredo-Pereira ME. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflammation 2018; 15:272. [PMID: 30236122 PMCID: PMC6146649 DOI: 10.1186/s12974-018-1305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostaglandins are products of the cyclooxygenase pathway, which is implicated in Parkinson's disease (PD). Limited knowledge is available on mechanisms by which prostaglandins contribute to PD neurodegeneration. To address this gap, we focused on the prostaglandin PGD2/J2 signaling pathway, because PGD2 is the most abundant prostaglandin in the brain, and the one that increases the most under pathological conditions. Moreover, PGJ2 is spontaneously derived from PGD2. METHODS In this study, we determined in rats the impact of unilateral nigral PGJ2-microinfusions on COX-2, lipocalin-type PGD2 synthase (L-PGDS), PGD2/J2 receptor 2 (DP2), and 15 hydroxyprostaglandin dehydrogenase (15-PGDH). Nigral dopaminergic (DA) and microglial distribution and expression levels of these key factors of the prostaglandin D2/J2 pathway were evaluated by immunohistochemistry. PGJ2-induced motor deficits were assessed with the cylinder test. We also determined whether oral treatment with ibuprofen improved the PD-like pathology induced by PGJ2. RESULTS PGJ2 treatment induced progressive PD-like pathology in the rats. Concomitant with DA neuronal loss in the substantia nigra pars compacta (SNpc), PGJ2-treated rats exhibited microglia and astrocyte activation and motor deficits. In DA neurons, COX-2, L-PGDS, and 15-PGDH levels increased significantly in PGJ2-treated rats compared to controls, while DP2 receptor levels were unchanged. In microglia, DP2 receptors were basically non-detectable, while COX-2 and L-PGDS levels increased upon PGJ2-treatment, and 15-PGDH remained unchanged. 15-PGDH was also detected in oligodendrocytes. Notably, ibuprofen prevented most PGJ2-induced PD-like pathology. CONCLUSIONS The PGJ2-induced rat model develops progressive PD pathology, which is a hard-to-mimic aspect of this disorder. Moreover, prevention of most PGJ2-induced PD-like pathology with ibuprofen suggests a positive feedback mechanism between PGJ2 and COX-2 that could lead to chronic neuroinflammation. Notably, this is the first study that analyzes the nigral dopaminergic and microglial distribution and levels of factors of the PGD2/J2 signaling pathway in rodents. Our findings support the notions that upregulation of COX-2 and L-PGDS may be important in the PGJ2 evoked PD-like pathology, and that neuronal DP2 receptor antagonists and L-PGDS inhibitors may be novel pharmacotherapeutics to relieve neuroinflammation-mediated neurodegeneration in PD, circumventing the adverse side effects of cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Chuhyon Corwin
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Allen L Pan
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Mariela Nunez-Santos
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA.
| |
Collapse
|
31
|
Shah FA, Park DJ, Koh PO. Identification of Proteins Differentially Expressed by Quercetin Treatment in a Middle Cerebral Artery Occlusion Model: A Proteomics Approach. Neurochem Res 2018; 43:1608-1623. [DOI: 10.1007/s11064-018-2576-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
|
32
|
Pace MC, Xu G, Fromholt S, Howard J, Giasson BI, Lewis J, Borchelt DR. Differential induction of mutant SOD1 misfolding and aggregation by tau and α-synuclein pathology. Mol Neurodegener 2018; 13:23. [PMID: 29776378 PMCID: PMC5960184 DOI: 10.1186/s13024-018-0253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prior studies in C. elegans demonstrated that the expression of aggregation-prone polyglutamine proteins in muscle wall cells compromised the folding of co-expressed temperature-sensitive proteins, prompting interest in whether the accumulation of a misfolded protein in pathologic features of human neurodegenerative disease burdens cellular proteostatic machinery in a manner that impairs the folding of other cellular proteins. METHODS Mice expressing high levels of mutant forms of tau and α-synuclein (αSyn), which develop inclusion pathologies of the mutant protein in brain and spinal cord, were crossed to mice expressing low levels of mutant superoxide dismutase 1 fused to yellow fluorescent protein (G85R-SOD1:YFP) for aging and neuropathological evaluation. RESULTS Mice expressing low levels of G85R-SOD1:YFP, alone, lived normal lifespans and were free of evidence of inclusion pathology, setting the stage to use this protein as a reporter of proteostatic function. We observed robust induction of G85R-SOD1:YFP inclusion pathology in the neuropil of spinal cord and brainstem of bigenic mice that co-express high levels of mutant tau in the spinal axis and develop robust spinal tau pathology (JNPL3 mice). In contrast, in crosses of the G85R-SOD1:YFP mice with mice that model spinal α-synucleinopathy (the M83 model of αSyn pathology), we observed no G85R-SOD1:YFP inclusion formation. Similarly, in crosses of the G85R-SOD1:YFP mice to mice that model cortical tau pathology (rTg4510 mice), we did not observe induction of G85R-SOD1:YFP inclusions. CONCLUSION Despite robust burdens of neurodegenerative pathology in M83 and rTg4510 mice, the introduction of the G85R-SOD1:YFP protein was induced to aggregate only in the context of spinal tau pathology present in the JNPL3 model. These findings suggest unexpected specificity, mediated by both the primary protein pathology and cellular context, in the induced "secondary aggregation" of a mutant form of SOD1 that could be viewed as a reporter of proteostatic function.
Collapse
Affiliation(s)
- Michael C. Pace
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - John Howard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Benoit I. Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
- SantaFe Healthcare Alzheimer’s Disease Center, Gainesville, FL USA
| |
Collapse
|
33
|
Pomatto LCD, Sun PY, Davies KJA. To adapt or not to adapt: Consequences of declining Adaptive Homeostasis and Proteostasis with age. Mech Ageing Dev 2018; 177:80-87. [PMID: 29778759 DOI: 10.1016/j.mad.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022]
Abstract
Many consequences of ageing can be broadly attributed to the inability to maintain homeostasis. Multiple markers of ageing have been identified, including loss of protein homeostasis, increased inflammation, and declining metabolism. Although much effort has been focused on characterization of the ageing phenotype, much less is understood about the underlying causes of ageing. To address this gap, we outline the age-associated consequences of dysregulation of 'Adaptive Homeostasis' and its proposed contributing role as an accelerator of the ageing phenotype. Adaptive Homeostasis is a phenomenon, shared across cells and tissues of both simple and complex organisms, that enables the transient plastic expansion or contraction of the homeostatic range to modulate stress-protective systems (such as the Proteasome, the Immunoproteasome, and the Lon protease) in response to varying internal and external environments. The age-related rise in the baseline of stress-protective systems and the inability to increase beyond a physiological ceiling is likely a contributor to the reduction and loss of Adaptive Homeostasis. We propose that dysregulation of Adaptive Homeostasis in the final third of lifespan is a significant factor in the ageing process, while successful maintenance of Adaptive Homeostasis below a physiological ceiling results in extended longevity.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA; Molecular & Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA, 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal Interactions of Mitochondria and the Neuroimmunoendocrine System in Neurodegenerative Disorders: An Important Role for Melatonin Regulation. Front Physiol 2018; 9:199. [PMID: 29593561 PMCID: PMC5857592 DOI: 10.3389/fphys.2018.00199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Structural and functional alterations of mitochondria are intimately linked to a wide array of medical conditions. Many factors are involved in the regulation of mitochondrial function, including cytokines, chaperones, chemokines, neurosteroids, and ubiquitins. The role of diffusely located cells of the neuroendocrine system, including biogenic amines and peptide hormones, in the management of mitochondrial function, as well as the role of altered mitochondrial function in the regulation of these cells and system, is an area of intense investigation. The current article looks at the interactions among the cells of the neuronal-glia, immune and endocrine systems, namely the diffuse neuroimmunoendocrine system (DNIES), and how DNIES interacts with mitochondrial function. Whilst changes in DNIES can impact on mitochondrial function, local, and systemic alterations in mitochondrial function can alter the component systems of DNIES and their interactions. This has etiological, course, and treatment implications for a wide range of medical conditions, including neurodegenerative disorders. Available data on the role of melatonin in these interactions, at cellular and system levels, are reviewed, with directions for future research indicated.
Collapse
Affiliation(s)
- Victoria O Polyakova
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor M Kvetnoy
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - George Anderson
- CRC Scotland and London Clinical Research, London, United Kingdom
| | - Jessica Rosati
- Cell Reprogramming Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Natalya S Linkova
- Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
35
|
Alghamdi A, Vallortigara J, Howlett DR, Broadstock M, Hortobágyi T, Ballard C, Thomas AJ, O'Brien JT, Aarsland D, Attems J, Francis PT, Whitfield DR. Reduction of RPT6/S8 (a Proteasome Component) and Proteasome Activity in the Cortex is Associated with Cognitive Impairment in Lewy Body Dementia. J Alzheimers Dis 2018; 57:373-386. [PMID: 28269775 PMCID: PMC5438478 DOI: 10.3233/jad-160946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lewy body dementia is the second most common neurodegenerative dementia and is pathologically characterized by α-synuclein positive cytoplasmic inclusions, with varying amounts of amyloid-β (Aβ) and hyperphosphorylated tau (tau) aggregates in addition to synaptic loss. A dysfunctional ubiquitin proteasome system (UPS), the major proteolytic pathway responsible for the clearance of short lived proteins, may be a mediating factor of disease progression and of the development of α-synuclein aggregates. In the present study, protein expression of a key component of the UPS, the RPT6 subunit of the 19S regulatory complex was determined. Furthermore, the main proteolytic-like (chymotrypsin- and PGPH-) activities have also been analyzed. The middle frontal (Brodmann, BA9), inferior parietal (BA40), and anterior cingulate (BA24) gyrus' cortex were selected as regions of interest from Parkinson's disease dementia (PDD, n = 31), dementia with Lewy bodies (DLB, n = 44), Alzheimer's disease (AD, n = 16), and control (n = 24) brains. Clinical and pathological data available included the MMSE score. DLB, PDD, and AD were characterized by significant reductions of RPT6 (one-way ANOVA, p < 0.001; Bonferroni post hoc test) in prefrontal cortex and parietal cortex compared with controls. Strong associations were observed between RPT6 levels in prefrontal, parietal cortex, and anterior cingulate gyrus and cognitive impairment (p = 0.001, p = 0.001, and p = 0.008, respectively). These findings highlight the involvement of the UPS in Lewy body dementia and indicate that targeting the UPS may have the potential to slow down or reduce the progression of cognitive impairment in DLB and PDD.
Collapse
Affiliation(s)
- Amani Alghamdi
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK.,Department of Biochemistry, King Saud University, College of Science, Riyadh, Saudi Arabia
| | - Julie Vallortigara
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - David R Howlett
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Martin Broadstock
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Tibor Hortobágyi
- Department of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clive Ballard
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK.,University of Exeter Medical School, University of Exeter, Devon, UK
| | - Alan J Thomas
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, UK
| | | | - Dag Aarsland
- Department of Neurobiology, Ward Sciences and Society, Karolinska Institute, Stockholm Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Johannes Attems
- Institute of Neuroscience and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, UK
| | - Paul T Francis
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - David R Whitfield
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
36
|
Dantuma NP, Salomons FA. Ubiquitin versus misfolding: The minimal requirements for inclusion body formation. J Cell Biol 2017; 213:147-9. [PMID: 27114497 PMCID: PMC5084277 DOI: 10.1083/jcb.201603095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin-containing inclusion bodies are characteristic features of numerous neurodegenerative diseases, but whether ubiquitin plays a functional role in the formation of these protein deposits is unclear. In this issue, Bersuker et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201511024) report that protein misfolding without ubiquitylation is sufficient for translocation into inclusion bodies.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
37
|
Lee D, Ryu KY. Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1. Biochem Biophys Res Commun 2017; 485:234-240. [PMID: 28237703 DOI: 10.1016/j.bbrc.2017.02.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
The polyubiquitin genes Ubb and Ubc are upregulated under oxidative stress induced by arsenite [As(III)]. However, the role of ubiquitin (Ub) under As(III) exposure is not known in detail. In a previous study, we showed that the reduced viability observed in Ubc-/- mouse embryonic fibroblasts under As(III) exposure was not due to dysregulation of the Nrf2-Keap1 pathway, which prompted us to investigate another NFE2 family protein, nuclear factor erythroid 2-related factor 1 (Nrf1). In this study, we found that Ub deficiency due to Ubc knockdown in N2a cells reduced cell viability and proteasome activity under As(III) exposure. Furthermore, mRNA levels of the proteasome subunit Psma1 were also reduced. In addition, Ub deficiency led to the nuclear accumulation of the p65 isoform of Nrf1 under As(III) exposure. Interestingly, the overexpression of p65-Nrf1 recapitulated the phenotypes of Ub-deficient N2a cells under As(III) exposure. On the other hand, Nrf1 knockdown suppressed the death of Ub-deficient N2a cells upon exposure to As(III). Therefore, the levels of p65-Nrf1 may play an important role in the maintenance of cell viability under oxidative stress induced by As(III).
Collapse
Affiliation(s)
- Donghee Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
38
|
Xu S, Stern M, McNew JA. Beneficial effects of rapamycin in a Drosophila model for hereditary spastic paraplegia. J Cell Sci 2016; 130:453-465. [PMID: 27909242 DOI: 10.1242/jcs.196741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
The locomotor deficits in the group of diseases referred to as hereditary spastic paraplegia (HSP) reflect degeneration of upper motor neurons, but the mechanisms underlying this neurodegeneration are unknown. We established a Drosophila model for HSP, atlastin (atl), which encodes an ER fusion protein. Here, we show that neuronal atl loss causes degeneration of specific thoracic muscles that is preceded by other pathologies, including accumulation of aggregates containing polyubiquitin, increased generation of reactive oxygen species and activation of the JNK-Foxo stress response pathway. We show that inhibiting the Tor kinase, either genetically or by administering rapamycin, at least partially reversed many of these pathologies. atl loss from muscle also triggered muscle degeneration and rapamycin-sensitive locomotor deficits, as well as polyubiquitin aggregate accumulation. These results indicate that atl loss triggers muscle degeneration both cell autonomously and nonautonomously.
Collapse
Affiliation(s)
- Shiyu Xu
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - James A McNew
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
39
|
Choi JS, Kim K, Lee DH, Cho S, Ha JD, Park BC, Kim S, Park SG, Kim JH. cIAPs promote the proteasomal degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2016; 480:422-428. [PMID: 27773815 DOI: 10.1016/j.bbrc.2016.10.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Although the ubiquitin-proteasome system is believed to play an important role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS), caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1), the mechanism of how mutant SOD1 protein is regulated in cells is still poorly understood. Here we have demonstrated that cellular inhibitor of apoptosis proteins (cIAPs) are specifically associated with FALS-linked mutant SOD1 (mSOD1) and that this interaction promotes the ubiquitin-dependent proteasomal degradation of mutant SOD1. By utilizing cumate inducible SOD1 cells, we also showed that knock-down or pharmacologic depletion of cIAPs leads to H2O2 induced cytotoxicity in mSOD1 expressing cells. Altogether, our results reveal a novel role of cIAPs in FALS-associated mutant SOD1 regulation.
Collapse
Affiliation(s)
- Jin Sun Choi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea
| | - Kidae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Do Hee Lee
- Department of Biotechnology, Seoul Women's University, Seoul, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Du Ha
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
40
|
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2016; 33:855-76. [PMID: 26515626 DOI: 10.1016/j.ncl.2015.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Derek J Schulte
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes. Sci Rep 2016; 6:30391. [PMID: 27464946 PMCID: PMC4964564 DOI: 10.1038/srep30391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIowa) is the first mutation that was associated with familial AApoA1 amyloidosis. The N-terminal fragments (amino acid residues 1–83) of apoA-I containing this mutation deposit as amyloid fibrils in patients’ tissues and organs, but the mechanisms of cellular degradation and cytotoxicity have not yet been clarified. In this study, we demonstrated degradation of apoA-IIowa fibrils via the autophagy-lysosomal pathway in human embryonic kidney 293 cells. ApoA-IIowa fibrils induced an increase in lysosomal pH and the cytosolic release of the toxic lysosomal protease cathepsin B. The mitochondrial dysfunction caused by apoA-IIowa fibrils depended on cathepsin B and was ameliorated by increasing the degradation of apoA-IIowa fibrils. Thus, although apoA-IIowa fibril transport to lysosomes and fibril degradation in lysosomes may have occurred, the presence of an excess number of apoA-IIowa fibrils, more than the lysosomes could degrade, may be detrimental to cells. Our results thus provide evidence that the target of apoA-IIowa fibrils is lysosomes, and we thereby gained a novel insight into the mechanism of AApoA1 amyloidosis.
Collapse
|
42
|
Abstract
Parkinson disease (PD) is one of the most widespread neurodegenerative disorders. In North America alone it affects 1 million people. It is a multifactorial disorder caused by genetic, various biological and environmental factors. One of the important features of PD is the dementia, which is believed to be due to the loss of dopaminergic neurons. In some cases the disease can be inherited as an autosomal dominant or recessive trait but in the majority of cases it is acquired. The biological causes of the disorder are unknown. The identification of mutations in the parkin gene in the autosomal recessive case and alpha-synuclein gene in autosomal dominant cases has opened a new avenue for studies to understand the basic biochemical mechanisms of pathogenesis. Although several types of treatments such as transplantation of cells that produce L-Dopa and direct gene delivery using adeno-associated viral vectors may correct animal models of PD, their usefulness in the human is not yet clear. A better understanding of the causes of neurodegeneration may lead to better therapies in the future.
Collapse
|
43
|
Valentine BA, Flint TH, Fischer KA. Ubiquitin Expression in Muscle from Horses with Polysaccharide Storage Myopathy. Vet Pathol 2016; 43:270-5. [PMID: 16672573 DOI: 10.1354/vp.43-3-270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serial sections of formalin-fixed, paraffin-embedded muscle biopsy specimens from 28 Quarter Horse, Paint, and draft-related breeds, aged 0.5-23 years, were treated with periodic acid-Schiff (PAS) stain for glycogen and were immunostained to detect ubiquitin expression. On the basis of findings in PAS-stained sections, a diagnosis of equine polysaccharide storage myopathy (EPSSM) was made in 22 horses aged 2-23 years (mean, 9.4 years); samples from 6 horses aged 0.5-15 years (mean, 7.3 years) had a normal PAS staining pattern, with no relevant lesions. Ubiquitin expression was detected in all but a 2-year-old EPSSM-affected horse and was not detected in the non-EPSSM-affected horses. Ubiquitin expression was greater than the degree of PAS-positive, amylase-resistant material, and ubiquitin was detected in aggregates of amylase-sensitive glycogen as well as in aggregates of amylase-resistant material. Results suggest that glycogen aggregates develop and are ubiquitinated prior to development of amylase-resistant inclusions. Ubiquitin immunostaining may be most useful for confirming the diagnosis of EPSSM in horses with only amylase-sensitive glycogen aggregates and in horses with early amylase-resistant inclusions. However, ubiquitin immunostaining is no more sensitive than is PAS staining for diagnosis of EPSSM.
Collapse
Affiliation(s)
- B A Valentine
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Magruder 142, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
44
|
Bott LC, Salomons FA, Maric D, Liu Y, Merry D, Fischbeck KH, Dantuma NP. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep 2016; 6:27703. [PMID: 27312068 PMCID: PMC4911547 DOI: 10.1038/srep27703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023] Open
Abstract
Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/CCdh1 complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/CCdh1 by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/CCdh1 and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA.
Collapse
Affiliation(s)
- Laura C Bott
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden.,National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - Florian A Salomons
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Diane Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kenneth H Fischbeck
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
45
|
Morimoto D, Shirakawa M. The evolving world of ubiquitin: transformed polyubiquitin chains. Biomol Concepts 2016; 7:157-67. [PMID: 27226101 DOI: 10.1515/bmc-2016-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The regulation of diverse cellular events by proteins that have undergone post-translational modification with ubiquitin is well documented. Ubiquitin can be polymerized and eight types of polyubiquitin chain contribute to the complexity and specificity of the ubiquitin signal. Unexpectedly, recent studies have shown that ubiquitin itself undergoes post-translational modification by acetylation and phosphorylation; moreover, amyloid-like fibrils comprised of polyubiquitin chains have been discovered. Thus, ubiquitin is not only conjugated to substrate proteins, but also modified and transformed itself. Here, we review these novel forms of ubiquitin signal, with a focus on fibril formation of polyubiquitin chains and its underlying biological relevance.
Collapse
|
46
|
Shah FA, Gim SA, Sung JH, Jeon SJ, Kim MO, Koh PO. Identification of proteins regulated by curcumin in cerebral ischemia. J Surg Res 2016; 201:141-8. [DOI: 10.1016/j.jss.2015.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023]
|
47
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
48
|
Lincoln BL, Alabsi SH, Frendo N, Freund R, Keller LC. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction. J Exp Neurosci 2015; 9:1-9. [PMID: 26512206 PMCID: PMC4612769 DOI: 10.4137/jen.s25516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments.
Collapse
Affiliation(s)
- Barron L Lincoln
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Sahar H Alabsi
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Nicholas Frendo
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Robert Freund
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Lani C Keller
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
49
|
Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 2015; 14:715-24. [PMID: 26053162 PMCID: PMC4568959 DOI: 10.1111/acel.12359] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.
Collapse
Affiliation(s)
- Jennifer M. Deger
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Julia E. Gerson
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| |
Collapse
|
50
|
Kalathur RKR, Giner-Lamia J, Machado S, Barata T, Ayasolla KRS, Futschik ME. The unfolded protein response and its potential role in Huntington's disease elucidated by a systems biology approach. F1000Res 2015; 4:103. [PMID: 26949515 PMCID: PMC4758378 DOI: 10.12688/f1000research.6358.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
Huntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, persistent ER stress and an activated UPR can also cause apoptotic cell death. Although different studies have indicated a role for the UPR in HD, the evidence remains inconclusive. Here, we present extensive bioinformatic analyses that revealed UPR activation in different experimental HD models based on transcriptomic data. Accordingly, we have identified 53 genes, including RAB5A, HMGB1, CTNNB1, DNM1, TUBB, TSG101, EEF2, DYNC1H1, SLC12A5, ATG5, AKT1, CASP7 and SYVN1 that provide a potential link between UPR and HD. To further elucidate the potential role of UPR as a disease-relevant process, we examined its connection to apoptosis based on molecular interaction data, and identified a set of 40 genes including ADD1, HSP90B1, IKBKB, IKBKG, RPS3A and LMNB1, which seem to be at the crossroads between these two important cellular processes. Remarkably, we also found strong correlation of UPR gene expression with the length of the polyglutamine tract of Huntingtin, which is a critical determinant of age of disease onset in human HD patients pointing to the UPR as a promising target for therapeutic intervention. The study is complemented by a newly developed web-portal called UPR-HD (http://uprhd.sysbiolab.eu) that enables visualization and interactive analysis of UPR-associated gene expression across various HD models.
Collapse
Affiliation(s)
| | - Joaquin Giner-Lamia
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Susana Machado
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Tania Barata
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | | | - Matthias E Futschik
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal; Centre of Marine Sciences, University of Algarve, Faro, 8005-139, Portugal
| |
Collapse
|