1
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Padamsey Z, Foster WJ, Emptage NJ. Intracellular Ca 2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019; 25:208-226. [PMID: 30014771 DOI: 10.1177/1073858418785334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.
Collapse
Affiliation(s)
- Zahid Padamsey
- 1 Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, 15 George Square, Edinburgh, UK
| | - William J Foster
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| | - Nigel J Emptage
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| |
Collapse
|
3
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
4
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
5
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
6
|
Wu WH, Cooper RL. Serotonin and synaptic transmission at invertebrate neuromuscular junctions. Exp Neurobiol 2012; 21:101-12. [PMID: 23055788 PMCID: PMC3454807 DOI: 10.5607/en.2012.21.3.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
The serotonergic system in vertebrates and invertebrates has been a focus for over 50 years and will likely continue in the future. Recently, genomic analysis and discovery of alternative splicing and differential expression in tissues have increased the knowledge of serotonin (5-HT) receptor types. Comparative studies can provide useful insights to the wide variety of mechanistic actions of 5-HT responsible for behaviors regulated or modified by 5-HT. To determine cellular responses and influences on neural systems as well as the efferent control of behaviors by the motor units, preparations amenable to detailed studies of synapses are beneficial as working models. The invertebrate neuromuscular junctions (NMJs) offer some unique advantages for such investigations; action of 5-HT at crustacean NMJs has been widely studied, and leech and Aplysia continue to be key organisms. However, there are few studies in insects likely due to the focus in modulation within the CNS and lack of evidence of substantial action of 5-HT at the Drosophila NMJs. There are only a few reports in gastropods and annelids as well as other invertebrates. In this review we highlight some of the key findings of 5-HT actions and receptor types associated at NMJs in a variety of invertebrate preparations in hopes that future studies will build on this knowledge base.
Collapse
Affiliation(s)
- Wen-Hui Wu
- Department of Biology & Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
7
|
Turovskaya MV, Turovsky EA, Zinchenko VP, Levin SG, Godukhin OV. Interleukin-10 modulates [Ca2+]i response induced by repeated NMDA receptor activation with brief hypoxia through inhibition of InsP3-sensitive internal stores in hippocampal neurons. Neurosci Lett 2012; 516:151-5. [DOI: 10.1016/j.neulet.2012.03.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/25/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
8
|
Selvaraj S, Sun Y, Singh BB. TRPC channels and their implication in neurological diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:94-104. [PMID: 20201820 DOI: 10.2174/187152710790966650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022]
Abstract
Calcium is an essential intracellular messenger and serves critical cellular functions in both excitable and non-excitable cells. Most of the physiological functions in these cells are uniquely regulated by changes in cytosolic Ca2+ levels ([Ca2+](i)), which are achieved via various mechanisms. One of these mechanism(s) is activated by the release of Ca2+ from the endoplasmic reticulum (ER), followed by Ca2+ influx across the plasma membrane (PM). Activation of PM Ca2+ channel is essential for not only refilling of the ER Ca2+ stores, but is also critical for maintaining [Ca2+](i) that regulates biological functions, such as neurosecretion, sensation, long term potentiation, synaptic plasticity, gene regulation, as well as cellular growth and differentiation. Alterations in Ca2+ homeostasis have been suggested in the onset/progression of neurological diseases, such as Parkinson's, Alzheimer's, bipolar disorder, and Huntington's. Available data on transient receptor potential conical (TRPC) protein indicate that these proteins initiate Ca2+ entry pathways and are essential in maintaining cytosolic, ER, and mitochondrial Ca2+ levels. A number of biological functions have been assigned to these TRPC proteins. Silencing of TRPC1 and TRPC3 has been shown to inhibit neuronal proliferation and loss of TRPC1 is implicated in neurodegeneration. Thus, TRPC channels not only contribute towards normal physiological processes, but are also implicated in several human pathological conditions. Overall, it is suggested that these channels could be used as potential therapeutic targets for many of these neurological diseases. Thus, in this review we have focused on the functional implication of TRPC channels in neuronal cells along with the elucidation of their role in neurodegeneration.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | | | | |
Collapse
|
9
|
Calcium dyshomeostasis and pathological calcium signalling in neurological diseases. Cell Calcium 2010; 47:101-2. [PMID: 20079921 DOI: 10.1016/j.ceca.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 12/17/2009] [Indexed: 01/23/2023]
|
10
|
NAADP-mediated channel 'chatter' in neurons of the rat medulla oblongata. Biochem J 2009; 419:91-7, 2 p following 97. [PMID: 19090786 DOI: 10.1042/bj20081138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NAADP (nicotinic acid-adenine dinucleotide phosphate) is a potent Ca(2+)-mobilizing messenger that stimulates Ca(2+) release in a variety of cells. NAADP-sensitive Ca(2+) channels are thought to reside on acidic Ca(2+) stores and to be functionally coupled to IP(3) (inositol 1,4,5-trisphosphate) and/or ryanodine receptors located on the endoplasmic reticulum. Whether NAADP-sensitive Ca(2+) channels 'chatter' to other channels, however, is not clear. In the present study, we have used a cell-permeant NAADP analogue to probe NAADP-mediated responses in rat medulla oblongata neurons. NAADP-AM (NAADP-acetoxymethyl ester) evoked global cytosolic Ca(2+) signals in isolated neurons that were reduced in amplitude by removal of external Ca(2+), abolished by disruption of acidic compartments and substantially inhibited by blockade of ryanodine receptors. In rat medullary slices, NAADP-AM depolarized neurons from the nucleus ambiguus in the presence of intracellular EGTA, but not of the faster Ca(2+) chelator BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid]. Depolarization was also dependent upon extracellular Ca(2+), acidic stores and ryanodine receptors. In voltage-clamp mode, NAADP-AM induced an inward current with a reversal potential of approx. 0 mV. The results of the present study reveal the presence of acidic NAADP-sensitive Ca(2+) stores in medulla neurons, the mobilization of which results not only in global Ca(2+) signals but also in local signals that activate non-selective cation channels on the cell surface resulting in depolarization. Thus NAADP is capable of co-ordinating channels both within the cell interior and at the cell membrane representing a novel mechanism for excitation of central neurons.
Collapse
|
11
|
Jo H, Byun HM, Lee SI, Shin DM. Initiation site of Ca(2+) entry evoked by endoplasmic reticulum Ca(2+) depletion in mouse parotid and pancreatic acinar cells. Yonsei Med J 2007; 48:526-30. [PMID: 17594163 PMCID: PMC2628100 DOI: 10.3349/ymj.2007.48.3.526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE In non-excitable cells, which include parotid and pancreatic acinar cells, Ca(2+) entry is triggered via a mechanism known as capacitative Ca(2+) entry, or store-operated Ca(2+) entry. This process is initiated by the perception of the filling state of endoplasmic reticulum (ER) and the depletion of internal Ca(2+) stores, which acts as an important factor triggering Ca(2+) entry. However, both the mechanism of store-mediated Ca(2+) entry and the molecular identity of store-operated Ca(2+) channel (SOCC) remain uncertain. MATERIALS AND METHODS In the present study we investigated the Ca(2+) entry initiation site evoked by depletion of ER to identify the localization of SOCC in mouse parotid and pancreatic acinar cells with microfluorometeric imaging system. RESULTS Treatment with thapsigargin (Tg), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPase, in an extracellular Ca(2+) free state, and subsequent exposure to a high external calcium state evoked Ca(2+) entry, while treatment with lanthanum, a non-specific blocker of plasma Ca(2+) channel, completely blocked Tg-induced Ca(2+) entry. Microfluorometric imaging showed that Tg-induced Ca(2+) entry started at a basal membrane, not a apical membrane. CONCLUSION These results suggest that Ca2+ entry by depletion of the ER initiates at the basal pole in polarized exocrine cells and may help to characterize the nature of SOCC.
Collapse
Affiliation(s)
- Hae Jo
- Yonsei University College of Dentistry, 250 Seongsanno, Seodaemon-gu, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
12
|
Abstract
Elevations in cytosolic Ca2+ concentration are the usual initial response of endothelial cells to hormonal and chemical transmitters and to changes in physical parameters, and many endothelial functions are dependent upon changes in Ca2+ signals produced. Endothelial cell Ca2+ signalling shares similar features with other electrically non-excitable cell types, but has features unique to endothelial cells. This chapter discusses the major components of endothelial cell Ca2+ signalling.
Collapse
Affiliation(s)
- Q K Tran
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|
13
|
Brailoiu E, Churamani D, Pandey V, Brailoiu GC, Tuluc F, Patel S, Dun NJ. Messenger-specific role for nicotinic acid adenine dinucleotide phosphate in neuronal differentiation. J Biol Chem 2006; 281:15923-8. [PMID: 16595650 DOI: 10.1074/jbc.m602249200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells possess several Ca2+-mobilizing messengers, which couple stimulation at the cell surface by a multitude of extracellular cues to the regulation of intracellular Ca2+-sensitive targets. Recent studies suggest that agonists differentially select from this molecular palette to generate their characteristic Ca2+ signals but it is still unclear whether different messengers mediate different functions or whether they act in a redundant fashion. In this study, we compared the effects of nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca2+-mobilizing messenger, with that of the prototypical messenger inositol trisphosphate on cytosolic Ca2+ levels and differentiation status of PC12 cells. We demonstrate that liposomal delivery of NAADP mediated release of Ca2+ from acidic Ca2+ stores and that this stimulus was sufficient to drive differentiation of the cells to a neuronal-like phenotype. In sharp contrast, cell fate was unaffected by more transient Ca2+ signals generated by inositol trisphosphate-evoked release of endoplasmic reticulum Ca2+ stores. Our data establish for the first time (i) the presence of novel NAADP-sensitive Ca2+ stores in PC12 cells, (ii) a role for NAADP in differentiation, and (iii) that Ca2+-dependent function can be messenger-specific. Thus, differential recruitment of intracellular Ca2+-mobilizing messengers and their target Ca2+ stores may represent a robust means of maintaining stimulus fidelity in the control of Ca2+-dependent cell function.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, Temple University Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Dropic AJ, Brailoiu E, Cooper RL. Presynaptic mechanism of action induced by 5-HT in nerve terminals: Possible involvement of ryanodine and IP3 sensitive Ca2+ stores. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:355-61. [PMID: 16182580 DOI: 10.1016/j.cbpa.2005.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 08/26/2005] [Accepted: 08/27/2005] [Indexed: 11/30/2022]
Abstract
Although modulation of transmitter release by serotonin (5-HT) at crayfish neuromuscular junctions has been known since 1965, the mechanisms of action have not been established in this classical synaptic preparation. We show that injections of adenophostin-A (an IP3 analog) in the nerve terminals greatly enhances synaptic transmission. Exposure to ryanodine (Ry) produces a biphasic response: at low concentration it is excitatory and high concentration it is inhibitory. Likewise, a low concentration (1 microM) of caffeine enhances synaptic transmission, whereas a high concentration (10 mM) has little effect on transmission. The varied responses and sensitivity to Ry and caffeine suggest a Ca(2+)-induced Ca(2+)-release mechanism and/or the presence of an IP3-receptor within the terminal. Thus, it is likely 5-HT's response is due to activation of intracellular pathways, which subsequently release Ca2+ from internal stores.
Collapse
Affiliation(s)
- Amanda J Dropic
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | |
Collapse
|
15
|
Cui G, Okamoto T, Morikawa H. Spontaneous opening of T-type Ca2+ channels contributes to the irregular firing of dopamine neurons in neonatal rats. J Neurosci 2005; 24:11079-87. [PMID: 15590924 PMCID: PMC1454359 DOI: 10.1523/jneurosci.2713-04.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early postnatal development, midbrain dopamine (DA) neurons display anomalous firing patterns and amphetamine response. Spontaneous miniature hyperpolarizations (SMHs) are observed in DA neurons during the same period but not in adults. These hyperpolarizations have been shown to be dependent on the release of Ca2+ from internal stores and the subsequent activation of Ca2+-sensitive K+ channels. However, the triggering mechanism and the functional significance of SMHs remain poorly understood. To address these issues, using brain slices, we recorded spontaneous miniature outward currents (SMOCs) in DA neurons of neonatal rats. Two types of SMOCs were identified based on the peak amplitude. Both types were suppressed by intracellular dialysis of ruthenium red, a ryanodine receptor (RyR) antagonist, yet none of the known Ca2+-releasing messengers were involved. T-type Ca2+ channel blockers (Ni2+ and mibefradil) inhibited large-amplitude SMOCs without affecting the small-amplitude ones. The voltage dependence of SMOCs displayed a peak of approximately -50 mV, consistent with the involvement of low-threshold T-type Ca2+ channels. Blockade of SMOCs with cyclopiazonic acid or ryanodine converted the irregular firing of DA neurons in neonatal rats into an adult-like pacemaker pattern. This effect was reversed by the injection of artificial currents mimicking SMOCs. Finally, amphetamine inhibited SMOCs and transformed the irregular firing pattern into a more regular one. These data demonstrate that Ca2+ influx through T-type Ca2+ channels, followed by Ca2+-induced Ca2+ release via RyRs, contributes to the generation of SMOCs. We propose that SMOCs-SMHs may underlie the anomalous firing and amphetamine response of DA neurons during the postnatal developmental period.
Collapse
Affiliation(s)
- Guohong Cui
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
16
|
Molecular mechanisms of hormonal activity. I. receptors. neuromediators. systems with second messengers. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/pl00021752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Bradley KN, Currie S, MacMillan D, Muir TC, McCarron JG. Cyclic ADP-ribose increases Ca2+ removal in smooth muscle. J Cell Sci 2003; 116:4291-306. [PMID: 12966165 DOI: 10.1242/jcs.00713] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca2+ release via ryanodine receptors (RyRs) is vital in cell signalling and regulates diverse activities such as gene expression and excitation-contraction coupling. Cyclic ADP ribose (cADPR), a proposed modulator of RyR activity, releases Ca2+ from the intracellular store in sea urchin eggs but its mechanism of action in other cell types is controversial. In this study, caged cADPR was used to examine the effect of cADPR on Ca2+ signalling in single voltage-clamped smooth muscle cells that have RyR but lack FKBP12.6, a proposed target for cADPR. Although cADPR released Ca2+ in sea urchin eggs (a positive control), it failed to alter global or subsarcolemma [Ca2+]c, to cause Ca2+-induced Ca2+ release or to enhance caffeine responses in colonic myocytes. By contrast, caffeine (an accepted modulator of RyR) was effective in these respects. The lack of cADPR activity on Ca2+ release was unaffected by the introduction of recombinant FKBP12.6 into the myocytes. Indeed in western blots, using brain membrane preparations as a source of FKBP12.6, cADPR did not bind to FKBPs, although FK506 was effective. However, cADPR increased and its antagonist 8-bromo-cADPR slowed the rate of Ca2+ removal from the cytoplasm. The evidence indicates that cADPR modulates [Ca2+]c but not via RyR; the mechanism may involve the sarcolemma Ca2+ pump.
Collapse
Affiliation(s)
- Karen N Bradley
- Institute of Biomedical and Life Sciences, Neuroscience and Biomedical Systems, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
18
|
Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, Petersen OH, Gerasimenko OV. NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 2003; 163:271-82. [PMID: 14568993 PMCID: PMC2173522 DOI: 10.1083/jcb.200306134] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 09/02/2003] [Indexed: 01/11/2023] Open
Abstract
Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP released Ca2+ from the same thapsigargin-sensitive pool as IP3. The NAADP action was specific because, for example, nicotineamide adenine dinucleotide phosphate was ineffective. The Ca2+ release was unaffected by procedures interfering with acidic organelles (bafilomycin, brefeldin, and nigericin). Ryanodine blocked the Ca2+-releasing effects of NAADP, cADPR, and caffeine, but not IP3. Ruthenium red also blocked the NAADP-elicited Ca2+ release. IP3 receptor blockade did not inhibit the Ca2+ release elicited by NAADP or cADPR. The nuclear envelope contains ryanodine and IP3 receptors that can be activated separately and independently; the ryanodine receptors by either NAADP or cADPR, and the IP3 receptors by IP3.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, England, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Brailoiu E, Miyamoto MD, Dun NJ. Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Neuropharmacology 2003; 45:691-701. [PMID: 12941382 DOI: 10.1016/s0028-3908(03)00228-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the consequences of G-protein-coupled receptor activation is stimulation of phosphoinositol metabolism, leading to the generation of IP3 and its metabolites 1,3,4,5-tetrakisphosphate (IP4) and inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Previous reports indicate that high inositol polyphosphates (IP4 and IP6) are involved in clathrin-coated vesicular recycling. In this study, we examined the effects of IP4 and IP6 on spontaneous transmitter release in the form of miniature endplate potentials (MEPP) and on enhanced vesicular recycling by high K+ at frog motor nerve endings. In resting conditions, IP4 and IP6 delivered intracellularly via liposomes, caused concentration-dependent increases in MEPP frequency and amplitude. Pretreatment with the protein kinase A (PKA) inhibitor H-89 or KT 5720 reduced the IP4-mediated MEPP frequency increase by 60% and abolished the IP6-mediated MEPP frequency increases as well as the enhancement in MEPP amplitude. Pretreatment with antibodies against phosphatidylinositol 3-kinase (PI 3-K), enzyme also associated with clathrin-coated vesicular recycling, did not alter the IP4 and IP6-mediated MEPP frequency increases, but reduced the MEPP amplitude increase by 50%. In our previous reports, IP3, but not other second messengers releasing Ca2+ from internal Ca2+ stores, is able to enhance the MEPP amplitude. In order to dissociate the effect of Ca2+ release vs. metabolism to IP4 and IP6, we evaluated the effects of 3-deoxy-3-fluoro-inositol 1,4,5-trisphosphate (3F-IP3), which is not converted to IP4 or IP6. 3F-IP3 produced an increase then decrease in MEPP frequency and a decrease in MEPP amplitude. In elevated vesicle recycling induced by high K+-Ringer solution, IP4 and IP6 have similar effects, except decreasing MEPP frequency at a higher concentration (10(-4) M). We conclude that (1) high inositol polyphosphates may represent a link between IP3 and cAMP pathways; (2) the IP3-induced increase of MEPP amplitude is likely to be due to its high inositol metabolites; (3) PI 3-K is not involved in the IP4 and IP6-mediated MEPP frequency increases, but may be involved in MEPP size.
Collapse
Affiliation(s)
- Eugen Brailoiu
- East Tennessee State University, Department of Pharmacology, James H. Quillen College of Medicine, P.O. Box 70577, Johnson City, TN 37614, USA
| | | | | |
Collapse
|
20
|
Solovyova N, Verkhratsky A. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones. Pflugers Arch 2003; 446:447-54. [PMID: 12764616 DOI: 10.1007/s00424-003-1094-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 04/03/2003] [Indexed: 11/30/2022]
Abstract
We addressed the fundamentally important question of functional continuity of endoplasmic reticulum (ER) Ca(2+) store in nerve cells. In cultured rat dorsal root ganglion neurones we measured dynamic changes in free Ca(2+) concentration within the ER lumen ([Ca(2+)](L)) in response to activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs). We found that both receptors co-exist in these neurones and their activation results in Ca(2+) release from the ER as judged by a decrease in [Ca(2+)](L). Depletion of Ca(2+) stores following an inhibition of sarco(endoplasmic)reticulum Ca(2+)-ATPase by thapsigargin or cyclopiazonic acid completely eliminated Ca(2+) release via both InsP(3)Rs and RyRs. Similarly, when the store was depleted by continuous activation of InsP(3)Rs, activation of RyRs (by caffeine or 0.5 microM ryanodine) failed to produce Ca(2+) release, and vice versa, when the stores were depleted by activators of RyRs, the InsP(3)-induced Ca(2+) release disappeared. We conclude that in mammalian neurones InsP(3)Rs and RyRs share the common continuous Ca(2+) pool associated with ER.
Collapse
Affiliation(s)
- Natasha Solovyova
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
21
|
Abstract
A calcium signal is a sudden increase in concentration of calcium ions (Ca2+) in the cytosol. Such signals are crucial for the control of many important functions of the body. In the brain, for example, Ca2+ signals are responsible for memory, in muscle cells they switch on contraction, whereas in gland cells they are responsible for regulation of secretion. In many cases Ca2+ signals can control several different processes in the same cell. As an example, we shall deal with one particular cell type, namely the pancreatic acinar cell, which is responsible for the secretion of the enzymes essential for the digestion of food. In this cell, Ca2+ signals do not only control the normal enzyme secretion, but also regulate growth (cell division) and programmed cell death (apoptosis). Until recently, it was a mystery how the same type of signal could regulate such diverse functions in one and the same cell. Recent technical advances have shown that different patterns of Ca2+ signals can be created, in space and time, which allow specific cellular responses to be elicited.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
22
|
Brailoiu E, Dun NJ. Extra- and intracellular sphingosylphosphorylcholine promote spontaneous transmitter release from frog motor nerve endings. Mol Pharmacol 2003; 63:1430-6. [PMID: 12761354 DOI: 10.1124/mol.63.6.1430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Similar to phosphatidylinositol bisphosphate, sphingomyelin breakdown generates several lipids, including sphingosylphosphorylcholine (SPC), that are putative signaling molecules. The present study was undertaken to evaluate the involvement of SPC in transmitter release process. Intracellular recordings were made from isolated frog sciatic-sartorius nerve-muscle preparations, and the effects of SPC on neurosecretion in the form of miniature endplate potentials (MEPPs) were assessed. Extracellular application of SPC mixture (D,L-SPC) at 1, 10, and 25 microM increased the MEPP frequency by 68, 96, and 127%, respectively. D-erythro-SPC (dissolved in dimethyl sulfoxide but not coupled to bovine serum albumin), but not L-threo-SPC, was active extracellular; the former (at 10 microM) increased the MEPP frequency by 143%. D-erythro-SPC treatment did not significantly change the median amplitude or frequency-distribution of MEPPs. Intracellular delivery via liposomes, in which 10, 100, or 1000 microM SPC mixture was entrapped in liposomal aqueous phase, induced a concentration-dependent increase in MEPP frequency of 45, 91, and 100%, respectively. D-erythro-SPC and L-threo-SPC at the concentration of 100 microM increased the MEPP frequency by 117 and 67%, respectively, or 91 and 61%, respectively, when coupled to bovine serum albumin. Pretreatment with thapsigargin significantly reduced but did not abolish the effects of extracellular D-erythro-SPC (10 microM) or liposomes containing 100 microM D-erythro-SPC. Liposomes filled with 100 microM D-myo-inositol 1,4,5-trisphosphate (IP3) enhanced the MEPP frequency to the same magnitude as 100 microM D-erythro-SPC entrapped in liposomes. However, administration of 100 microM D-erythro-SPC and IP3 entrapped in the same liposomes enhanced the MEPP frequency by 70%, which was less than that produced by these two compounds alone. The result provides the first electrophysiological evidence that SPC can modulate transmitter release by an extra- or intracellular action at the frog motor nerve ending.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614-1708, USA
| | | |
Collapse
|
23
|
Abstract
Cells use signalling networks to translate with high fidelity extracellular signals into specific cellular functions. Signalling networks are often composed of multiple signalling pathways that act in concert to regulate a particular cellular function. In the centre of the networks are the receptors that receive and transduce the signals. A versatile family of receptors that detect a remarkable variety of signals are the G protein-coupled receptors (GPCRs). Virtually all cells express several GPCRs that use the same biochemical machinery to transduce their signals. Considering the specificity and fidelity of signal transduction, a central question in cell signalling is how signalling specificity is achieved, in particular among GPCRs that use the same biochemical machinery. Ca(2+) signalling is particularly suitable to address such questions, since [Ca(2+)](i) can be recorded with excellent spatial and temporal resolutions in living cells and tissues and now in living animals. Ca(2+) is a unique second messenger in that both biochemical and biophysical components form the Ca(2+) signalling complex to regulate its concentration. Both components act in concert to generate repetitive [Ca(2+)](i) oscillations that can be either localized or in the form of global, propagating Ca(2+) waves. Most of the key proteins that form Ca(2+) signalling complexes are known and their activities are reasonably well understood on the biochemical and biophysical levels. We review here the information gained from studying Ca(2+) signalling by GPCRs to gain further understanding of the mechanisms used to generate cellular signalling specificity.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
24
|
Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 2003. [PMID: 12514211 DOI: 10.1523/jneurosci.23-01-00149.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca(2+)-sensitive K(+) channels, which is mediated by the release of Ca(2+) from intracellular stores. Neurotransmitter-induced mobilization of Ca(2+) is generally ascribed to the action of inositol 1,4,5-triphosphate (IP(3)) in neurons. Here we show that the mGluR-mediated Ca(2+) mobilization in dopamine neurons is caused by two intracellular second messengers: IP(3) and cyclic ADP-ribose (cADPR). Focal activation of mGluRs, attained by synaptic release of glutamate or iontophoretic application of aspartate, induced a wave of Ca(2+) that spread over a distance of approximately 50 microm through dendrites and the soma. Simultaneous inhibition of both IP(3)- and cADPR-dependent pathways with heparin and 8-NH(2)-cADPR was required to block the mGluR-induced Ca(2+) release, indicating a redundancy in the signaling mechanism. Activation of ryanodine receptors was suggested to mediate the cADPR-dependent pathway, because ruthenium red, an antagonist of ryanodine receptors, inhibited the mGluR response only when the cADPR-dependent pathway was isolated by blocking the IP(3)-dependent pathway with heparin. Finally, the mGluR-mediated hyperpolarization was shown to induce a transient pause in the spontaneous firing of dopamine neurons. These results demonstrate that an excitatory neurotransmitter glutamate uses multiple intracellular pathways to exert an inhibitory control on the excitability of dopamine neurons.
Collapse
|
25
|
Abstract
Although glucose-elicited insulin secretion depends on Ca(2+) entry through voltage-gated Ca(2+) channels in the surface cell membrane of the pancreatic beta-cell, there is also ample evidence for an important role of intracellular Ca(2+) stores, particularly in relation to hormone- or neurotransmitter-induced insulin secretion. There is now direct evidence for Ca(2+) entry-induced release of Ca(2+) from the endoplasmic reticulum in neurons, but with regard to glucose stimulation of beta-cells, there is conflicting evidence about the operation of such a process. This finding suggests that the sensitivity of the Ca(2+) release channels in the endoplasmic reticulum membrane varies under different conditions and therefore is regulated. Recent evidence from studies of pancreatic acinar cells has revealed combinatorial roles of multiple messengers in setting the sensitivity of the endoplasmic reticulum for Ca(2+) release. Here we focus on the possible combinatorial roles of inositol 1,4,5-trisphosphate, cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate in beta-cell function.
Collapse
Affiliation(s)
- Jose M Cancela
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are tetrameric intracellular Ca(2+) channels, the opening of which is regulated by both IP(3) and Ca(2+). We suggest that all IP(3) receptors are biphasically regulated by cytosolic Ca(2+), which binds to two distinct sites. IP(3) promotes channel opening by controlling whether Ca(2+) binds to the stimulatory or inhibitory sites. The stimulatory site is probably an integral part of the receptor lying just upstream of the pore region. Inhibition of IP(3) receptors by Ca(2+) probably requires an accessory protein, which has not yet been unequivocally identified, but calmodulin is a prime candidate. We speculate that one lobe of calmodulin tethers it to the IP(3) receptor, while the other lobe can bind Ca(2+) and then interact with a second site on the receptor to cause inhibition.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| | | |
Collapse
|
27
|
Nash MS, Schell MJ, Atkinson PJ, Johnston NR, Nahorski SR, Challiss RAJ. Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem 2002; 277:35947-60. [PMID: 12119301 DOI: 10.1074/jbc.m205622200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diverse patterns of Ca(2+)(i) release differentially regulate Ca(2+)-sensitive enzymes and gene transcription, and generally the extent of agonist activation of phospholipase C-linked G protein-coupled receptors determines the type of Ca(2+) signal. We have studied global Ca(2+) oscillations arising through activation of the metabotropic glutamate receptor mGluR5a expressed in Chinese hamster ovary cells and find that these oscillations are largely insensitive to agonist concentration. Using an inducible receptor expression system and a non-competitive antagonist, in conjunction with the translocation of eGFP-PH(PLCdelta) to monitor inositol 1,4,5-trisphosphate (InsP(3)) oscillations in single cells, we show that mGluR5a density determines the frequency of these oscillations. The predominant underlying mechanism resulted from a negative feedback loop whereby protein kinase C (PKC) inhibited InsP(3) generation. Down-regulation of PKC by prolonged exposure to phorbol ester revealed a second form of Ca(2+)(i) oscillation at low agonist concentrations. These Ca(2+)(i) signals showed features typical of classic repetitive Ca(2+)-induced Ca(2+) release and were sensitive to agonist concentration. Therefore, a single receptor can stimulate two types of InsP(3)-mediated Ca(2+) signal dependent upon feedback inhibition, producing two distinct means of controlling the final pattern of Ca(2+)(i) release. Our results have physiological implications for Ca(2+) signaling in general and emphasize the importance of mGluR5 surface expression for modulating synaptic plasticity.
Collapse
Affiliation(s)
- Mark S Nash
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, P. O. Box 138, University Road, Leicester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
28
|
Brailoiu E, Cooper RL, Dun NJ. Sphingosine 1-phosphate enhances spontaneous transmitter release at the frog neuromuscular junction. Br J Pharmacol 2002; 136:1093-7. [PMID: 12163341 PMCID: PMC1573457 DOI: 10.1038/sj.bjp.0704839] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intracellular recordings were made from isolated frog sciatic-sartorius nerve-muscle preparations, and the effects of sphingosine 1-phosphate (S1-P) on miniature endplate potentials (MEPPs) were studied. Extracellular application of S1-P (1 and 30 micro M) had no significant effects on the frequency and amplitude of MEPPs. Delivery into nerve terminals by liposomes containing 10(-5), 10(-4) or 10(-3) M S1-P was associated with a concentration-dependent increase in MEPP frequency of 37, 63 and 86%. The per cent of median MEPP amplitude was not significantly changed, but there was an increase in the number of 'giant' MEPPs. Pre-exposure of the preparations to S1-P 10(-5) but not 10(-8) M entrapped in liposomes for 15 min blocked the effects of subsequent superfusion of S1-P (10(-4) M)-filled liposomes on MEPP frequency. Thus, intracellular S1-P receptors seem to undergo 'desensitization' to higher concentrations of S1-P. The result provides the first evidence that S1-P acting intracellularly but not extracellularly enhances spontaneous transmitter release at the frog neuromuscular junction.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, Tennessee, TN 37614, U.S.A
| | - Robin L Cooper
- Thomas Hunt Morgan School of Biological Sciences, University of Kentucky, Lexington, Kentucky, KY 40506, U.S.A
| | - Nae J Dun
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, Tennessee, TN 37614, U.S.A
- Author for correspondence:
| |
Collapse
|
29
|
Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 2002; 447:141-54. [PMID: 12151006 DOI: 10.1016/s0014-2999(02)01838-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endoplasmic reticulum is one of the largest intracellular organelles represented by continuous network of cisternae and tubules, which occupies the substantial part of neuronal somatas and extends into finest neuronal processes. The endoplasmic reticulum controls protein synthesis as well as their post-translational processing, and generates variety of nucleus-targeted signals through Ca(2+)-binding chaperones. The normal functioning of the endoplasmic reticulum signalling cascades requires high concentrations of free calcium ions within the endoplasmic reticulum lumen ([Ca(2+)](L)), and severe alterations in [Ca(2+)](L) trigger endoplasmic reticulum stress response, manifested by either unfolded protein response (UPR) or endoplasmic reticulum overload response (EOR). At the same time, the endoplasmic reticulum is critically involved in fast neuronal signalling, by producing local or global cytosolic calcium signals via Ca(2+)-induced Ca(2+) release (CICR) or inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). Both CICR and IICR are important for synaptic transmission and synaptic plasticity. Several special techniques allowing real-time [Ca(2+)](L) monitoring were developed recently. Video-imaging of [Ca(2+)](L) in neurones demonstrates that physiological signalling triggers minor decreases in overall intraluminal Ca(2+) concentration due to strong activation of Ca(2+) uptake, which prevents severe [Ca(2+)](L) alterations. The endoplasmic reticulum lumen also serves as a "tunnel" which allows rapid transport of Ca(2+) ions within highly polarised nerve cells. Fluctuations of intraluminal free Ca(2+) concentration represent a universal mechanism, which integrates physiological cellular signalling with protein synthesis and processing. In pathological conditions, fluctuations in [Ca(2+)](L) may initiate either adaptive or fatal stress responses.
Collapse
Affiliation(s)
- Alexej Verkhratsky
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
30
|
Berridge G, Cramer R, Galione A, Patel S. Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase. Biochem J 2002; 365:295-301. [PMID: 11936953 PMCID: PMC1222647 DOI: 10.1042/bj20020180] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/19/2002] [Accepted: 04/05/2002] [Indexed: 11/17/2022]
Abstract
Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a newly described Ca2+-mobilizing nucleotide that appears to target intracellular Ca2+-release channels distinct from those sensitive to inositol trisphosphate or ryanodine/cyclic ADP-ribose. Little, however, is known concerning the regulation of cellular NAADP levels. In the present study, we have characterized the metabolism of NAADP by brain membranes. From HPLC and MS analyses we show that loss of NAADP was associated with the appearance of a major product that is likely to be nicotinic acid-adenine dinucleotide (NAAD), the dephosphorylated form of NAADP. Dephosphorylation of NAADP, but not 3'-NAADP, was dramatically attenuated by Ca2+ chelators and stimulated by Ca2+ over a physiological range in a calmodulin-insensitive manner. In contrast, NADP was metabolized predominantly to ADP-ribose phosphate via glycohydrolase activity, although slower Ca2+-dependent dephosphorylation of both NADP and 2'-AMP could also be demonstrated. This is the first report describing a Ca2+-regulated 2'-specific phosphatase which is probably the major pathway for the inactivation of NAADP in brain. Our data provide a potential feedback mechanism for limiting NAADP-induced Ca2+ release within cells through stimulation of NAADP metabolism by Ca2+ and strongly support a signalling role for this novel nucleotide in the brain.
Collapse
Affiliation(s)
- Georgina Berridge
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
31
|
Solovyova N, Fernyhough P, Glazner G, Verkhratsky A. Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca2+ release in cultured dorsal root ganglia neurones. Cell Calcium 2002; 32:49-52. [PMID: 12127062 DOI: 10.1016/s0143-4160(02)00094-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The action of Xestospongin C (XeC) on calcium concentration in the cytosol ([Ca2+]i) and within the lumen of endoplasmic reticulum (ER) ([Ca2+]L) was studied using cultured dorsal root ganglia (DRG) neurones. Application of 2.5 microM of XeC triggered a slow [Ca2+]i transient as measured by Fura-2 video-imaging. The kinetics and amplitude of XeC-induced [Ca2+]i response was similar to that triggered by 1 microM thapsigargin (TG). The [Ca2+]L was monitored in cells loaded with low-affinity Ca2+ indicator Mag-Fura-2. The cytosolic portion of Mag-Fura-2 was removed by permeabilisation of the plasmalemma with saponin. Application of XeC to these permeabilised neurones resulted in a slow depletion of the ER Ca2+ store. XeC, however, failed to inhibit inositol 1,4,5-trisphosphate (InsP3)-induced [Ca2+]L responses. We conclude that XeC is a potent inhibitor of sarco(endo)plasmic reticulum calcium ATPase, and it cannot be regarded as a specific inhibitor of InsP3 receptors in cultured DRG neurones.
Collapse
Affiliation(s)
- N Solovyova
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, UK
| | | | | | | |
Collapse
|
32
|
Yamamoto K, Hashimoto K, Nakano M, Shimohama S, Kato N. A distinct form of calcium release down-regulates membrane excitability in neocortical pyramidal cells. Neuroscience 2002; 109:665-76. [PMID: 11927149 DOI: 10.1016/s0306-4522(01)00486-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We reported a novel type of calcium release from inositol-1,4,5-trisphosphate (IP(3))-sensitive calcium stores synergistically induced by muscarinic acetylcholine receptor (mAchR)-mediated increase in IP(3) and action potential-induced calcium influx (IP(3)-assisted calcium-induced calcium release, IP(3)-assisted CICR). To clarify its functional significance, the effects of IP(3)-assisted CICR on spike-frequency adaptation were examined in layer II/III neurons from rat visual cortex slices. IP(3)-assisted CICR was enabled with a high concentration of the mAchR agonist carbachol (10 microM). The magnitude of this CICR was the more augmented at higher firing frequencies. With 10 microM carbachol, spike-frequency adaptation was reduced for spike trains at 'low' firing frequencies (6-10 Hz), but was rather enhanced at 'high' firing rates (16-22 Hz): excitability was down-regulated at 'high' frequencies. With 1 microM carbachol, by contrast, IP(3)-assisted CICR failed to occur, and spike-frequency adaptation was always reduced at any spike frequencies. Intracellular injection of the IP(3) receptor blocker heparin prevented both the mAchR-mediated occurrence of IP(3)-assisted CICR and enhancement of spike-frequency adaptation with 10 microM carbachol. Both of these mAchR-mediated effects were reproduced by intracellular IP(3) injection, and were shown to be associated with each other by simultaneous recordings of membrane potential and intracellular calcium increase. We propose that IP(3)-assisted CICR offers a novel way to protect these cortical neurons from hyperexcitability and presumably from excitotoxic cell death.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Carbachol/pharmacology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Chelating Agents/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Electric Stimulation
- Fura-2
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Muscarinic Agonists/pharmacology
- Pyramidal Cells/cytology
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Visual Cortex/cytology
- Visual Cortex/drug effects
- Visual Cortex/metabolism
Collapse
Affiliation(s)
- K Yamamoto
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Cancela JM, Van Coppenolle F, Galione A, Tepikin AV, Petersen OH. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J 2002; 21:909-19. [PMID: 11867519 PMCID: PMC125894 DOI: 10.1093/emboj/21.5.909] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pancreatic acinar cells, low, threshold concentrations of acetylcholine (ACh) or cholecystokinin (CCK) induce repetitive local cytosolic Ca2+ spikes in the apical pole, while higher concentrations elicit global signals. We have investigated the process that transforms local Ca2+ spikes to global Ca2+ transients, focusing on the interactions of multiple intracellular messengers. ACh-elicited local Ca2+ spikes were transformed into a global sustained Ca2+ response by cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), whereas inositol 1,4,5-trisphosphate (IP3) had a much weaker effect. In contrast, the response elicited by a low CCK concentration was strongly potentiated by IP3, whereas cADPR and NAADP had little effect. Experiments with messenger mixtures revealed a local interaction between IP3 and NAADP and a stronger global potentiating interaction between cADPR and NAADP. NAADP strongly amplified the local Ca2+ release evoked by a cADPR/IP3 mixture eliciting a vigorous global Ca2+ response. Different combinations of Ca2+ releasing messengers can shape the spatio-temporal patterns of cytosolic Ca2+ signals. NAADP and cADPR are emerging as key messengers in the globalization of Ca2+ signals.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adenosine Diphosphate Ribose/analogs & derivatives
- Adenosine Diphosphate Ribose/physiology
- Animals
- Caffeine/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Polarity
- Cholecystokinin/pharmacology
- Cyclic ADP-Ribose
- Exocytosis/drug effects
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- NADP/analogs & derivatives
- NADP/pharmacology
- NADP/physiology
- Pancreas/cytology
- Patch-Clamp Techniques
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Cholecystokinin/drug effects
- Receptors, Cholecystokinin/physiology
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/physiology
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Second Messenger Systems/physiology
- Sincalide/pharmacology
Collapse
Affiliation(s)
- Jose M. Cancela
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette,
Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK Corresponding author e-mail:
| | - Fabien Van Coppenolle
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette,
Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK Corresponding author e-mail:
| | - Antony Galione
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette,
Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK Corresponding author e-mail:
| | - Alexei V. Tepikin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette,
Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK Corresponding author e-mail:
| | - Ole H. Petersen
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette,
Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK Corresponding author e-mail:
| |
Collapse
|
34
|
Yusufi ANK, Cheng J, Thompson MA, Burnett JC, Grande JP. Differential mechanisms of Ca(2+) release from vascular smooth muscle cell microsomes. Exp Biol Med (Maywood) 2002; 227:36-44. [PMID: 11788782 DOI: 10.1177/153537020222700107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The release of Ca(2+) from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca(2+) signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca(2+) release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca(2+) release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca(2+) release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca(2+). cADPR, NAADP, and IP3 induced Ca(2+) release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca(2+) release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca(2+) release. Nifedipine, an L-type Ca(2+) channel blocker, inhibited NAADP elicited Ca(2+) release, but had no effect on IP3- or cADPR-mediated Ca(2+) release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca(2+) release, but had no effect on IP3- or NAADP-induced Ca(2+) release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca(2+)-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca(2+) release. IP3-, cADPR-, and NAADP-induced intracellular Ca(2+) release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension and/or atherogenesis.
Collapse
Affiliation(s)
- Ahad N K Yusufi
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Mayo Medical School, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
35
|
Sudo T, Sakuma Y, Kato M. Bradykinin and angiotensin II-induced [Ca2+]i rise in cultured rat pituitary folliculo-stellate cells. J Neuroendocrinol 2001; 13:942-50. [PMID: 11737552 DOI: 10.1046/j.1365-2826.2001.00699.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Folliculo-stellate cells of the anterior pituitary are thought to modulate pituitary hormone secretion through a paracrine mechanism. Angiotensin II and pituitary adenylate cyclase-activating polypeptide (PACAP) have previously been shown to increase the intracellular Ca2+ concentration ([Ca2+]i) of these cells. In the present study, we examined the effects of various peptides such as bradykinin, angiotensin II, endothelin-1, PACAP, galanin and neurotensin by Ca2+-imaging of folliculo-stellate cells in primary culture. Bradykinin and angiotensin II increased [Ca2+]i in folliculo-stellate cells. Both responses were completely suppressed by thapsigargin and were significantly suppressed by the phospholipase C inhibitor, U-73122. Ryanodine did not significantly modify the responses. A B2 antagonist and angiotensin II receptor antagonist inhibited the response induced by bradykinin and angiotensin II, respectively. Endothelin-1 and PACAP increased [Ca2+]i in fewer than 50% of folliculo-stellate cells but galanin and neurotensin did not influence [Ca2+]i in any of the folliculo-stellate cells tested. These results indicate that bradykinin and angiotensin II increase [Ca2+]i in folliculo-stellate cells by activating phospholipase C through B2 receptor and AT1 receptor, respectively, and that endothelin-1 and PACAP also increase [Ca2+]i in some folliculo-stellate cells.
Collapse
Affiliation(s)
- T Sudo
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
36
|
Blaustein MP, Golovina VA. Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci 2001; 24:602-8. [PMID: 11576675 DOI: 10.1016/s0166-2236(00)01891-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considerable evidence, including recent direct observations, suggest that endoplasmic reticulum (ER) Ca(2+) stores in neurons, glia, and other cell types, consists of spatially-distinct compartments that can be individually loaded and unloaded. In addition, sub-plasmalemmal ('junctional') components of the ER (jER) are functionally coupled to the overlying plasmalemmal (PL) microdomains in PL-jER units named 'PLasmERosomes'. The PL microdomains and the jER contain clusters of specific transport proteins that regulate Na(+) and Ca(2+) concentrations in the tiny cytosolic space between the PL and jER. This organization helps the ER to produce the many types of complex local and global Ca(2+) signals that are responsible for the simultaneous control of numerous neuronal and glial functions.
Collapse
Affiliation(s)
- M P Blaustein
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
37
|
Nash MS, Young KW, Challiss RA, Nahorski SR. Intracellular signalling. Receptor-specific messenger oscillations. Nature 2001; 413:381-2. [PMID: 11574876 DOI: 10.1038/35096643] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M S Nash
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
38
|
Messutat S, Heine M, Wicher D. Calcium-induced calcium release in neurosecretory insect neurons: fast and slow responses. Cell Calcium 2001; 30:199-211. [PMID: 11508999 DOI: 10.1054/ceca.2001.0227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.
Collapse
Affiliation(s)
- S Messutat
- Sächsische Akademie der Wissenschaften zu Leipzig, Erbertstrasse 1, 07743 Jena, Germany
| | | | | |
Collapse
|
39
|
Torralba S, Heath IB, Ottensmeyer FP. Ca(2+) shuttling in vesicles during tip growth in Neurospora crassa. Fungal Genet Biol 2001; 33:181-93. [PMID: 11495575 DOI: 10.1006/fgbi.2001.1282] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tip-growing organisms maintain an apparently essential tip-high gradient of cytoplasmic Ca(2+). In the oomycete Saprolegnia ferax, in pollen tubes and root hairs, the gradient is produced by a tip-localized Ca(2+) influx from the external medium. Such a gradient is normally dispensable for Neurospora crassa hyphae, which may maintain their Ca(2+) gradient by some form of internal recycling. We localized Ca(2+) in N. crassa hyphae at the ultrastructural level using two techniques (a) electron spectroscopic imaging of freeze-dried hyphae and (b) pyroantimoniate precipitation. The results of both methods support the presence of Ca(2+) in the wall vesicles and Golgi body equivalents, providing a plausible mechanism for the generation and maintenance of the gradient by Ca(2+) shuttling in vesicles to the apex, without exogenous Ca(2+) influx. Ca(2+) sequestration into the vesicles seems to be dependent on Ca(2+)-ATPases since cyclopiazonic acid, a specific inhibitor of Ca(2+) pumps, eliminated all Ca(2+) deposits from the vesicles of N. crassa.
Collapse
Affiliation(s)
- S Torralba
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | | |
Collapse
|
40
|
Wheldon LM, Nahorski SR, Willars GB. Inositol 1,4,5-trisphosphate-independent calcium signalling by platelet-derived growth factor in the human SH-SY5Y neuroblastoma cell. Cell Calcium 2001; 30:95-106. [PMID: 11440467 DOI: 10.1054/ceca.2001.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.
Collapse
Affiliation(s)
- L M Wheldon
- Department of Cell Physiology & Pharmacology, University of Leicester, UK.
| | | | | |
Collapse
|
41
|
Cancela JM. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol 2001; 63:99-117. [PMID: 11181950 DOI: 10.1146/annurev.physiol.63.1.99] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to control cell functions, hormones and neurotransmitters generate an amazing diversity of Ca2+ signals such as local and global Ca2+ elevations and also Ca2+ oscillations. In pancreatic acinar cells, cholecystokinin (CCK) stimulates secretion of digestive enzyme and promotes cell growth, whereas acetylcholine (ACh) essentially triggers enzyme secretion. Pancreatic acinar cells are a classic model for the study of CCK- and ACh-evoked specific Ca2+ signals. In addition to inositol 1,4,5 trisphosphate (IP3), recent studies have shown that cyclic ADPribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) release Ca2+ in pancreatic acinar cells. Moreover, it has also been shown that both ACh and CCK trigger Ca2+ spikes by co-activation of IP3 and ryanodine receptors but by different means. ACh uses IP3 and Ca2+, whereas CCK uses cADPr and NAADP. In addition, CCK activates phospholipase A2 and D. The concept emerging from these studies is that agonist-specific Ca2+ signals in a single target cell are generated by combination of different intracellular messengers.
Collapse
Affiliation(s)
- J M Cancela
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
42
|
Petersen OH, Tepikin A, Park MK. The endoplasmic reticulum: one continuous or several separate Ca(2+) stores? Trends Neurosci 2001; 24:271-6. [PMID: 11311379 DOI: 10.1016/s0166-2236(00)01787-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Ca2+ store and sink in the endoplasmic reticulum (ER) is important for Ca2+ signal integration and for conveyance of information in spatial and temporal domains. Textbooks regard the ER as one continuous network, but biochemical and biophysical studies revealed apparently discrete ER Ca2+ stores. Recent direct studies of ER lumenal Ca2+ movements show that this organelle system is one continuous Ca2+ store, which can function as a Ca2+ tunnel. The concept of a fully connected ER network is entirely compatible with evidence indicating that the distribution of Ca2+ -release channels in the ER membrane is discontinuous with clustering in certain localities.
Collapse
Affiliation(s)
- O H Petersen
- The MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, UK, L69 3BX.
| | | | | |
Collapse
|
43
|
Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H, Parys JB. Modulation of inositol 1,4,5-trisphosphate binding to the various inositol 1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose. Biochem Pharmacol 2001; 61:803-9. [PMID: 11274965 DOI: 10.1016/s0006-2952(01)00540-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three different genes encode the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), an intracellular Ca2+ channel involved in cellular Ca2+ signaling. The IP3-binding characteristics of the various IP3R isoforms differ, but until now no specific activators or inhibitors of IP3 binding have been described. We compared the effects of oxidizing reagents, in particular thimerosal, and of cyclic ADP-ribose (cADPR) on IP3 binding to the various IP3R isoforms. We therefore expressed the N-terminal 581 amino acids of the three IP(3)R isoforms as recombinant proteins in the soluble fraction of Escherichia coli (ligand-binding sites [lbs] 1, 2, and 3) as well as the full-length IP3R1 and IP3R3 in Spodoptera frugiperda (Sf9) insect cells. Thimerosal (100 microM) stimulated IP3 binding to lbs-1 (1.4-fold) and lbs-3 (2.5-fold), but had no effect on lbs-2. Thimerosal acted on lbs-1 and lbs-3 by decreasing the Kd for IP3 binding (from 46 +/- 4 nM to 20 +/- 2 nM and from 54 +/- 21 nM to 19 +/- 7 nM for lbs-1 and -3, respectively) without modifying the Bmax. Similarly, IP3 binding to microsomes of Sf9 insect cells overexpressing the full-length IP3R1 was 1.2-fold stimulated by thimerosal. Thimerosal, however, did not affect IP3 binding to Sf9-IP3R3 microsomes, suggesting that in situ thimerosal will only directly affect ligand binding to the type 1 isoform. cADPR (50 microM) stimulated IP3 binding to Sf9-IP3R1 microsomes (1.5-fold), but not to Sf9-IP3R3 microsomes. In addition, cADPR inhibited IP3 binding to lbs-1 and lbs-2 by decreasing the affinity for IP3 1.8- and 2.8-fold, respectively, while IP3 binding to lbs-3 was not affected. These results suggest that a regulatory site for cADPR is present in the ligand-binding domain of IP3R1 and 2, but not of IP3R3.
Collapse
Affiliation(s)
- S Vanlingen
- Laboratorium voor Fysiologie, K.U. Leuven, Campus Gasthuisberg O/N, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Burdakov D, Cancela JM, Petersen OH. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors. Cell Calcium 2001; 29:211-6. [PMID: 11162858 DOI: 10.1054/ceca.2000.0188] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different hormones and neurotransmitters, using Ca2+ as their intracellular messenger, can generate specific cytosolic Ca2+ signals in different parts of a cell. In mouse pancreatic acinar cells, cytosolic Ca2+ oscillations are triggered by activation of acetylcholine (ACh), cholecystokinin (CCK) and bombesin receptors. Low concentrations of these three agonists all induce local Ca(2+)spikes, but in the case of bombesin and CCK these spikes can also trigger global Ca2+ signals. Here we monitor cytosolic Ca2+ oscillations induced by low (2-5 pM) concentrations of bombesin and show that, like ACh- and CCK-induced oscillations, the bombesin-elicited responses are inhibited by ryanodine(50 microM). We then demonstrate that, like CCK- but unlike ACh-induced oscillations, the responses to bombesin are abolished by intracellular infusion of the cyclic ADP ribose (cADPr) antagonist 8-NH2-cADPr (20 microM). We conclude that in mouse pancreatic acinar cells, bombesin, CCK and ACh all produce local Ca2+ spikes by recruiting common oscillator units composed of ryanodine and inositol trisphosphate receptors. However, bombesin and CCK also recruit cADPr receptors, which may account for the global Ca2+ signals that can be evoked by these two agonists. Our new results indicate that each Ca2+ -mobilizing agonist, acting on mouse pancreatic acinar cells, recruits a unique combination of intracellular Ca2+ channels.
Collapse
Affiliation(s)
- D Burdakov
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | | | | |
Collapse
|
45
|
Young KW, Nahorski SR. Intracellular sphingosine 1-phosphate production: a novel pathway for Ca2+ release. Semin Cell Dev Biol 2001; 12:19-25. [PMID: 11162743 DOI: 10.1006/scdb.2000.0213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids such as sphingosine 1-phosphate (SPP) and sphingosylphosphorylcholine have long been recognized to possess Ca2+ mobilizing activity, yet to date little is known about their mechanism of action, or indeed their significance as Ca2+ mobilizing intracellular messengers. The recent discovery of extracellular receptors for the sphingolipids has further complicated the interpretation of many experiments in this field. This paper reviews the current literature in which molecular and pharmacological approaches have begun to uncover the signalling components associated with intracellular SPP production and Ca2+ mobilization. The functional significance of this novel Ca2+ release pathway is also discussed.
Collapse
Affiliation(s)
- K W Young
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
46
|
da Silva CP, Guse AH. Intracellular Ca(2+) release mechanisms: multiple pathways having multiple functions within the same cell type? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:122-33. [PMID: 11108956 DOI: 10.1016/s0167-4889(00)00089-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elevation of the cytosolic and nuclear Ca(2+) concentration is a fundamental signal transduction mechanism in almost all eukaryotic cells. Interestingly, three Ca(2+)-mobilising second messengers, D-myo-inositol 1,4,5-trisphosphate (InsP(3)), cyclic adenosine diphosphoribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP(+)) were identified in a phylogenetically wide range of different organisms. Moreover, in an as yet very limited number of cell types, sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T-lymphocytes, all three Ca(2+)-mobilising ligands have been shown to be involved in the generation of Ca(2+) signals. This situation raises the question why during evolution all three messengers have been conserved in the same cell type. From a theoretical point of view the following points may be considered: (i) redundant mechanisms ensuring intact Ca(2+) signalling even if one system does not work, (ii) the need for subcellularly localised Ca(2+) elevations to obtain a certain physiological response of the cell, and (iii) tight control of a physiological response of the cell by a temporal sequence of Ca(2+) signalling events. These theoretical considerations are compared to the current knowledge regarding the three messengers in sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T lymphocytes.
Collapse
Affiliation(s)
- C P da Silva
- University of Hamburg, University Clinic Hamburg-Eppendorf, Institute for Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, Grindelallee 117, D-20146, Hamburg, Germany
| | | |
Collapse
|
47
|
Giovannucci DR, Groblewski GE, Sneyd J, Yule DI. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. J Biol Chem 2000; 275:33704-11. [PMID: 10887192 DOI: 10.1074/jbc.m004278200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
48
|
Burdakov D, Galione A. Two neuropeptides recruit different messenger pathways to evoke Ca2+ signals in the same cell. Curr Biol 2000; 10:993-6. [PMID: 10985387 DOI: 10.1016/s0960-9822(00)00649-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.
Collapse
Affiliation(s)
- D Burdakov
- Department of Pharmacology, University of Oxford, UK
| | | |
Collapse
|
49
|
Berg I, Potter BV, Mayr GW, Guse AH. Nicotinic acid adenine dinucleotide phosphate (NAADP(+)) is an essential regulator of T-lymphocyte Ca(2+)-signaling. J Cell Biol 2000; 150:581-8. [PMID: 10931869 PMCID: PMC2175191 DOI: 10.1083/jcb.150.3.581] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Accepted: 06/15/2000] [Indexed: 11/22/2022] Open
Abstract
Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP(+)) dose-dependently stimulated intracellular Ca(2+)-signaling. At a concentration of 10 nM NAADP(+) evoked repetitive and long-lasting Ca(2+)-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca(2+)-peak followed by trains of smaller Ca(2+)-oscillations was observed. Higher concentrations of NAADP(+) (1 and 10 microM) gradually reduced the initial Ca(2+)-peak, and a complete self-inactivation of Ca(2+)-signals was seen at 100 microM. The effect of NAADP(+) was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4, 5-trisphosphate- and cyclic adenosine diphosphoribose-mediated Ca(2+)-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP(+). Most importantly, microinjection of a self-inactivating concentration of NAADP(+) completely abolished subsequent stimulation of Ca(2+)-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP(+) Ca(2+)-release system is essential for T-lymphocyte Ca(2+)-signaling.
Collapse
Affiliation(s)
- Ingeborg Berg
- Institute of Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, D-20146 Hamburg, Germany
| | - Barry V.L. Potter
- Wolfson Laboratory for Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Georg W. Mayr
- Institute of Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, D-20146 Hamburg, Germany
| | - Andreas H. Guse
- Institute of Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
50
|
Cancela JM, Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J 2000; 19:2549-57. [PMID: 10835353 PMCID: PMC212763 DOI: 10.1093/emboj/19.11.2549] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hormones and neurotransmitters mobilize Ca(2+) from the endoplasmic reticulum via inositol trisphosphate (IP(3)) receptors, but how a single target cell encodes different extracellular signals to generate specific cytosolic Ca(2+) responses is unknown. In pancreatic acinar cells, acetylcholine evokes local Ca(2+) spiking in the apical granular pole, whereas cholecystokinin elicits a mixture of local and global cytosolic Ca(2+) signals. We show that IP(3), cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) evoke cytosolic Ca(2+) spiking by activating common oscillator units composed of IP(3) and ryanodine receptors. Acetylcholine activation of these common oscillator units is triggered via IP(3) receptors, whereas cholecystokinin responses are triggered via a different but converging pathway with NAADP and cyclic ADP-ribose receptors. Cholecystokinin potentiates the response to acetylcholine, making it global rather than local, an effect mediated specifically by cyclic ADP-ribose receptors. In the apical pole there is a common early activation site for Ca(2+) release, indicating that the three types of Ca(2+) release channels are clustered together and that the appropriate receptors are selected at the earliest step of signal generation.
Collapse
Affiliation(s)
- J M Cancela
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK
| | | | | | | | | |
Collapse
|