1
|
Eldehna WM, El-Hamaky AA, Giovannuzzi S, Elsayed ZM, Alkabbani MA, Khaleel EF, Al-Sanea MM, Abo-Ashour MF, Elnaggar YSR, Nocentini A, Supuran CT, Tawfik HO. Development of isatin-functionalized benzenesulfonamides as novel carbonic anhydrase II and VII inhibitors with antiepileptic potential. Eur J Med Chem 2025; 292:117706. [PMID: 40318480 DOI: 10.1016/j.ejmech.2025.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Epilepsy continues to be a challenging neurological disorder with a partially understood etiology that necessitates novel therapeutic strategies. This study introduces isatin-functionalized benzenesulfonamides (5a-f and 7a-e) targeting carbonic anhydrase (CA) isoforms II and VII implicated in seizure mechanisms. The design exploits a one-tail approach, integrating a sulfonamide warhead for zinc coordination in the CA active site, a triazole linker (inspired by FDA-approved antiepileptic rufinamide), and an isatin-based tail. In vitro evaluation revealed potent inhibition of hCA II and VII, with sulfonamides 5c, 5e, 5f, 7a, and 7d showing notable activity. The anticonvulsant activity of five carbonic anhydrase inhibitors (5c, 5e, 5f, 7a, and 7d) was assessed using PTZ and pilocarpine-induced convulsions in mice. These compounds were selected based on their superior in vitro inhibitory potency against hCA II and VII isoforms, as reflected by their low nanomolar KI values. Among them, 5e and 7a exhibited the highest efficacy, achieving 100 % protection in the PTZ model and significantly delaying seizure onset in the pilocarpine model. These compounds also reduced seizure severity and improved survival rates, surpassing valproic acid's effectiveness. Additionally, biochemical evaluation revealed that both compounds restored hippocampal KCC2 and mTOR levels, suggesting their role in modulating neuronal excitability and ionic balance. Safety assessments, including Rotarod and biochemical toxicity tests, confirmed their favorable safety profile, supporting their potential as promising anticonvulsant candidates.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, 61421, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of Research & International Publishing Administration (RIPA), Pharos University in Alexandria, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
Fadaly WAA, Nemr MTM, Abd El-Hameed AM, Giovannuzzi S, Alkabbani MA, Hefina MM, Nocentini A, Mohamed MFA, Supuran CT, Eldehna WM, Zidan TH. Novel benzenesulfonamide derivatives linked to diaryl pyrazole tail as potential carbonic anhydrase II/VII inhibitors with anti-epileptic activity. Eur J Med Chem 2025; 291:117619. [PMID: 40249969 DOI: 10.1016/j.ejmech.2025.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Two new series of 1,2,3-triazole benzenesulfonamide derivatives 16a-f and imino-thiazolidinone benzenesulfonamide derivatives 19a-f with diaryl pyrazole tail were synthesized as carbonic anhydrase (CA) II, VII inhibitors and assessed for antiepileptic activity. All compounds were tested in vitro for their inhibition activity against the human (h) carbonic anhydrase I, II, and VII isoforms. Among these series, compounds 16b, 16d, 19b, and 19d exhibited exceptional inhibitory activity against hCA II, with Ki 10.9-47.1 nM, and hCA VII, with Ki 8.4-23.6 nM, while the two series did not show significant activity against hCA I. Furthermore, 16b, 16d, 19b, and 19d were tested against in vivo pilocarpine-induced seizure model, and they showed excellent neuroprotective activity; they delayed seizure onset, reduced seizure severity, and improved survival rates compared to the pilocarpine group, which highlighted their efficacy in regulating neuronal excitability through CA inhibition and chloride homeostasis. Also, hippocampal levels of KCC2 and mTOR were analyzed, as these markers are critical in regulating neuronal excitability and are closely linked to epilepsy. Noteworthy, Compounds 16d and 19b surpassed the standard anti-convulsant valproic acid in key parameters, underscoring their superior efficacy. In addition, they do not show any significant neurotoxic effects or alterations in liver and kidney function. Moreover, the results of in vitro cytotoxicity of compounds 16d and 19b against Vero cells indicate their safety at the doses given (IC50 = 59.7, 71.9 μM respectively) compared to acetazolamide (IC50 = 32.3 μM). Finally, molecular docking of sulfonamide derivatives with hCA II (PDB code: 2h4h) and hCA VII (PDB code: 3ml5) was performed.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt
| | - Abeer M Abd El-Hameed
- Chemistry Department, Faculty of Science, Taibah University, P.O. BOX 30002, Al-Madinah Al-Munawarah, 14177, Saudi Arabia
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed M Hefina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524, Sohag, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, 21648, Egypt.
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
3
|
Zhang Y, Zhang W, Yu L, Shi Y, Xu M, Wang H, Li C, Tian J. The TAAR1 Agonist PCC0105004 Regulates Amygdala Synaptic Plasticity to Alleviate Anxiety-Like Behaviors in Rats. Pharmacol Res Perspect 2025; 13:e70068. [PMID: 40186385 PMCID: PMC11971484 DOI: 10.1002/prp2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 04/07/2025] Open
Abstract
Anxiety disorder is a persistent, widespread, and intractable mood disorder, and the available pharmacotherapies have limited efficacy with significant side effects. Trace amine-associated receptor 1 (TAAR1) is an emerging drug target for neuropsychiatric disorders. This study examined the effects and underlying mechanisms of a novel TAAR1 agonist, PCC0105004, in a rat model of CUMS-induced anxiety-like behavior. The elevated zero maze and open field tests test were employed to evaluate the anti-anxiety-like activity of PCC0105004. PCC0105004 dose-dependently attenuated anxiety-like behaviors in rats without affecting spontaneous activity. Morphologically, PCC0104005 decreased the density of dendritic spines in the amygdala. For the mechanistic studies, whole-genome transcriptomic analysis revealed significant differences in the patterns of amygdala gene expression in the CUMS-induced anxiety rat model. These transcriptomic data were further confirmed by using RT-qPCR and western blotting, further revealing alterations associated with genes (Col1a1, DCN, Ewsr1) known to regulate synaptic plasticity, and PCC0105004 was able to reverse these changes. These results suggest that PCC0105004 is a promising anxiolytic candidate for pharmacotherapy of anxiety and warrants further examination and development.
Collapse
Affiliation(s)
- Yingtian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Wei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Linyao Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Yaoqin Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Min Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Hui Wang
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| |
Collapse
|
4
|
Demchuk AM, Esteves IM, McNaughton BL. Non-maternal nest building behaviours in mice predict bilateral dorsal hippocampal lesion extent. Behav Brain Res 2025; 480:115366. [PMID: 39631505 DOI: 10.1016/j.bbr.2024.115366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Lesions and pharmacological inactivation of the hippocampus have long been important tools for assessing the critical role of the hippocampus in learning and memory. Such studies often require a substantial investment of time and resources and, so, a tool for estimating lesion extent and screening animals prior to histological verification would be of considerable utility. Mice with bilateral hippocampal lesions have previously been observed to be deficient at nest building. Therefore, non-maternal nest construction was assessed as a predictor of the extent of hippocampal lesions. Mice with complete bilateral dorsal hippocampal lesions (comprising >50 % of the total volume of both hippocampi) exhibited severe deficits in nest building, failing to shred and/or gather nesting materials. In contrast, incomplete dorsal hippocampal lesions were not sufficient to cause impairments. Overall, among both male and female mice, nest construction score was highly positively correlated with the total volume of intact dorsal hippocampus. Importantly, reduced nesting behaviours could not be explained by gross motor deficits, which were evaluated by running performance on a non-motorized treadmill. Altogether, spontaneous nest building behaviour was confirmed to be a simple, cost-effective, and reliable predictor of bilateral dorsal hippocampal lesion extent in an otherwise healthy mouse strain.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; Department of Neurobiology and Behaviour, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Zimmerman MP, Kissinger ST, Edens P, Towers RC, Nareddula S, Nadew YY, Quinn CJ, Chubykin AA. Origin of visual experience-dependent theta oscillations. Curr Biol 2025; 35:87-99.e6. [PMID: 39657670 PMCID: PMC11720618 DOI: 10.1016/j.cub.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Visual experience gives rise to persistent theta oscillations in the mouse primary visual cortex (V1) that are specific to the familiar stimulus. Our recent work demonstrated the presence of these oscillations in higher visual areas (HVAs), where they are synchronized with V1 in a context-dependent manner. However, it remains unclear where these unique oscillatory dynamics originate. To investigate this, we conducted paired extracellular electrophysiological recordings in two visual thalamic nuclei (dorsal lateral geniculate nucleus [dLGN] and lateral posterior nucleus [LP]), the retrosplenial cortex (RSC), and the hippocampus (HPC). Oscillatory activity was not found in either of the thalamic nuclei, but a sparse ensemble of oscillating neurons was observed in both the RSC and HPC, similar to V1. To infer functional connectivity changes between the brain regions, we performed directed information analysis, which indicated a trend toward decreased connectivity in all V1-paired regions, with a consistent increase in V1 → V1 connections, suggesting that the oscillations appear to initiate independently within V1. Lastly, complete NMDA lesioning of the HPC did not abolish theta oscillations in V1 that emerge with familiarity. Altogether, these results suggest that (1) theta oscillations do not originate in the thalamus; (2) RSC exhibits theta oscillations, which may follow V1 given the temporal delay present; and (3) the HPC had a sparse group of neurons, with theta oscillations matching V1; however, lesioning suggests that these oscillations emerge independent of each other. Overall, our findings pave the way for future studies to determine the mechanisms by which diverse inputs and outputs shape this memory-related oscillatory activity in the brain.
Collapse
Affiliation(s)
- Michael P Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA; Department of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Samuel T Kissinger
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Paige Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Renee C Towers
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA
| | - Yididiya Y Nadew
- Department of Computer Sciences, Iowa State University, 2434 Osborn Dr., Ames, IA 50011, USA
| | - Christopher J Quinn
- Department of Computer Sciences, Iowa State University, 2434 Osborn Dr., Ames, IA 50011, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
7
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
8
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
9
|
Tan JW, An JJ, Deane H, Xu H, Liao GY, Xu B. Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions. Mol Psychiatry 2024; 29:1192-1204. [PMID: 38212372 PMCID: PMC11176039 DOI: 10.1038/s41380-023-02404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.
Collapse
Affiliation(s)
- Ji-Wei Tan
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Juan Ji An
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Hannah Deane
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Guey-Ying Liao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Baoji Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
10
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
11
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
12
|
AlHarthi A, Alasmari F, AlSharari SD, Alrasheed NM, Alshammari MA, Alshammari TK. Investigating Behavioral and Neuronal Changes in Adolescent Mice Following Prenatal Exposure to Electronic Cigarette (E-Cigarette) Vapor Containing Nicotine. Brain Sci 2023; 13:1417. [PMID: 37891786 PMCID: PMC10605868 DOI: 10.3390/brainsci13101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
A substantial percentage of pregnant smokers stop using traditional cigarettes and switch to alternative nicotine-related products such as e-cigarettes. Prenatal exposure to tobacco increases the risk of psychiatric disorders in children. Adolescence is a complex phase in which higher cognitive and emotional processes undergo maturation and refinement. In this study, we examined the behavioral and molecular effects of first-trimester prenatal exposure to e-cigarettes. Adult female mice were divided into normal air, vehicle, and 2.5%-nicotine-exposed groups. Our analyses indicated that the adolescents in the 2.5%-nicotine-exposed group exhibited a significant lack of normal digging behavior, elevated initial sucrose intake, and reduced recognition memory. Importantly, we identified a substantial level of nicotine self-administration in the 2.5%-nicotine-exposed group. At a molecular level, the mRNAs of metabotropic glutamate receptors and transporters in the nucleus accumbens were not altered. This previously undescribed work indicates that prenatal exposure to e-cigarettes might increase the risk of nicotine addiction during adolescence, reduce cognitive capacity, and alter normal adolescent behavior. The outcome will aid in translating research and assist healthcare practitioners in tackling addiction and mental issues caused by toxicological exposure. Further, it will inform relevant policymaking, such as recommended taxation, labeling e-cigarette devices with more detailed neurotoxic effects, and preventing their sale to pregnant women and adolescents.
Collapse
Affiliation(s)
- Alaa AlHarthi
- Pharmacology & Toxicology Graduate Program, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| |
Collapse
|
13
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Shan X, Contreras MP, Sawangjit A, Dimitrov S, Born J, Inostroza M. Rearing is critical for forming spatial representations in pre-weanling rats. Behav Brain Res 2023; 452:114545. [PMID: 37321311 DOI: 10.1016/j.bbr.2023.114545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Rearing, i.e., standing on the hind limbs in an upright posture, is part of a rat's innate exploratory motor program. Here, we examined in developing rats whether rearing is critical for the pup's capability to form spatial representations based on distal environmental cues. Pups (male) were tested at PD18, i.e., the first day they typically exhibit stable rearing, on a spatial habituation paradigm comprising a Familiarization session (with the pup exposed to an arena with a specific configuration of distal cues) followed, 3 h later, by a Test session where the pups were either re-exposed to the identical distal cue configuration (NoChange) or a changed configuration (DistalChange). In Experiment 1, rearing activity (rearing events, duration) decreased from Familiarization to Test in the NoChange pups but, remained elevated in the DistalChange group indicating that these pups recognized the distal novelty. Recognition of distal novelty was associated with increased c-Fos expression in hippocampal and medial prefrontal cortex (mPFC) areas, compared with NoChange pups. Analysis of GAD67+ cells suggested a parallel increase in excitation and inhibition specifically in prelimbic mPFC networks in response to distal cue changes. In Experiment 2, the pups were mechanically prevented from rearing while still seeing the distal cues during Familiarization. Rearing activity in the Test session of these pups did not differ between groups that were or were not exposed to a changed distal cue configuration at Test. The findings evidence a critical role of rearing for the emergence of allocentric representations integrating distal space during early development.
Collapse
Affiliation(s)
- Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - María Paz Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Keszycki R, Rodriguez G, Dunn JT, Locci A, Orellana H, Haupfear I, Dominguez S, Fisher DW, Dong H. Characterization of apathy-like behaviors in the 5xFAD mouse model of Alzheimer's disease. Neurobiol Aging 2023; 126:113-122. [PMID: 36989547 PMCID: PMC10106415 DOI: 10.1016/j.neurobiolaging.2023.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aβ42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aβ42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.
Collapse
Affiliation(s)
- Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hector Orellana
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Xiong Y, Wang B, Shang Y, Liu H, Zhan Z, Xu Q, Wang K, Zhang Z, Sun T. Glutamatergic neurons and GABAergic neurons of medial prefrontal cortex control hoarding-like behavior. Front Neurosci 2023; 17:1169927. [PMID: 37250409 PMCID: PMC10213654 DOI: 10.3389/fnins.2023.1169927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hoarding disorder (HD) is a chronic disease that begins early in life and does not remission unless timely treated. A large number of factors affect the presentation of HD symptoms, including a strong possessive psychology of objects and neurocognitive functioning. However, the underlying neural mechanisms of the excessive hoarding behavior in HD are still unknown. Using viral infections and brain slice electrophysiology recordings, we found that increased glutamatergic neuronal activity and decreased GABAergic neuronal activity in medial prefrontal cortex (mPFC) accelerated the hoarding-like behavior in mice. Respectively, chemogenetic manipulation to reduce glutamatergic neuronal activity or enhance GABAergic neuronal activity could improve the hoarding-like behavioral response. These results reveal a critical role played by alterations in the activity of specific types of neurons in hoarding-like behavior, and that targeted therapies for HD may be possible by precisely modulating these types of neurons.
Collapse
Affiliation(s)
- Yujie Xiong
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Beining Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunxia Shang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huan Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zihao Zhan
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Sun
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Layfield D, Sidell N, Blankenberger K, Newman EL. Hippocampal inactivation during rearing on hind legs impairs spatial memory. Sci Rep 2023; 13:6136. [PMID: 37061540 PMCID: PMC10105745 DOI: 10.1038/s41598-023-33209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory.
Collapse
Affiliation(s)
- Dylan Layfield
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Kevin Blankenberger
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| |
Collapse
|
18
|
Othman O, Marshall H, Masterson M, Winlow P, Gibson G, Ding Y, Pardon MC. Thymosin beta 4 prevents systemic lipopolysaccharide-induced plaque load in middle-age APP/PS1 mice. Int Immunopharmacol 2023; 117:109951. [PMID: 36878045 DOI: 10.1016/j.intimp.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Lipopolysaccharide (LPS) produced by the gut during systemic infections and inflammation is thought to contribute to Alzheimer's disease (AD) progression. Since thymosin beta 4 (Tβ4) effectively reduces LPS-induced inflammation in sepsis, we tested its potential to alleviate the impact of LPS in the brain of the APPswePS1dE9 mouse model of AD (APP/PS1) and wildtype (WT) mice. 12.5-month-old male APP/PS1 mice (n = 30) and their WT littermates (n = 29) were tested for baseline food burrowing performance, spatial working memory and exploratory drive in the spontaneous alternation and open-field tests, prior to being challenged with LPS (100ug/kg, i.v.) or its vehicle phosphate buffered saline (PBS). Tβ4 (5 mg/kg, i.v.) or PBS, was administered immediately following and at 2 and 4 h after the PBS or LPS challenge, and then once daily for 6 days (n = 7-8). LPS-induced sickness was assessed though monitoring of changes in body weight and behaviour over a 7-day period. Brains were collected for the determination of amyloid plaque load and reactive gliosis in the hippocampus and cortex. Treatment with Tβ4 alleviated sickness symptoms to a greater extent in APP/PS1 than in WT mice by limiting LPS-induced weight loss and inhibition of food burrowing behaviour. It prevented LPS-induced amyloid burden in APP/PS1 mice but increased astrocytic and microglial proliferation in the hippocampus of LPS-treated WT mice. These data show that Tβ4 can alleviate the adverse effects of systemic LPS in the brain by preventing exacerbation of amyloid deposition in AD mice and by inducing reactive microgliosis in aging WT mice.
Collapse
Affiliation(s)
- Othman Othman
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Hayley Marshall
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Mitchell Masterson
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Poppy Winlow
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Graham Gibson
- Nottingham University Hospitals NHS Trust, Department of Histopathology, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yuchun Ding
- School of Computer Sciences, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom
| | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
19
|
Corder KM, Hoffman JM, Sogorovic A, Austad SN. Behavioral comparison of the C57BL/6 inbred mouse strain and their CB6F1 siblings. Behav Processes 2023; 207:104836. [PMID: 36720324 PMCID: PMC10184519 DOI: 10.1016/j.beproc.2023.104836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
A large portion of basic biomedical research studies are conducted using genetically defined, inbred mouse strains. The C57BL/6 mouse strain is the most widely used genetic background in current rodent research. The rationale for using inbred strains is that all individuals are genetically identical with minimal phenotypic variation, allowing for more statistically powerful analyses. F1 hybrids between two inbred strains are also genetically identical to one another but are heterozygous at every locus at which the parental strains differ rather than homozygous. Both theoretical and empirical evidence suggests that this heterozygosity in F1 hybrids allow for potentially greater resilience in response to the inevitable stresses of laboratory environments. The purpose of this study was to characterize the differences in commonly used tests of physical performance (forelimb grip strength and rotarod) and anxiety-like behavior between the F1 hybrids created from BALB/c females mated to C57BL/6 males (called CB6F1 mice) and one of its parental strains, C57BL/6. We used a natural cross-fostering breeding scheme to minimize maternal care effects and emphasize the effects of genetic differences. We found significant correlations between anxiety-like behavioral measures and physical performance measures which are not traditionally associated with anxiety-like behavior, and which differ between strains. Findings from this study should be taken into consideration when designing behavioral studies and choosing model organisms.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA; Samford University, Department of Biological and Environmental Sciences, 800 Lakeshore Dr, Homewood, AL 35229.
| | - Jessica M Hoffman
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| | - Anamarija Sogorovic
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| | - Steven N Austad
- University of Alabama at Birmingham, Department of Biology, 1300 University Blvd, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Senesi M, Lewis V, Adlard PA, Finkelstein DI, Kim JH, Collins SJ. Tailored behavioural tests reveal early and progressive cognitive deficits in M1000 prion disease. Neurobiol Dis 2023; 180:106075. [PMID: 36914075 DOI: 10.1016/j.nbd.2023.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Prion diseases are pathogenically linked to the normal cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc accumulation underpinning both transmission and neurotoxicity. Despite achieving this canonical understanding, however fundamental questions remain incompletely resolved, including the level of pathophysiological overlap between neurotoxic and transmitting species of PrPSc and the temporal profiles of their propagation. To further investigate the likely time of occurrence of significant levels of neurotoxic species during prion disease development, the well characterised in vivo M1000 murine model was employed. Following intracerebral inoculation, detailed serial cognitive and ethological testing at specified time points suggested subtle transition to early symptomatic disease from ∼50% of the overall disease course. In addition to observing a chronological order for impaired behaviours, different behavioural tests also showed distinctive profiles of evolving cognitive impairments with the Barnes maze demonstrating a relatively simple linear worsening of spatial learning and memory over an extended period while in contrast a conditioned fear memory paradigm previously untested in murine prion disease demonstrated more complex alterations during disease progression. These observations support the likely production of neurotoxic PrPSc from at least just prior to the mid-point of murine M1000 prion disease and illustrate the likely need to tailor the types of behavioural testing across the time course of disease progression for optimal detection of cognitive deficits.
Collapse
Affiliation(s)
- Matteo Senesi
- Department of Medicine, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Victoria Lewis
- Department of Medicine, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Paul A Adlard
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - David I Finkelstein
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Jee Hyun Kim
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Steven J Collins
- Department of Medicine, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|
22
|
Consoli DC, Spitznagel BD, Owen BM, Kang H, Williams Roberson S, Pandharipande P, Wesley Ely E, Nobis WP, Bastarache JA, Harrison FE. Altered EEG, disrupted hippocampal long-term potentiation and neurobehavioral deficits implicate a delirium-like state in a mouse model of sepsis. Brain Behav Immun 2023; 107:165-178. [PMID: 36243287 PMCID: PMC10010333 DOI: 10.1016/j.bbi.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.
Collapse
Affiliation(s)
- David C Consoli
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | - Benjamin M Owen
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | | | - E Wesley Ely
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - William P Nobis
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Fiona E Harrison
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
Oliver VL, Pang DSJ. Pain Recognition in Rodents. Vet Clin North Am Exot Anim Pract 2023; 26:121-149. [PMID: 36402478 DOI: 10.1016/j.cvex.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Available methods for recognizing and assessing pain in rodents have increased over the last 10 years, including the development of validated pain assessment scales. Much of this work has been driven by the needs of biomedical research, and there are specific challenges to applying these scales in the clinical environment. This article provides an introduction to pain assessment scale validation, reviews current methods of pain assessment, highlighting their strengths and weaknesses, and makes recommendations for assessing pain in a clinical environment.
Collapse
Affiliation(s)
- Vanessa L Oliver
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Animal Health Unit, VP Research, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Daniel S J Pang
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
24
|
Kater MSJ, Huffels CFM, Oshima T, Renckens NS, Middeldorp J, Boddeke EWGM, Smit AB, Eggen BJL, Hol EM, Verheijen MHG. Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease. Brain Behav Immun 2023; 107:225-241. [PMID: 36270437 DOI: 10.1016/j.bbi.2022.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.
Collapse
Affiliation(s)
- Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek S Renckens
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Lipp HP, Wolfer DP. Behavior is movement only but how to interpret it? Problems and pitfalls in translational neuroscience-a 40-year experience. Front Behav Neurosci 2022; 16:958067. [PMID: 36330050 PMCID: PMC9623569 DOI: 10.3389/fnbeh.2022.958067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 09/19/2023] Open
Abstract
Translational research in behavioral neuroscience seeks causes and remedies for human mental health problems in animals, following leads imposed by clinical research in psychiatry. This endeavor faces several problems because scientists must read and interpret animal movements to represent human perceptions, mood, and memory processes. Yet, it is still not known how mammalian brains bundle all these processes into a highly compressed motor output in the brain stem and spinal cord, but without that knowledge, translational research remains aimless. Based on some four decades of experience in the field, the article identifies sources of interpretation problems and illustrates typical translational pitfalls. (1) The sensory world of mice is different. Smell, hearing, and tactile whisker sensations dominate in rodents, while visual input is comparatively small. In humans, the relations are reversed. (2) Mouse and human brains are equated inappropriately: the association cortex makes up a large portion of the human neocortex, while it is relatively small in rodents. The predominant associative cortex in rodents is the hippocampus itself, orchestrating chiefly inputs from secondary sensorimotor areas and generating species-typical motor patterns that are not easily reconciled with putative human hippocampal functions. (3) Translational interpretation of studies of memory or emotionality often neglects the ecology of mice, an extremely small species surviving by freezing or flight reactions that do not need much cognitive processing. (4) Further misinterpretations arise from confounding neuronal properties with system properties, and from rigid mechanistic thinking unaware that many experimentally induced changes in the brain do partially reflect unpredictable compensatory plasticity. (5) Based on observing hippocampal lesion effects in mice indoors and outdoors, the article offers a simplistic general model of hippocampal functions in relation to hypothalamic input and output, placing hypothalamus and the supraspinal motor system at the top of a cerebral hierarchy. (6) Many translational problems could be avoided by inclusion of simple species-typical behaviors as end-points comparable to human cognitive or executive processing, and to rely more on artificial intelligence for recognizing patterns not classifiable by traditional psychological concepts.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Faculty of Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone–Pyridylhydrazone Copper(II) Complex. Int J Mol Sci 2022; 23:ijms231810722. [PMID: 36142627 PMCID: PMC9505367 DOI: 10.3390/ijms231810722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Neuroinflammation has a major role in several brain disorders including Alzheimer’s disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone–pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer’s disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.
Collapse
|
27
|
Loh MK, Ferrara NC, Torres JM, Rosenkranz JA. Medial orbitofrontal cortex and nucleus accumbens mediation in risk assessment behaviors in adolescents and adults. Neuropsychopharmacology 2022; 47:1808-1815. [PMID: 35039643 PMCID: PMC9372086 DOI: 10.1038/s41386-022-01273-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
Risk assessment behaviors are necessary for gathering risk information and guiding decision-making. Risky decision-making heightens during adolescence, possibly as a result of low risk awareness and an increase in sensitivity to reward-associated cues and experiences. Higher adolescent engagement in high-risk behaviors may be, in part, due to developing circuits that contribute to risk assessment behaviors. Nucleus accumbens (NAc) activity is linked to risky decision-making and receives inputs carrying sensory and emotional information. Namely, the medial orbitofrontal cortex (MO) contributes to behavior guided by reward probability and sends direct projections to the NAc (MO→NAc), which may permit risk assessment in a mature circuit. Here, we evaluated risk assessment behaviors in adult and adolescent rats during elevated plus maze (EPM) exploration, including stretch and attend postures, head dips, and rears. We found that adolescents exhibited fewer EPM risk assessment behaviors than adults. We also quantified MO→NAc projections using a fluorescent anterograde tracer, Fluoro-Ruby, in both age groups. Labeled MO→NAc pathways exhibited greater total fluorescence in adults than in adolescents, indicating MO→NAc fibers increase over development. Using a disconnection approach to measure the contribution of the MO-NAc pathway in adults, we found that ipsilateral inactivation of the MO-NAc did not alter risk assessment behavior; however, MO-NAc disconnection reduced the number of stretch-and-attend postures. Together, this work suggests that the development of MO-NAc pathways can contribute to age-dependent differences in risk assessment.
Collapse
Affiliation(s)
- Maxine K Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jocelyn M Torres
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
28
|
Singh A, Bodakhe SH. Resveratrol attenuates behavioural impairment associated with learning and memory in HFD-STZ induced diabetic rats. Br J Pharmacol 2022; 179:4673-4691. [PMID: 35710260 DOI: 10.1111/bph.15895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Literature have indicated that a high-fat diet (HFD) is a common risk factor for type 2 diabetes mellitus (T2DM) and its associated cognitive-impairments. Mounting evidence supports that, in the diabetic animal model, resveratrol (RSV, SIRT1-modulator) can regulate the fasting glucose and antioxidant levels, as well as the lipid profile, and may alleviate the cognitive-dysfunction associated with diabetes. EXPERIMENTAL APPROACH Albino rats were fed 60% HFD-STZ (45mg/kg,i.p, single dose) to induce T2DM so that the experimental T2DM animal model could be used. After 14 weeks of the animals being in a confirmed diabetic condition, they were divided into various groups and treated with metformin(200mg/kg,i.p.) and RSV(50 and 100 mg/kg,i.p.) for four weeks. A multimodal approach involving oxidative-nitroso-stress, SIRT1, TGF-β1 levels, inflammation, cholinergic activity (serum, hippocampus, cerebral cortex), and a battery of behavioural studies associated with learning-memory were performed during and after the experimental-protocol. KEY RESULTS The administration of RSV significantly attenuated the increased glucose levels (pre, and post-prandial), impaired glucose tolerance, HbA1c, and decreased the body weights of the T2DM rats. Moreover, RSV ameliorated the impaired learning and memory-associated with increased SIRT1 and the decreased TGF-β1, TNF-α, oxidative-nitroso-stress and cholinergic activities in the serum and the brains of the T2DM-animals. CONCLUSION AND IMPLICATION Our investigations demonstrate that SIRT1-modulation can inter-play with TGF-β1 signalling, as well as mitigate hyperglycaemia and subsequent learning-memory impairments, in the T2DM-animals. Moreover, our study showed that novel therapeutic-targets, including TGF-β1, may add to our knowledge of RSV when used in the treatment of impaired memory-associated with diabetes.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India.,Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
29
|
Yeates DCM, Leavitt D, Sujanthan S, Khan N, Alushaj D, Lee ACH, Ito R. Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict. Nat Commun 2022; 13:3349. [PMID: 35688838 PMCID: PMC9187740 DOI: 10.1038/s41467-022-31082-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The ability to resolve an approach-avoidance conflict is critical to adaptive behavior. The ventral CA3 (vCA3) and CA1 (vCA1) subfields of the ventral hippocampus (vHPC) have been shown to facilitate avoidance and approach behavior, respectively, in the face of motivational conflict, but the neural circuits by which this subfield-specific regulation is implemented is unknown. We demonstrate that two distinct pathways from these subfields to lateral septum (LS) contribute to this divergent control. In Long-Evans rats, chemogenetic inhibition of the vCA3- LS caudodorsal (cd) pathway potentiated approach towards a learned conflict-eliciting stimulus, while inhibition of the vCA1-LS rostroventral (rv) pathway potentiated approach non-specifically. Additionally, vCA3-LScd inhibited animals were less hesitant to explore food during environmental uncertainty, while the vCA1- LSrv inhibited animals took longer to initiate food exploration. These findings suggest that the vHPC influences multiple behavioral systems via differential projections to the LS, which in turn send inhibitory projections to motivational centres of the brain.
Collapse
Affiliation(s)
- Dylan C M Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Dallas Leavitt
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Sajeevan Sujanthan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, ON, M6A 2E1, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
30
|
Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022; 70:1630-1651. [PMID: 35535571 DOI: 10.1002/glia.24185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Neuron-microglia communication through the Cx3cr1-Cx3cl1 axis is essential for the development and refinement of neural circuits, which determine their function into adulthood. In the present work we set out to extend the behavioral characterization of Cx3cr1-/- mice evaluating innate behaviors and spatial navigation, both dependent on hippocampal function. Our results show that Cx3cr1-deficient mice, which show some changes in microglial and synaptic terminals morphology and density, exhibit alterations in activities of daily living and in the rapid encoding of novel spatial information that, nonetheless, improves with training. A neural substrate for these cognitive deficiencies was found in the form of synaptic dysfunction in the CA3 region of the hippocampus, with a marked impact on the mossy fiber (MF) pathway. A network analysis of the CA3 microcircuit reveals the effect of these synaptic alterations on the functional connectivity among CA3 neurons with diminished strength and topological reorganization in Cx3cr1-deficient mice. Neonatal population activity of the CA3 region in Cx3cr1-deficient mice shows a marked reorganization around the giant depolarizing potentials, the first form of network-driven activity of the hippocampus, suggesting that alterations found in adult subjects arise early on in postnatal development, a critical period of microglia-dependent neural circuit refinement. Our results show that interruption of the Cx3cr1-Cx3cl1/neuron-microglia axis leads to changes in CA3 configuration that affect innate and learned behaviors.
Collapse
Affiliation(s)
- Felipe Antonio Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
31
|
Arif M, Rauf K, Rehman NU, Tokhi A, Ikram M, Sewell RD. 6-Methoxyflavone and Donepezil Behavioral Plus Neurochemical Correlates in Reversing Chronic Ethanol and Withdrawal Induced Cognitive Impairment. Drug Des Devel Ther 2022; 16:1573-1593. [PMID: 35665194 PMCID: PMC9160976 DOI: 10.2147/dddt.s360677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
- Correspondence: Khalid Rauf, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan, Tel +923459824468, Email
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Robert D Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
32
|
Ernst L, Kümmecke AM, Zieglowski L, Liu W, Schulz M, Czigany Z, Tolba RH. Severity Assessment in Rats Undergoing Subarachnoid Hemorrhage Induction by Endovascular Perforation or Corresponding Sham Surgery. Eur Surg Res 2022; 64:120-138. [PMID: 35385845 PMCID: PMC9808704 DOI: 10.1159/000524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Animal models for preclinical research of subarachnoid hemorrhage (SAH) are widely used as much of the pathophysiology remains unknown. However, the burden of these models inflicted on the animals is not well characterized. The European directive requires severity assessment-based allocation to categories. Up to now, the classification into predefined categories is rather subjective and often without underlying scientific knowledge. We therefore aimed at assessing the burden of rats after SAH or the corresponding sham surgery to provide a scientific assessment. METHODS We performed a multimodal approach, using different behavior tests, clinical and neurological scoring, and biochemical markers using the common model for SAH of intracranial endovascular filament perforation in male Wistar rats. Up to 7 days after surgery, animals with SAH were compared to sham surgery and to a group receiving only anesthesia and analgesia. RESULTS Sham surgery (n = 15) and SAH (n = 16) animals showed an increase in the clinical score the first days after surgery, indicating clinical deterioration, while animals receiving only anesthesia without surgery (n = 5) remained unaffected. Body weight loss occurred in all groups but was more pronounced and statistically significant only after surgery. The analysis of burrowing, open field (total distance, erections), balance beam, and neuroscore showed primarily an effect of the surgery itself in sham surgery and SAH animals. Only concerning balance beam and neuroscore, a difference was visible between sham surgery and SAH. The outcome of the analysis of systemic and local inflammatory parameters and of corticosterone in blood and its metabolites in feces was only robust in animals suffering from larger bleedings. Application of principal component analysis resulted in a clear separation of sham surgery and SAH animals from their respective baseline as well as from the anesthesia-only group at days 1 and 3, with the difference between sham surgery and SAH being not significant. DISCUSSION/CONCLUSION To our knowledge, we are the first to publish detailed clinical score sheet data combined with advanced behavioral assessment in the endovascular perforation model for SAH in rats. The tests chosen here clearly depict an impairment of the animals within the first days after surgery and are consequently well suited for assessment of the animals' suffering in the model. A definitive classification into one of the severity categories named by the EU directive is yet pending and has to be performed in the future by including the assessment data from different neurological and nonneurological disease models.
Collapse
Affiliation(s)
- Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Maria Kümmecke
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Leonie Zieglowski
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenjia Liu
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Mareike Schulz
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoltan Czigany
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
A53T α-synuclein induces neurogenesis impairment and cognitive dysfunction in line M83 transgenic mice and reduces the proliferation of embryonic neural stem cells. Brain Res Bull 2022; 182:118-129. [PMID: 35182691 DOI: 10.1016/j.brainresbull.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022]
Abstract
Dementia with Lewy body (DLB) is the second most common degenerative dementia after Alzheimer's disease. There is no therapeutic drug for DLB currently. It's urgent for us to understand the pathological mechanism of dementia mediated by α-synuclein, as the main component of Lewy body. Here, we found that the A53T α-synuclein transgenic mice showed decreased nesting behavior starting from the age of 1 month. The results in Morris water maze test suggested that the 6-month-old mice had learning memory deficits. Golgi staining indicated that the apical neuronal dendritic spines of hippocampal CA1 neurons were significantly reduced in 6-month-old homozygotes and heterozygotes, although MAP2 protein expression revealed no significant difference in the hippocampus among wild-type mice, homozygotes and heterozygotes. In vitro, we proved mutant A53T α-synuclein decreased the dendritic branches and dendrite spines on the embryonic mice hippocampal neurons. Furthermore, Ki67 immunofluorescence staining identified that the Ki67-positive cells of the hippocampal dentate gyrus and subventricular zone were significantly reduced in 6-month-old homozygotes and heterozygotes, compared with age-matched wild-type mice. Similarly, when 6-month-old mice were injected with BrdU for one day, the immunostaining results also confirmed that BrdU-positive cells were significantly reduced in homozygous and heterozygous mice. Lastly, we transfected primary embryonic hippocampal neural stem cells with lentivirus vector expressing A53T α-synuclein in vitro. Both BrdU staining and Western blotting showed that A53T α-synuclein significantly decreased the proliferation of embryonic neural stem cells. Taken together, these data suggest that A53T α-synuclein can induce adult neurogenesis impairment and cognitive dysfunction. The A53T α-synuclein transgenic mice may be used as an animal model for DLB. Promoting adult neurogenesis may be a promising approach to treat DLB pathogenesis.
Collapse
|
34
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
35
|
Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO 2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3662-3674. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aβ-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yingfeng Mu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaoyan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Deqin Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
36
|
Bhatia S, Arslan E, Rodriguez-Hernandez L, Bonin R, Wells PG. DNA damage and repair and epigenetic modification in the role of oxoguanine glycosylase 1 (OGG1) in brain development. Toxicol Sci 2022; 187:93-111. [PMID: 35038743 DOI: 10.1093/toxsci/kfac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) repairs the predominant reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG). Human OGG1 polymorphisms resulting in reduced DNA repair associate with an increased risk for disorders like cancer and diabetes, but the role of OGG1 in brain development is unclear. Herein, we show that Ogg1 knockout mice at 2-3 months of age exhibit enhanced gene- and sex-dependent DNA damage (strand breaks) and decreased epigenetic DNA methylation marks (5-methylcytosine, 5-hydroxymethylcytosine), both of which were associated with increased cerebellar calbindin levels, reduced hippocampal postsynaptic function, altered body weight with age and disorders of brain function reflected in behavioural tests for goal-directed repetitive behaviour, anxiety and fear, object recognition and spatial memory, motor coordination and startle response. These results suggest that OGG1 plays an important role in normal brain development, possibly via both its DNA repair activity and its role as an epigenetic modifier, with OGG1 deficiencies potentially contributing to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Eliyas Arslan
- Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Luis Rodriguez-Hernandez
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert Bonin
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Impact of the Age of Cecal Material Transfer Donors on Alzheimer’s Disease Pathology in 5xFAD Mice. Microorganisms 2021; 9:microorganisms9122548. [PMID: 34946148 PMCID: PMC8708188 DOI: 10.3390/microorganisms9122548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder affecting around 30 million patients worldwide. The predominant sporadic variant remains enigmatic as the underlying cause has still not been identified. Since efficient therapeutic treatments are still lacking, the microbiome and its manipulation have been considered as a new, innovative approach. 5xFAD Alzheimer’s disease model mice were subjected to one-time fecal material transfer after antibiotics-treatment using two types of inoculation: material derived from the caecum of age-matched (young) wild type mice or from middle aged, 1 year old (old) wild type mice. Mice were profiled after transfer for physiological parameters, microbiome, behavioral tasks, and amyloid deposition. A single time transfer of cecal material from the older donor group established an aged phenotype in the recipient animals as indicated by elevated cultivatable fecal Enterobacteriaceae and Lactobacillaceae representative bacteria, a decreased Firmicutes amount as assessed by qPCR, and by increased levels of serum LPS binding protein. While behavioral deficits were not accelerated, single brain regions (prefrontal cortex and dentate gyrus) showed higher plaque load after transfer of material from older animals. We could demonstrate that the age of the donor of cecal material might affect early pathological hallmarks of Alzheimer’s disease. This could be relevant when considering new microbiome-based therapies for this devastating disorder.
Collapse
|
38
|
Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun 2021; 98:13-27. [PMID: 34391817 DOI: 10.1016/j.bbi.2021.08.212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1β), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.
Collapse
|
39
|
Zhao D, Lu Y, Yu G. Effects of on behavior and blood-brain barrier in Alzheimer's disease mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:553-560. [PMID: 34986530 PMCID: PMC8732245 DOI: 10.3724/zdxbyxb-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effects of on behavior and blood brain barrier (BBB) in Alzheimer's disease mice. Thirty-eight 4-month-old APP/PS1 double transgenic mice were randomly divided into three groups: model group, low-dose group and high-dose group. Saline, and 12 g·kg·d were given to each group by continuous gavage once a day for respectively. The changes in activities of daily live and fear conditioning memory behavior of mice were examined by nesting behavior test and fear conditioning test, respectively. The β-amyloid protein (Aβ) depositions in cortex and hippocampal CA1 area of mice were detected by thioflavin T staining. The CD34 and activities fibrinogen (Fib) immunofluorescence double staining were used to determine the vascular endothelial integrity and BBB exudation. Compared with model mice, activities of daily live were significantly improved in low-dose and high-dose groups (both <0.01), the fear memory ability was significantly increased in high-dose group (<0.01). The amount of Aβ deposition in cortex and hippocampal CA1 decreased significantly in high-dose group, the area ratio decreased significantly; the area ratio of Aβ deposition in hippocampal CA1 region in low-dose group also decreased (all <0.05). The proportions of CD34 positive area of cortex in low and high dose groups increased, the percentage of fibrinogen positive area decreased (all <0.05). The proportion of CD34 positive area in hippocampal CA1 region in high-dose group was significantly increased, the percentage of fibrinogen positive area decreased significantly (both <0.05). especially high-dose can improve the activities of daily live and fear conditioning memory function of APP/PS1 mice, reduce the deposition of Aβ in brain. The mechanism may be related to the reduction of BBB permeability and the protection of the integrity of BBB.
Collapse
Affiliation(s)
- Dapeng Zhao
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunwei Lu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guran Yu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
40
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
41
|
Olson B, Zhu X, Norgard MA, Diba P, Levasseur PR, Buenafe AC, Huisman C, Burfeind KG, Michaelis KA, Kong G, Braun T, Marks DL. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun 2021; 97:102-118. [PMID: 34245812 PMCID: PMC8453133 DOI: 10.1016/j.bbi.2021.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lipocalin 2 (LCN2) is a pleiotropic molecule that is induced in the central nervous system (CNS) in several acute and chronic pathologies. The acute induction of LCN2 evolved as a beneficial process, aimed at combating bacterial infection through the sequestration of iron from pathogens, while the role of LCN2 during chronic, non-infectious disease remains unclear, and recent studies suggest that LCN2 is neurotoxic. However, whether LCN2 is sufficient to induce behavioral and cognitive alterations remains unclear. In this paper, we sought to address the role of cerebral LCN2 on cognition in both acute and chronic settings. We demonstrate that LCN2 is robustly induced in the CNS during both acute and chronic inflammatory conditions, including LPS-based sepsis and cancer cachexia. In vivo, LPS challenge results in a global induction of LCN2 in the central nervous system, while cancer cachexia results in a distribution specific to the vasculature. Similar to these in vivo observations, in vitro modeling demonstrated that both glia and cerebral endothelium produce and secrete LCN2 when challenged with LPS, while only cerebral endothelium secrete LCN2 when challenged with cancer-conditioned medium. Chronic, but not short-term, cerebral LCN2 exposure resulted in reduced hippocampal neuron staining intensity, an increase in newborn neurons, microglial activation, and increased CNS immune cell infiltration, while gene set analyses suggested these effects were mediated through melanocortin-4 receptor independent mechanisms. RNA sequencing analyses of primary hippocampal neurons revealed a distinct transcriptome associated with prolonged LCN2 exposure, and ontology analysis was suggestive of altered neurite growth and abnormal spatial learning. Indeed, LCN2-treated hippocampal neurons display blunted neurite processes, and mice exposed to prolonged cerebral LCN2 levels experienced a reduction in spatial reference memory as indicated by Y-maze assessment. These findings implicate LCN2 as a pathologic mediator of cognitive decline in the setting of chronic disease.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA, Medical Scientist Training Program, Oregon Health & Science University, Portland, OR USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA, Medical Scientist Training Program, Oregon Health & Science University, Portland, OR USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA
| | - Abby C Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA
| | - Christian Huisman
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA, Medical Scientist Training Program, Oregon Health & Science University, Portland, OR USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR USA, Medical Scientist Training Program, Oregon Health & Science University, Portland, OR USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Theodore Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
42
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
43
|
Kopp ND, Nygaard KR, Liu Y, McCullough KB, Maloney SE, Gabel HW, Dougherty JD. Functions of Gtf2i and Gtf2ird1 in the developing brain: transcription, DNA binding and long-term behavioral consequences. Hum Mol Genet 2021; 29:1498-1519. [PMID: 32313931 DOI: 10.1093/hmg/ddaa070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gtf2ird1 and Gtf2i are two transcription factors (TFs) among the 28 genes deleted in Williams syndrome, and prior mouse models of each TF show behavioral phenotypes. Here we identify their genomic binding sites in the developing brain and test for additive effects of their mutation on transcription and behavior. GTF2IRD1 binding targets were enriched for transcriptional and chromatin regulators and mediators of ubiquitination. GTF2I targets were enriched for signal transduction proteins, including regulators of phosphorylation and WNT. Both TFs are highly enriched at promoters, strongly overlap CTCF binding and topological associating domain boundaries and moderately overlap each other, suggesting epistatic effects. Shared TF targets are enriched for reactive oxygen species-responsive genes, synaptic proteins and transcription regulators such as chromatin modifiers, including a significant number of highly constrained genes and known ASD genes. We next used single and double mutants to test whether mutating both TFs will modify transcriptional and behavioral phenotypes of single Gtf2ird1 mutants, though with the caveat that our Gtf2ird1 mutants, like others previously reported, do produce low levels of a truncated protein product. Despite little difference in DNA binding and transcriptome-wide expression, homozygous Gtf2ird1 mutation caused balance, marble burying and conditioned fear phenotypes. However, mutating Gtf2i in addition to Gtf2ird1 did not further modify transcriptomic or most behavioral phenotypes, suggesting Gtf2ird1 mutation alone was sufficient for the observed phenotypes.
Collapse
Affiliation(s)
- Nathan D Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Xie R, Wang Z, Liu T, Xiao R, Lv K, Wu C, Luo Y, Cai Y, Fan X. AAV Delivery of shRNA Against TRPC6 in Mouse Hippocampus Impairs Cognitive Function. Front Cell Dev Biol 2021; 9:688655. [PMID: 34327201 PMCID: PMC8313999 DOI: 10.3389/fcell.2021.688655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Transient Receptor Potential Canonical 6 (TRPC6) has been suggested to be involved in synapse function and contribute to hippocampal-dependent cognitive processes. Gene silencing of TRPC6 was performed by injecting adeno-associated virus (AAV) expressing TRPC6-specific shRNA (shRNA-TRPC6) into the hippocampal dentate gyrus (DG). Spatial learning, working memory and social recognition memory were impaired in the shRNA-TRPC6 treated mice compared to control mice after 4 weeks. In addition, gene ontology (GO) analysis of RNA-sequencing revealed that viral intervention of TRPC6 expression in DG resulted in the enrichment of the process of synaptic transmission and cellular compartment of synaptic structure. KEGG analysis showed PI3K-Akt signaling pathway were significantly down-regulated. Furthermore, the shRNA-TRPC6 treatment reduced dendritic spines of DG granule neurons, in terms of spine loss, the thin and mushroom types predominated. Accompanying the spine loss, the levels of PSD95, pAkt and CREB in the hippocampus were decreased in the shRNA-TRPC6 treated animals. Taken together, our results suggest that knocking down TRPC6 in the DG have a disadvantageous effect on cognitive processes.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhongke Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
45
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
46
|
Steubler V, Erdinger S, Back MK, Ludewig S, Fässler D, Richter M, Han K, Slomianka L, Amrein I, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J 2021; 40:e107471. [PMID: 34008862 PMCID: PMC8204861 DOI: 10.15252/embj.2020107471] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.
Collapse
Affiliation(s)
- Vicky Steubler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Erdinger
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Michaela K Back
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Susann Ludewig
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Dominique Fässler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Max Richter
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Kang Han
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Lutz Slomianka
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Irmgard Amrein
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jakob von Engelhardt
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - David P Wolfer
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Institute of Human Movement SciencesETH ZurichZurichSwitzerland
| | - Martin Korte
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Ulrike C Müller
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
47
|
Gadomsky L, Dos Santos Guilherme M, Winkler J, van der Kooij MA, Hartmann T, Grimm M, Endres K. Elevated Testosterone Level and Urine Scent Marking in Male 5xFAD Alzheimer Model Mice. Curr Alzheimer Res 2021; 17:80-92. [PMID: 32065104 DOI: 10.2174/1567205017666200217105537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Function of the Amyloid Precursor Protein (AβPP) and its various cleavage products still is not unraveled down to the last detail. While its role as a source of the neurotoxic Amyloid beta (Aβ) peptides in Alzheimer's Disease (AD) is undisputed and its property as a cell attachment protein is intriguing, while functions outside the neuronal context are scarcely investigated. This is particularly noteworthy because AβPP has a ubiquitous expression profile and its longer isoforms, AβPP750 and 770, are found in various tissues outside the brain and in non-neuronal cells. OBJECTIVE Here, we aimed at analyzing the 5xFAD Alzheimer's disease mouse model in regard to male sexual function. The transgenes of this mouse model are regulated by Thy1 promoter activity and Thy1 is expressed in testes, e.g. by Sertoli cells. This allows speculation about an influence on sexual behavior. METHODS We analyzed morphological as well as biochemical properties of testicular tissue from 5xFAD mice and wild type littermates and testosterone levels in serum, testes and the brain. Sexual behavior was assessed by a urine scent marking test at different ages for both groups. RESULTS While sperm number, testes weight and morphological phenotypes of sperms were nearly indistinguishable from those of wild type littermates, testicular testosterone levels were significantly increased in the AD model mice. This was accompanied by elevated and prolonged sexual interest as displayed within the urine scent marking test. CONCLUSION We suggest that overexpression of AβPP, which mostly is used to mimic AD in model mice, also affects male sexual behavior as assessed additional by the Urine Scent Marking (USM) test. The elevated testosterone levels might have an additional impact on central nervous system androgen receptors and also have to be considered when assessing learning and memory capabilities.
Collapse
Affiliation(s)
- Lisa Gadomsky
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Jakob Winkler
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Michael A van der Kooij
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Tobias Hartmann
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Marcus Grimm
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| |
Collapse
|
48
|
An Omega-3-rich Anti-inflammatory Diet Improved Widespread Allodynia and Worsened Metabolic Outcomes in Adult Mice Exposed to Neonatal Maternal Separation. Neuroscience 2021; 468:53-67. [PMID: 34107347 DOI: 10.1016/j.neuroscience.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Inflammation plays a key role in the progression and maintenance of chronic pain, which impacts the lives of millions of Americans. Despite growing evidence that chronic pain can be improved by treating underlying inflammation, successful treatments are lacking and pharmaceutical interventions are limited due to drug side effects. Here we are testing whether a 'healthy human' diet (HHD), with or without anti-inflammatory components (HHAID), improves pain-like behaviors in a preclinical model of chronic widespread hypersensitivity induced by neonatal maternal separation (NMS). The HHD and HHAID are isocaloric and macronutrient-matched, have a low glycemic index, and fat content (35 kcal%) that is high in omega-3 fatty acids, while only the HHAID includes a combination of key anti-inflammatory compounds, at clinically relevant doses. Mice on these diets were compared to mice on a control diet with a macronutrient composition commonly used in rodents (20% protein, 70% carbohydrate, 10% fat). Our results demonstrate a benefit of the HHAID on pain-like behaviors in both male and female mice, despite increased caloric intake, adiposity, and weight gain. In female mice, HHAID specifically increased measures of metabolic syndrome and inflammation compared to the HHD and control diet groups. Male mice were susceptible to worsening metabolic measures on both the HHAID and HHD. This work highlights important sexual dimorphic outcomes related to early life stress exposure and dietary interventions, as well as a potential disconnect between improvements in pain-like behaviors and metabolic measures.
Collapse
|
49
|
Damián JP, Vázquez Alberdi L, Canclini L, Rosso G, Bravo SO, Martínez M, Uriarte N, Ruiz P, Calero M, Di Tomaso MV, Kun A. Central Alteration in Peripheral Neuropathy of Trembler-J Mice: Hippocampal pmp22 Expression and Behavioral Profile in Anxiety Tests. Biomolecules 2021; 11:biom11040601. [PMID: 33921657 PMCID: PMC8074002 DOI: 10.3390/biom11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).
Collapse
Affiliation(s)
- Juan Pablo Damián
- Unidad de Bioquímica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Lucia Vázquez Alberdi
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany;
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Silvia Olivera Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay;
| | - Mariana Martínez
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay;
| | - Paul Ruiz
- Unidad de Biofísica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Miguel Calero
- Unidad de Encefalopatías Espongiformes, UFIEC, CIBERNED, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-2487-1616; Fax: +598-2487-5461
| |
Collapse
|
50
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|