1
|
Russell B, Hrelja KM, Adams WK, Zeeb FD, Taves MD, Kaur S, Soma KK, Winstanley CA. Differential effects of lipopolysaccharide on cognition, corticosterone and cytokines in socially-housed vs isolated male rats. Behav Brain Res 2022; 433:114000. [PMID: 35817135 DOI: 10.1016/j.bbr.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.
Collapse
Affiliation(s)
- Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew D Taves
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 2021; 22:ijms222212366. [PMID: 34830246 PMCID: PMC8619146 DOI: 10.3390/ijms222212366] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, responsible for the onset of several long-term complications. Recent evidence suggests that cognitive dysfunction represents an emerging complication of DM, but the underlying molecular mechanisms are still obscure. Dopamine (DA), a neurotransmitter essentially known for its relevance in the regulation of behavior and movement, modulates cognitive function, too. Interestingly, alterations of the dopaminergic system have been observed in DM. This review aims to offer a comprehensive overview of the most relevant experimental results assessing DA’s role in cognitive function, highlighting the presence of dopaminergic dysfunction in DM and supporting a role for glucotoxicity in DM-associated dopaminergic dysfunction and cognitive impairment. Several studies confirm a role for DA in cognition both in animal models and in humans. Similarly, significant alterations of the dopaminergic system have been observed in animal models of experimental diabetes and in diabetic patients, too. Evidence is accumulating that advanced glycation end products (AGEs) and their precursor methylglyoxal (MGO) are associated with cognitive impairment and alterations of the dopaminergic system. Further research is needed to clarify the molecular mechanisms linking DM-associated dopaminergic dysfunction and cognitive impairment and to assess the deleterious impact of glucotoxicity.
Collapse
Affiliation(s)
- Francesca Chiara Pignalosa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Paola Mirra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Luca Ulianich
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-3248
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
| | - Francesca Fiory
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| |
Collapse
|
3
|
Optogenetic and chemogenetic approaches to manipulate attention, impulsivity and behavioural flexibility in rodents. Behav Pharmacol 2019; 29:560-568. [PMID: 30169376 DOI: 10.1097/fbp.0000000000000425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies manipulating neural activity acutely with optogenetic or chemogenetic intervention in behaving rodents have increased considerably in recent years. More often, these circuit-level neural manipulations are tested within an existing framework of behavioural testing that strives to model complex executive functions or symptomologies relevant to multidimensional psychiatric disorders in humans, such as attentional control deficits, impulsivity or behavioural (in)flexibility. This methods perspective argues in favour of carefully implementing these acute circuit-based approaches to better understand and model cognitive symptomologies or their similar isomorphic animal behaviours, which often arise and persist in overlapping brain circuitries. First, we offer some practical considerations for combining long-term, behavioural paradigms with optogenetic or chemogenetic interventions. Next, we examine how cell-type or projection-specific manipulations to the ascending neuromodulatory systems, local brain region or descending cortical glutamatergic projections influence aspects of cognitive control. For this, we primarily focus on the influence exerted on attentional and motor impulsivity performance in the (3-choice or) 5-choice serial reaction time task, and impulsive, risky or inflexible choice biases during alternative preference, reward discounting or reversal learning tasks.
Collapse
|
4
|
Lipina TV, Beregovoy NA, Tkachenko AA, Petrova ES, Starostina MV, Zhou Q, Li S. Uncoupling DISC1 × D2R Protein-Protein Interactions Facilitates Latent Inhibition in Disc1-L100P Animal Model of Schizophrenia and Enhances Synaptic Plasticity via D2 Receptors. Front Synaptic Neurosci 2018; 10:31. [PMID: 30245624 PMCID: PMC6137395 DOI: 10.3389/fnsyn.2018.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Both Disrupted-In-Schizophrenia-1 (DISC1) and dopamine receptors D2R have significant contributions to the pathogenesis of schizophrenia. Our previous study demonstrated that DISC1 binds to D2R and such protein-protein interaction is enhanced in patients with schizophrenia and Disc1-L100P mouse model of schizophrenia (Su et al., 2014). By uncoupling DISC1 × D2R interaction (trans-activator of transcription (TAT)-D2pep), the synthesized TAT-peptide elicited antipsychotic-like effects in pharmacological and genetic animal models, without motor side effects as tardive dyskinesia commonly seen with typical antipsychotic drugs (APDs), indicating that the potential of TAT-D2pep of becoming a new APD. Therefore, in the current study, we further explored the APD-associated capacities of TAT-D2pep. We found that TAT-D2pep corrected the disrupted latent inhibition (LI), as a hallmark of schizophrenia associated endophenotype, in Disc1-L100P mutant mice—a genetic model of schizophrenia, supporting further APD’ capacity of TAT-D2pep. Moreover, we found that TAT-D2pep elicited nootropic effects in C57BL/6NCrl inbred mice, suggesting that TAT-D2pep acts as a cognitive enhancer, a desirable feature of APDs of the new generation. Namely, TAT-D2pep improved working memory in T-maze, and cognitive flexibility assessed by the LI paradigm, in C57BL/6N mice. Next, we assessed the impact of TAT-D2pep on hippocampal long-term plasticity (LTP) under basal conditions and upon stimulation of D2 receptors using quinpirole. We found comparable effects of TAT-D2pep and its control TAT-D2pep-scrambled peptide (TAT-D2pep-sc) under basal conditions. However, under stimulation of D2R by quinpirole, LTP was enhanced in hippocampal slices incubated with TAT-D2pep, supporting the notion that TAT-D2pep acts in a dopamine-dependent manner and acts as synaptic enhancer. Overall, our experiments demonstrated implication of DISC1 × D2R protein-protein interactions into mechanisms of cognitive and synaptic plasticity, which help to further understand molecular-cellular mechanisms of APD of the next generation.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | | | - Alina A Tkachenko
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | - Ekaterina S Petrova
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | | | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
5
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
6
|
Furlong TM, Leavitt LS, Keefe KA, Son JH. Methamphetamine-, d-Amphetamine-, and p-Chloroamphetamine-Induced Neurotoxicity Differentially Effect Impulsive Responding on the Stop-Signal Task in Rats. Neurotox Res 2016; 29:569-82. [PMID: 26846719 DOI: 10.1007/s12640-016-9605-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
Abstract
Abused amphetamines, such as d-amphetamine (AMPH) and methamphetamine (METH), are highly addictive and destructive to health and productive lifestyles. The abuse of these drugs is associated with impulsive behavior, which is likely to contribute to addiction. The amphetamines also differentially damage dopamine (DA) and serotonin (5-HT) systems, which regulate impulsive behavior; therefore, exposure to these drugs may differentially alter impulsive behavior to effect the progression of addiction. We examined the impact of neurotoxicity induced by three amphetamines on impulsive action using a stop-signal task in rats. Animals were rewarded with a food pellet after lever pressing (i.e., a go trial), unless an auditory cue was presented and withholding lever press gained reward (i.e., a stop trial). Animals were trained on the task and then exposed to a neurotoxic regimen of either AMPH, p-chloroamphetamine (PCA), or METH. These regimens preferentially reduced DA transporter levels in striatum, 5-HT transporter levels in prefrontal cortex, or both, respectively. Assessment of performance on the stop-signal task beginning 1 week after the treatment revealed that AMPH produced a deficit in go-trial performance, whereas PCA did not alter performance on either trial type. In contrast, METH produced a deficit in stop-trial performance (i.e., impulsive action) but not go-trial performance. These findings suggest that the different neurotoxic consequences of substituted amphetamines are associated with different effects on inhibitory control over behavior. Thus, the course of addiction and maladaptive behavior resulting from exposure to these substances is likely to differ.
Collapse
Affiliation(s)
- Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 E., Rm 201, Salt Lake City, UT, 84112, USA.
| | - Lee S Leavitt
- Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 E., Rm 201, Salt Lake City, UT, 84112, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 E., Rm 201, Salt Lake City, UT, 84112, USA
| | - Jong-Hyun Son
- Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 E., Rm 201, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Virdee K, Kentrop J, Jupp B, Venus B, Hensman D, McArthur S, Wilkinson J, Robbins TW, Gillies G, Dalley JW. Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory. Psychopharmacology (Berl) 2016; 233:3751-3761. [PMID: 27553822 PMCID: PMC5063912 DOI: 10.1007/s00213-016-4405-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
RATIONALE Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory.
Collapse
Affiliation(s)
- Kanwar Virdee
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Jiska Kentrop
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Bethany Venus
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Daniel Hensman
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Simon McArthur
- Department of Biomedical Sciences, University of Westminster, New Cavendish Street, London, W1W 6UW UK
| | - James Wilkinson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Glenda Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ UK
| |
Collapse
|
8
|
Abstract
The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, CB-3545, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA, 30912-2450, USA
| | | |
Collapse
|
9
|
Carli M, Invernizzi RW. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 2014; 8:58. [PMID: 24966814 PMCID: PMC4052821 DOI: 10.3389/fncir.2014.00058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023] Open
Abstract
Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mirjana Carli
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| | - Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| |
Collapse
|
10
|
Eagle DM, Noschang C, d'Angelo LSC, Noble CA, Day JO, Dongelmans ML, Theobald DE, Mar AC, Urcelay GP, Morein-Zamir S, Robbins TW. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav Brain Res 2014; 264:207-29. [PMID: 24406720 PMCID: PMC3989029 DOI: 10.1016/j.bbr.2013.12.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 01/18/2023]
Abstract
Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an 'observing' lever for information about the location of an 'active' lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be beneficial.
Collapse
Affiliation(s)
- Dawn M Eagle
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| | - Cristie Noschang
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Laure-Sophie Camilla d'Angelo
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Christie A Noble
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Jacob O Day
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Marie Louise Dongelmans
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - David E Theobald
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Adam C Mar
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Gonzalo P Urcelay
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Sharon Morein-Zamir
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| |
Collapse
|
11
|
Bloem B, Poorthuis RB, Mansvelder HD. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits 2014; 8:17. [PMID: 24653678 PMCID: PMC3949318 DOI: 10.3389/fncir.2014.00017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 11/27/2022] Open
Abstract
Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.
Collapse
Affiliation(s)
- Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | | | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
| |
Collapse
|
12
|
Antipsychotic compounds differentially modulate high-frequency oscillations in the rat nucleus accumbens: a comparison of first- and second-generation drugs. Int J Neuropsychopharmacol 2013; 16:1009-20. [PMID: 23171738 DOI: 10.1017/s1461145712001034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Improved understanding of the actions of antipsychotic compounds is critical for a better treatment of schizophrenia. Abnormal oscillatory activity has been found in schizophrenia and in rat models of the disease. N-Methyl-D-aspartic acid receptor (NMDAR) antagonists, used to model certain features of schizophrenia, increase the frequency and power of high-frequency oscillations (HFO, 130-180 Hz) in the rat nucleus accumbens, a brain region implicated in schizophrenia pathology. Antipsychotics can be classified as first- and second-generation drugs, the latter often reported to have wider benefit in humans and experimental models. This prompted the authors to examine the pre- and post-treatment effects of clozapine, risperidone (second-generation drugs) and sulpiride and haloperidol (first-generation drugs) on ketamine and MK801-enhanced accumbal HFO. Both NMDAR antagonists increased HFO frequency. In contrast, clozapine and risperidone markedly and dose-dependently reduced the frequency of spontaneous and NMDAR-antagonist-enhanced HFO, whilst a moderate effect was found for sulpiride and a much weaker effect for haloperidol. Unexpectedly, we found reductions in HFO frequency were associated with an increase in its power. These findings indicate that modulation of accumbal HFO frequency may be a fundamental effect produced by antipsychotic compounds. Of the drugs investigated, first- and second-generation compounds could be dissociated by their potency on this measure. This effect may partially explain the differences in the clinical profile of these drugs.
Collapse
|
13
|
Agnoli L, Mainolfi P, Invernizzi RW, Carli M. Dopamine D1-like and D2-like receptors in the dorsal striatum control different aspects of attentional performance in the five-choice serial reaction time task under a condition of increased activity of corticostriatal inputs. Neuropsychopharmacology 2013; 38:701-14. [PMID: 23232445 PMCID: PMC3671986 DOI: 10.1038/npp.2012.236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Pierangela Mainolfi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Roberto W Invernizzi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Mirjana Carli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy,Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano 20156, Italy. Tel: +39 0239014466, Fax: +39 023546277, E-mail:
| |
Collapse
|
14
|
Bari A, Robbins TW. Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology (Berl) 2013; 230:89-111. [PMID: 23681165 PMCID: PMC3824307 DOI: 10.1007/s00213-013-3141-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
RATIONALE Deficient response inhibition is a prominent feature of many pathological conditions characterised by impulsive and compulsive behaviour. Clinically effective doses of catecholamine reuptake inhibitors are able to improve such inhibitory deficits as measured by the stop-signal task (SST) in humans and other animals. However, the precise therapeutic mode of action of these compounds in terms of their relative effects on dopamine (DA) and noradrenaline (NA) systems in prefrontal cortical and striatal regions mediating attention and cognitive control remains unclear. OBJECTIVES We sought to fractionate the effects of global catecholaminergic manipulations on SST performance by using receptor-specific compounds for NA or DA. The results are described in terms of the effects of modulating specific receptor subtypes on various behavioural measures such as response inhibition, perseveration, sustained attention, error monitoring and motivation. RESULTS Blockade of α2-adrenoceptors improved sustained attention and response inhibition, whereas α1 and β1/2 adrenergic receptor antagonists disrupted go performance and sustained attention, respectively. No relevant effects were obtained after targeting DA D1, D2 or D4 receptors, while both a D3 receptor agonist and antagonist improved post-error slowing and compulsive nose-poke behaviour, though generally impairing other task measures. CONCLUSIONS Our results suggest that the use of specific pharmacological agents targeting α2 and β noradrenergic receptors may improve existing treatments for attentional deficits and impulsivity, whereas DA D3 receptors may modulate error monitoring and perseverative behaviour.
Collapse
Affiliation(s)
- A. Bari
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK ,Department of Neurosciences, Medical University of South Carolina, Ashley Avenue 173, BSB 409, 29425 Charleston, SC USA
| | - T. W. Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK
| |
Collapse
|
15
|
Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KAL, Nithianantharajah J, Oomen CA, Saksida LM. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 2012; 62:1191-203. [PMID: 21530550 PMCID: PMC3168710 DOI: 10.1016/j.neuropharm.2011.04.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/01/2011] [Accepted: 04/10/2011] [Indexed: 02/02/2023]
Abstract
We describe a touchscreen method that satisfies a proposed 'wish-list' of desirables for a cognitive testing method for assessing rodent models of schizophrenia. A number of tests relevant to schizophrenia research are described which are currently being developed and validated using this method. These tests can be used to study reward learning, memory, perceptual discrimination, object-place associative learning, attention, impulsivity, compulsivity, extinction, simple Pavlovian conditioning, and other constructs. The tests can be deployed using a 'flexible battery' approach to establish a cognitive profile for a particular mouse or rat model. We have found these tests to be capable of detecting not just impairments in function, but enhancements as well, which is essential for testing putative cognitive therapies. New tests are being continuously developed, many of which may prove particularly valuable for schizophrenia research.
Collapse
Affiliation(s)
- T J Bussey
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baarendse PJJ, Vanderschuren LJMJ. Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology (Berl) 2012; 219:313-26. [PMID: 22134476 PMCID: PMC3249190 DOI: 10.1007/s00213-011-2576-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/04/2011] [Indexed: 02/02/2023]
Abstract
RATIONALE High levels of impulsivity are a core symptom of psychiatric disorders such as ADHD, mania, personality disorders and drug addiction. The effectiveness of drugs targeting dopamine (DA), noradrenaline (NA) and/or serotonin (5-HT) in the treatment of impulse control disorders emphasizes the role of monoaminergic neurotransmission in impulsivity. However, impulsive behavior is behaviorally and neurally heterogeneous, and several caveats remain in our understanding of the role of monoamines in impulse control. OBJECTIVES This study aims to investigate the role of DA, NA and 5-HT in two main behavioral dimensions of impulsivity. METHODS The effects of selective DA (GBR12909; 2.5-10 mg/kg), NA (atomoxetine; 0.3-3.0 mg/kg) and 5-HT (citalopram; 0.3-3.0 mg/kg) reuptake inhibitors as well as amphetamine (0.25-1.0 mg/kg) were evaluated on impulsive action in the five-choice serial reaction time task (5-CSRTT) and impulsive choice in the delayed reward task (DRT). In the 5-CSRTT, neuropharmacological challenges were performed under baseline and long intertrial interval (ITI) conditions to enhance impulsive behavior in the task. RESULTS Amphetamine and GBR12909 increased impulsive action and perseverative responding and decreased accuracy and response latency in the 5-CSRTT. Atomoxetine increased errors of omission and response latency under baseline conditions in the 5-CSRTT. Under a long ITI, atomoxetine also reduced premature and perseverative responding and increased accuracy. Citalopram improved impulse control in the 5-CSRTT. Amphetamine and GBR12909, but not citalopram or atomoxetine, reduced impulsive choice in the DRT. CONCLUSIONS Elevation of DA neurotransmission increases impulsive action and reduces impulsive choice. Increasing NA or 5-HT neurotransmission reduces impulsive action.
Collapse
Affiliation(s)
- Petra J. J. Baarendse
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louk J. M. J. Vanderschuren
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands ,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Paine TA, Slipp LE, Carlezon WA. Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology 2011; 36:1703-13. [PMID: 21490590 PMCID: PMC3138652 DOI: 10.1038/npp.2011.51] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Attentional deficits are a core symptom of schizophrenia. Post-mortem analyses of the brains of schizophrenics reveal consistent abnormalities in γ-aminobutyric acid (GABA) interneurons indicative of reduced cortical GABA transmission, raising the possibility that this pathology contributes to attentional deficits. We examined whether blockade of prefrontal cortex (PFC) GABA(A) receptors with bicuculline (BMI) impairs attention in rats using the 5-choice serial reaction time task (5CSRTT). For comparison, we also examined whether administration of the GABA(A) receptor agonist muscimol (MUS) would improve attention. In parallel, we examined the effects of both manipulations on activity in an open field and on motivation using the intracranial self-stimulation (ICSS) test. BMI increased PFC neuronal activity, as reflected by increased Fos immunolabeling, and impaired attention, as reflected by decreased accuracy and increased omissions. Although increased omissions also may reflect reductions in locomotor activity or motivation, the overall pattern of effects does not support either of these interpretations: BMI did not affect locomotor activity, and it enhanced motivation in the ICSS test. MUS did not affect attention, although it increased impulsive behavior at a dose that suppressed PFC neuronal activity, as reflected by decreased Fos immunolabeling. These impulsivity effects are not due to altered locomotor activity (which was decreased) or motivation (which was not affected). Our data support the hypothesis that cortical GABA neurons have an important role in regulating attention and may have direct implications for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Tracie A Paine
- Department of Psychiatry, Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Lauren E Slipp
- Department of Psychiatry, Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
18
|
Carli M, Calcagno E, Mainini E, Arnt J, Invernizzi RW. Sertindole restores attentional performance and suppresses glutamate release induced by the NMDA receptor antagonist CPP. Psychopharmacology (Berl) 2011; 214:625-37. [PMID: 21049266 DOI: 10.1007/s00213-010-2066-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/18/2010] [Indexed: 12/26/2022]
Abstract
RATIONALE Blockade of N-methyl-d-aspartic acid (NMDA) receptors in the rat medial prefrontal cortex (mPFC) impairs performance in the five-choice serial reaction time task (5-CSRTT) and increases glutamate (GLU) release. Recent research suggests that excessive GLU release may be critical for attention deficits. OBJECTIVES We tested this hypothesis by investigating the effects of the atypical antipsychotics sertindole and clozapine on 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP)-induced performance deficits in the 5-CSRTT and on the CPP-induced GLU release in the mPFC. METHODS The 5-CSRTT, a test of divided and sustained visual attention providing indices of attentional functioning (accuracy of visual discrimination), response control (anticipatory and perseverative responses) and intracortical microdialysis in conscious rats were used to investigate the effects of sertindole and clozapine. RESULTS Low doses of sertindole (0.02-0.32 mg/kg) prevented CPP-induced accuracy deficits, anticipatory over-responding and the rise in GLU release. In contrast, doses ranging from 0.6 to 2.5 mg/kg had no effect or even enhanced the effect of CPP on anticipatory responding. Similarly, 2.5 mg/kg sertindole was unable to reverse CPP-induced rise in GLU release. Clozapine (2.5 mg/kg) prevented accuracy deficits and the increase in anticipatory responding and abolished the rise in GLU release induced by CPP. CONCLUSIONS These findings show that the ameliorating effects of sertindole and clozapine on NMDA receptor dependent attention deficit is associated with suppression in GLU release in the mPFC. This supports the proposal that suppression in GLU release might be a target for the development of novel drugs aimed at counteracting some aspects of cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Mirjana Carli
- Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Neurochemistry and Behavior, Via G. La Masa 19, 20156, Milan, Italy.
| | | | | | | | | |
Collapse
|
19
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - James D Jentsch
- Departments of Psychology and Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
de Lima MNM, Presti-Torres J, Dornelles A, Scalco FS, Roesler R, Garcia VA, Schröder N. Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiol Learn Mem 2010; 95:305-10. [PMID: 21187154 DOI: 10.1016/j.nlm.2010.12.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 10/18/2022]
Abstract
The role of dopamine receptors in regulating the formation of recognition memory remains poorly understood. Here we show the effects of systemic administration of dopamine receptor agonists and antagonists on the formation of memory for novel object recognition in rats. In Experiment I, rats received an intraperitoneal (i.p.) injection of vehicle, the selective D1 receptor agonist SKF38393 (1.0 and 5.0mg/kg), or the D2 receptor agonist quinpirole (1.0 and 5.0mg/kg) immediately after training. In Experiment II, rats received an injection of vehicle, the dopamine receptor antagonist SCH23390 (0.1 and 0.05 mg/kg), or the D2 receptor antagonist raclopride (0.5 and 0.1mg/kg) before training, followed by an injection of vehicle or the nonselective dopamine receptor agonist apomorphine (0.05 mg/kg) immediately after training. SKF38393 at 5mg/kg produced an enhancement of novel object recognition memory measured at both 24 and 72 h after training, whereas the dose of 10mg/kg impaired 24-h retention. Posttraining administration of quinpirole did not affect 24-h retention. Apomorphine enhanced memory in rats given pretraining raclopride, suggesting that the effect was mediated by selective activation of D1 receptors. The results indicate that activation of D1 receptors can enhance recognition memory consolidation. Importantly, pharmacological activation of D1 receptors enhanced novel object recognition memory even under conditions in which control rats showed significant retention.
Collapse
Affiliation(s)
- Maria Noêmia Martins de Lima
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Milstein JA, Dalley JW, Robbins TW. Methylphenidate-induced impulsivity: pharmacological antagonism by beta-adrenoreceptor blockade. J Psychopharmacol 2010; 24:309-21. [PMID: 19074531 DOI: 10.1177/0269881108098146] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noradrenaline-dopamine interactions mediate increases in locomotor activity, development of sensitisation and subjective effects of psychostimulant drugs. However, the modulatory effects of noradrenaline on psychostimulant-induced impulsivity are less clear. This article examined the relative roles of noradrenaline and dopamine in the modulation of methylphenidate-induced impulsive responding in rats performing the 5-choice serial reaction time task. Experiment 1 examined the systemic antagonism of methylphenidate-induced impulsivity with either propranolol, a beta-adrenoreceptor blocker, or prazosin, an alpha1-adrenoreceptor antagonist, which antagonises the locomotor activating effects of amphetamine. Propranolol completely abolished methylphenidate-induced impulsivity. This effect was centrally rather than peripherally mediated, as nadolol, a peripheral beta-blocker failed to affect methylphenidate-induced premature responding. Prazosin partially attenuated the methylphenidate-mediated increase in premature responding. A second experiment examined the effects of selective anti-D beta H saporin-induced cortical noradrenaline depletion on methylphenidate-induced impulsivity. Contrary to the effects of beta-adrenoreceptor blockade, cortical noradrenergic depletion did not alter methylphenidate-induced impulsivity. Other experiments examined the comparative effects of selective dopamine and serotonin receptor blockade. D4 dopamine receptor blockade with systemically administered L-745,870 also attenuated methylphenidate-induced impulsivity. The other antagonists had no effect on methylphenidate-induced impulsivity. Taken together, these studies provide evidence for a modulatory role of beta-adrenoreceptors on methylphenidate-induced impulsive responding.
Collapse
Affiliation(s)
- J A Milstein
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
22
|
Reeves S, Mehta M, Howard R, Grasby P, Brown R. The dopaminergic basis of cognitive and motor performance in Alzheimer's disease. Neurobiol Dis 2009; 37:477-82. [PMID: 19914378 DOI: 10.1016/j.nbd.2009.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022] Open
Abstract
A crucial role of corticostriatal dopaminergic networks in cognitive and motor processes has been well established but largely unexplored in Alzheimer's disease (AD). The study investigated the relationship between striatal DA (D(2)) receptor availability and specific aspects of cognitive (sustained visual attention, spatial planning, word recognition) and motor (speed and dexterity) function in 24 people with mild to moderate AD. In vivo dopamine DA (D(2)) receptor availability was determined with [(11)C] raclopride (RAC) positron emission tomography (PET). Imaging data were analysed using both region of interest (ROI) and voxel-based approaches. Higher [(11)C] RAC binding was associated with increased motor speed and, paradoxically, poorer attentional performance. These findings are broadly consistent with previously conducted studies in healthy older adults and would suggest that the use of DA (D(2)) receptor agonists as an adjunctive treatment strategy in AD may have dissociable effects upon cognitive function.
Collapse
Affiliation(s)
- Suzanne Reeves
- Section of Old Age Psychiatry, MRC Centre for Neurodegeneration Research, Institute of Psychiatry at King's College London, De Crespigny Park, Camberwell, UK.
| | | | | | | | | |
Collapse
|
23
|
Panlilio LV, Mazzola C, Drago F, Medalie J, Hahn B, Justinova Z, Tanda G, Cadet JL, Yasar S, Goldberg SR. Anandamide-induced behavioral disruption through a vanilloid-dependent mechanism in rats. Psychopharmacology (Berl) 2009; 203:529-38. [PMID: 19015836 PMCID: PMC2695254 DOI: 10.1007/s00213-008-1399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/25/2008] [Indexed: 11/26/2022]
Abstract
RATIONALE Endocannabinoids are involved in a variety of behavioral and physiological processes that are just beginning to be understood. In the five-choice serial reaction-time task, exogenous cannabinoids have been found to alter attention, but endocannabinoids such as anandamide have not been studied. OBJECTIVES We used this task to evaluate the effects of anandamide in rats. Since anandamide is a ligand for not only cannabinoid receptors but also transient receptor potential vanilloid 1 (TRPV1) receptors, and as recently suggested, peroxisome proliferator-activated nuclear receptor-alpha (PPARalpha), we also determined whether anandamide's effects in this task were mediated by each of these receptors. MATERIALS AND METHODS Whenever one of five holes was illuminated for 2 s, a food pellet was delivered if a response occurred in that hole during the light or within 2 s after the light. RESULTS Anandamide increased omission errors and decreased responding during inter-trial intervals. These effects were blocked by the TRPV1 antagonist capsazepine, but not by the cannabinoid-receptor antagonist rimonabant or the PPARalpha antagonist MK886. Testing with open-field activity and food-consumption procedures in the same rats suggested that the disruption of operant responding observed in the attention task was not due to motor depression, anxiety, decreased appetite, or an inability to find and consume food pellets. CONCLUSIONS The vanilloid-dependent behavioral disruption induced by anandamide was specific to the operant attention task. These effects of anandamide resemble effects of systemically administered dopamine antagonists and might reflect changes in vanilloid-mediated dopamine transmission.
Collapse
Affiliation(s)
- Leigh V. Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Carmen Mazzola
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Department of Experimental and Clinical Pharmacology, Medical School, University of Catania, Italy
| | - Filippo Drago
- Department of Experimental and Clinical Pharmacology, Medical School, University of Catania, Italy
| | - Julie Medalie
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Britta Hahn
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Sevil Yasar
- Molecular Neuropsychiatry Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| |
Collapse
|
24
|
Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009; 122:150-202. [PMID: 19269307 DOI: 10.1016/j.pharmthera.2009.02.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great 'unmet therapeutic need', the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a "preclinical MATRICS" to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
Collapse
|
25
|
Winter S, Dieckmann M, Schwabe K. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value. Behav Brain Res 2009; 198:206-13. [DOI: 10.1016/j.bbr.2008.10.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
26
|
Hyperstimulation of striatal D2 receptors with sleep deprivation: Implications for cognitive impairment. Neuroimage 2009; 45:1232-40. [PMID: 19349237 DOI: 10.1016/j.neuroimage.2009.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 11/24/2022] Open
Abstract
Sleep deprivation interferes with cognitive performance but the mechanisms are poorly understood. We recently reported that one night of sleep deprivation increased dopamine in striatum (measured with [(11)C]raclopride, a PET radiotracer that competes with endogenous dopamine for binding to D2 receptors) and that these increases were associated with impaired performance in a visual attention task. To better understand this association here we evaluate the relationship between changes in striatal dopamine (measured as changes in D2 receptor availability using PET and [(11)C]raclopride) and changes in brain activation to a visual attention task (measured with BOLD and fMRI) when performed during sleep deprivation versus during rested wakefulness. We find that sleep induced changes in striatal dopamine were associated with changes in cortical brain regions modulated by dopamine (attenuated deactivation of anterior cingulate gyrus and insula) but also in regions that are not recognized targets of dopaminergic modulation (attenuated activation of inferior occipital cortex and cerebellum). Moreover, the increases in striatal dopamine as well as its associated regional activation and deactivation patterns correlated negatively with performance accuracy. These findings therefore suggest that hyperstimulation of D2 receptors in striatum may contribute to the impairment in visual attention during sleep deprivation. Thus, while dopamine increases in prefrontal regions (including stimulation of D1 receptors) may facilitate attention our findings suggest that hyperstimulation of D2 receptors in striatum may impair it. Alternatively, these associations may reflect a compensatory striatal dopamine response (to maintain arousal) that is superimposed on a larger response to sleep deprivation.
Collapse
|
27
|
Tait DS, Marston HM, Shahid M, Brown VJ. Asenapine restores cognitive flexibility in rats with medial prefrontal cortex lesions. Psychopharmacology (Berl) 2009; 202:295-306. [PMID: 18925388 DOI: 10.1007/s00213-008-1364-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Cognitive inflexibility in schizophrenia is treatment-resistant and predictive of poor outcome. This study examined the effect of asenapine, a novel psychopharmacologic agent being developed for schizophrenia and bipolar disorder, on cognitive dysfunction in the rat. OBJECTIVES The objective of this paper was to establish whether asenapine has a beneficial effect on the performance of rats with ibotenic acid-induced lesion of the medial prefrontal cortex (mPFC) in an intradimensional/extradimensional (ID/ED) test of cognitive flexibility. METHODS The effect of subcutaneously administered asenapine (0.75, 7.5, 75 microg/kg) on ID/ED performance of controls or mPFC-lesioned rats was examined using a within-subjects, repeated-measures design. In a second experiment, lesioned and control rats were tested with or without asenapine in a modified version of the task, with multiple set-shifts, before brains were processed for Fos-immunoreactivity in the mPFC. RESULTS The mPFC lesion-induced deficit in the ID/ED task was stable with repeated testing over more than two months. Asenapine (75 microg/kg s.c., p < 0.05) completely restored the performance of lesioned rats. Experiment 2 replicated both lesion and asenapine effects and demonstrated that it is possible to measure set-shifting multiple times within a test session. Asenapine (75 microg/kg s.c.) was associated with differential activation of the neurons in the anterior mPFC of lesioned animals, but was without effect in controls. CONCLUSION Asenapine can ameliorate mPFC lesion-induced impairment in attentional set-shifting, and is associated with a greater activation of the spared neurons in the anterior mPFC. These data suggest that asenapine may benefit impaired cognitive flexibility in disorders such as schizophrenia.
Collapse
Affiliation(s)
- David S Tait
- School of Psychology, University of St Andrews, St Andrews, Scotland, KY169RH, UK
| | | | | | | |
Collapse
|
28
|
Pezze MA, Dalley JW, Robbins TW. Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D(2/3) receptor antagonist sulpiride. Psychopharmacology (Berl) 2009; 202:307-13. [PMID: 18985321 DOI: 10.1007/s00213-008-1384-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/16/2008] [Indexed: 12/30/2022]
Abstract
RATIONALE Anti-psychotic drugs are widely recognised to produce beneficial effects on impaired cognition in schizophrenia but their mechanism of action is poorly understood. The prefrontal cortex (PFC) and nucleus accumbens (NAC) are key brain loci considered to mediate many of the cognitive deficits associated with schizophrenia and related disorders. OBJECTIVES To investigate (1) the effects of selective damage to the PFC on visuo-spatial attention and cognition in the rat and (2) the ability of the anti-psychotic drug sulpiride after its intra-NAC administration to ameliorate cognitive and behavioural deficits produced by lesions of the PFC. METHODS Selective lesions of the medial PFC were made using quinolinic acid in rats previously trained on a five-choice serial reaction time task of sustained visual attention (n = 7). Sham rats received phosphate-buffered saline infusions (n = 7). Following a period of recovery, low doses of sulpiride (0.5 ng or 1 ng) were infused into the core sub-region of the NAC of sham and lesioned rats immediately prior to testing on the five-choice task. RESULTS Lesions of the medial PFC produced a range of impairments on the five-choice task, including decreased attentional accuracy, slower latencies to respond correctly and increased omissions and premature responses, the latter an operational measure of impulsivity. Intra-NAC sulpiride dose-dependently ameliorated the increased impulsivity and attentional impairment present in PFC-lesioned rats. CONCLUSIONS These findings suggest that attentional and cognitive impairment in schizophrenia may be determined in part by a dysregulation of the subcortical dopamine systems occurring as a consequence of damage to the PFC.
Collapse
Affiliation(s)
- Marie A Pezze
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge CB23EB, UK
| | | | | |
Collapse
|
29
|
Farovik A, Dupont LM, Arce M, Eichenbaum H. Medial prefrontal cortex supports recollection, but not familiarity, in the rat. J Neurosci 2008; 28:13428-34. [PMID: 19074016 PMCID: PMC2680425 DOI: 10.1523/jneurosci.3662-08.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 11/21/2022] Open
Abstract
There is continuing controversy about the extent to which the rodent medial prefrontal cortical area (mPFC) is functionally homologous to the dorsolateral prefrontal cortex in humans and nonhuman primates. Previous studies have compared the effects of mPFC lesions in rats to those of dorsolateral prefrontal lesions in working memory, strategy switching, and temporal ordering. None, however, has examined the role of the rodent mPFC in recognition memory, wherein, in humans, dorsolateral prefrontal damage results in a deficit in source monitoring resulting in impaired recollection. In the present study, we examined recognition memory in rats with bilateral mPFC lesions (prelimbic/infralimbic regions; ibotenic acid) using a variant of a non-match-to-sample task with manipulations of response bias that allowed for a signal detection analysis that distinguishes recollection and familiarity contributions to recognition memory. Animals with medial prefrontal lesions had a modest overall deficit in recognition with no general change in their tendency to elicit "old" or "new" responses. Signal detection analyses indicated that rats with mPFC damage had a curvilinear and symmetrical receiver operating characteristic (ROC) curve, compared with a curvilinear and asymmetrical ROC curve in control subjects, indicating that mPFC damage severely reduced recollection-based performance, while sparing familiarity. The recollection failure was associated with an impaired ability to reject new items (increased false alarm rate), whereas the identification of old items (hit rate) was normal. This pattern of findings is similar to that observed in humans with dorsolateral prefrontal damage and is complementary to the selective deficit in hit rate observed after hippocampal damage.
Collapse
Affiliation(s)
- Anja Farovik
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| | - Laura M. Dupont
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| | - Miguel Arce
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| | - Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
30
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
31
|
Millan MJ, Loiseau F, Dekeyne A, Gobert A, Flik G, Cremers TI, Rivet JM, Sicard D, Billiras R, Brocco M. S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects. J Pharmacol Exp Ther 2008; 324:1212-26. [PMID: 18096759 DOI: 10.1124/jpet.107.134536] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
In contrast to clinically available antipsychotics, the novel benzopyranopyrrolidine derivative, S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), behaves as a preferential antagonist of D(3) versus D(2) receptors and does not interact with histamine H(1) and muscarinic receptors. In contrast to haloperidol, clozapine, olanzapine, and risperidone, S33138 (0.16-2.5 mg/kg s.c.) did not disrupt performance in passive-avoidance and five-choice serial reaction time procedures. Furthermore, upon either systemic administration (0.04-2.5 mg/kg s.c.) or introduction into the frontal cortex (0.04-0.63 mug/side), S33138 potently attenuated the perturbation of social recognition by scopolamine or a prolonged intersession delay. Over a comparable and low-dose range, S33138 (0.04-0.63 mg/kg s.c.) elevated dialysis levels of acetylcholine in the frontal cortex of freely moving rats. At higher doses (2.5-10.0 mg/kg s.c.), S33138 also increased frontocortical levels of histamine, whereas monoamines, glutamate, glycine, and GABA were unaffected. By analogy to the other antipsychotics, S33138 (0.63-10.0 mg/kg s.c.) inhibited conditioned avoidance responses in rats, apomorphine-induced climbing in mice, and hyperlocomotion elicited by amphetamine, cocaine, dizocilpine, ketamine, and phencyclidine in rats. S33138 (0.16-2.5 mg/kg s.c.) also blocked the reduction of prepulse inhibition elicited by apomorphine. In comparison with the above actions, only "high" doses of S33138 (10.0-40.0 mg/kg s.c.) elicited catalepsy. To summarize, reflecting preferential blockade of D(3) versus D(2) receptors, S33138 preserves and/or enhances cognitive function, increases frontocortical cholinergic transmission, and is active in models of antipsychotic properties at doses well below those inducing catalepsy. In comparison with clinically available agents, S33138 displays, thus, a distinctive and promising profile of potential antipsychotic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Baviera M, Invernizzi RW, Carli M. Haloperidol and clozapine have dissociable effects in a model of attentional performance deficits induced by blockade of NMDA receptors in the mPFC. Psychopharmacology (Berl) 2008; 196:269-80. [PMID: 17940750 DOI: 10.1007/s00213-007-0959-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 09/18/2007] [Indexed: 01/09/2023]
Abstract
RATIONALE Cognitive impairment in schizophrenia is particularly evident in the domains of attention and executive functions. Atypical antipsychotics are somewhat more effective than conventional antipsychotics in improving cognitive functioning in these patients. OBJECTIVE The aim of this study was to compare the effects of conventional and atypical antipsychotics in a model of attentional performance deficit of schizophrenia induced by blockade of N-methyl-D: -aspartate (NMDA) receptors in the medial prefrontal cortex. MATERIALS AND METHODS Attentional performance was assessed using the five-choice serial reaction time task. The task provides indices of attentional functioning (% correct responses), executive control (measured by anticipatory and perseverative responding), decision time (measured by correct response latency), and omissions. Haloperidol and clozapine were given intraperitoneally (IP) to animals that had received vehicle or a competitive NMDA receptor antagonist, 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP), directly into the medial prefrontal cortex. RESULTS Fifty nanograms/side of CPP reduced accuracy (% correct responses) and increased anticipatory and perseverative responding. Haloperidol (0.03 mg/kg IP) reduced the CPP-induced anticipatory and perseverative overresponding but not the impairment in accuracy. In contrast, clozapine (2.5 mg/kg IP) reversed the decrease in accuracy and impulsivity (anticipatory responding) but not perseverative overresponding. CPP increased decision time and omissions, but these effects were not affected by either haloperidol or clozapine. CONCLUSIONS The effects on "impulsivity" and "compulsive perseveration" in a rat model of attentional and executive deficit of schizophrenia might differentiate conventional and atypical antipsychotics. Antagonistic activity at 5-HT(2A) receptors may best explain the facilitatory effects of clozapine on cognition.
Collapse
Affiliation(s)
- Marta Baviera
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milan, Italy
| | | | | |
Collapse
|
33
|
Amitai N, Semenova S, Markou A. Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology (Berl) 2007; 193:521-37. [PMID: 17497138 DOI: 10.1007/s00213-007-0808-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cognitive deficits in schizophrenia are severe and do not respond well to available treatments. The development and validation of animal models of cognitive deficits characterizing schizophrenia are crucial for clarifying the underlying neuropathology and discovery of improved treatments for such deficits. MATERIALS AND METHODS We investigated whether single and repeated administrations of the psychotomimetic phencyclidine (PCP) disrupt performance in the five-choice serial reaction time task (5-CSRTT), a test of attention and impulsivity. We also examined whether PCP-induced disruptions in this task are attenuated by atypical antipsychotic medications. RESULTS A single injection of PCP (1.5-3 mg/kg, s.c., 30-min pre-injection time) had nonspecific response-depressing effects. Repeated PCP administration (2 mg/kg for two consecutive days followed by five consecutive days, s.c., 30-min pre-injection time) resulted in decreased accuracy, increased premature and timeout responding, and increased response latencies. The atypical antipsychotic medications clozapine, risperidone, quetiapine, and olanzapine and the typical antipsychotic medication haloperidol did not disrupt 5-CSRTT performance under baseline conditions except at high doses. The response depression induced by a single PCP administration was exacerbated by acute clozapine or risperidone and was unaffected by chronic clozapine. Importantly, chronic clozapine partially attenuated the performance disruptions induced by repeated PCP administration, significantly reducing both the accuracy impairment and the increase in premature responding. CONCLUSIONS Disruptions in 5-CSRTT performance induced by repeated PCP administration are prevented by chronic clozapine treatment and may constitute a useful animal model of some cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nurith Amitai
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA
| | | | | |
Collapse
|
34
|
Scholes KE, Harrison BJ, O'Neill BV, Leung S, Croft RJ, Pipingas A, Phan KL, Nathan PJ. Acute serotonin and dopamine depletion improves attentional control: findings from the stroop task. Neuropsychopharmacology 2007; 32:1600-10. [PMID: 17151596 DOI: 10.1038/sj.npp.1301262] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with impairments of attentional control on classic experimental paradigms such as the Stroop task. However, at a basic level the neurochemical mechanisms that may be responsible for such impairments are poorly understood. In this study, we sought to investigate the influence of brain monoamine function on Stroop task performance in healthy participants using the established methods of acute dietary serotonin, dopamine, and combined monoamine depletion. The study was a double-blind placebo controlled design in which 12 healthy male participants completed the Stroop task under four acute treatment conditions: (a) balanced/placebo control, (b) acute tryptophan depletion, (c) acute tyrosine/phenylalanine depletion, and (d) acute tyrosine/phenylalanine/tryptophan depletion (combined monoamine depletion). Decreased Stroop interference indicating improved attentional control was observed after both tryptophan depletion and tyrosine/phenylalanine depletion, while there was no significant change in interference after combined monoamine depletion. Findings suggest that reduced tonic dopamine or serotonin activity within specific neural circuits (such as the striatum, anterior cingulate, or prefrontal cortex) may play a critical role in attentional control, possibly by improving gating of information via reducing noise in monoaminergic systems. These findings enhance our understanding of the neurochemical basis of attentional control and the possible cause of attentional control deficits in schizophrenia.
Collapse
Affiliation(s)
- Kirsty E Scholes
- Behavioural Neuroscience Laboratory, Department of Physiology, Monash Centre for Brain and Behavior, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pattij T, Janssen MCW, Vanderschuren LJMJ, Schoffelmeer ANM, van Gaalen MM. Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl) 2007; 191:587-98. [PMID: 16972104 DOI: 10.1007/s00213-006-0533-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/25/2006] [Indexed: 11/25/2022]
Abstract
RATIONALE Impaired inhibitory control over behavior is a key feature in various psychiatric disorders, and recent studies indicated an important role for dopamine D(1) and D(2) receptors and the nucleus accumbens (Acb) in this respect. OBJECTIVE The present experiments were designed to study the role of dopamine D(1) and D(2) receptors in the Acb in inhibitory response control. METHODS Rats were trained in a five-choice serial reaction time task and received bilateral infusions into the Acb core or shell of either SCH 23390 or eticlopride (representing selective dopamine D(1) and D(2) receptor antagonists, respectively). Subsequently, the effects of systemic amphetamine on inhibitory response control were examined. RESULTS Eticlopride into either the Acb core or shell did not affect premature responding, a measure for inhibitory response control, but increased reaction time and errors of omission. In contrast, SCH 23390 into both regions reduced premature responding, slightly improved attentional performance in the core and increased errors of omission in the shell. Amphetamine robustly increased premature responding which was dose-dependently blocked by eticlopride in the Acb core and attenuated by eticlopride in the shell. In addition, amphetamine slightly decreased accuracy and reaction time, and these effects were inhibited by eticlopride in both regions. SCH 23390 infusion into the Acb core or shell did not alter amphetamine's effects. CONCLUSION Our data provide evidence for the involvement of dopamine D(1) and D(2) receptors in the Acb core and shell in inhibitory response control and attentional performance.
Collapse
Affiliation(s)
- Tommy Pattij
- Department of Anatomy and Neurosciences, Research Institute Neurosciences Vrije Universiteit, Center for Neurogenomics and Cognitive Research, VU medical center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Stuchlik A, Rehakova L, Rambousek L, Svoboda J, Vales K. Manipulation of D2 receptors with quinpirole and sulpiride affects locomotor activity before spatial behavior of rats in an active place avoidance task. Neurosci Res 2007; 58:133-9. [PMID: 17360063 DOI: 10.1016/j.neures.2007.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/26/2007] [Accepted: 02/07/2007] [Indexed: 11/30/2022]
Abstract
Dopamine-mediated neurotransmission is widely studied with respect to motivation, motor activity and cognitive processes. The aim of the present study was to evaluate the role of D2 receptors in the behavior of rats in the active allothetic place avoidance (AAPA) task. D2 receptor agonist quinpirole and antagonist sulpiride were administered intraperitoneally 20min prior to behavioral testing. Administration of quinpirole led to dose-dependent increase of locomotion; the spatial efficiency was spared across the dose range studied (0.05-1.0mg/kg). In contrast, sulpiride decreased locomotor activity at a dose not influencing spatial efficiency (60mg/kg); the highest dose of sulpiride (100mg/kg) caused a deficit in both locomotor and spatial behaviors. The results suggest a relatively lesser importance of D2 receptors for spatial efficiency in the AAPA task, with a predominant influence of D2 receptor ligands on motor activity.
Collapse
Affiliation(s)
- Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
Domenger D, Schwarting RKW. The serial reaction time task in the rat: effects of D1 and D2 dopamine-receptor antagonists. Behav Brain Res 2006; 175:212-22. [PMID: 17011054 DOI: 10.1016/j.bbr.2006.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/17/2022]
Abstract
Sequential behaviour, probably reflecting procedural learning, has intensively been investigated in humans and monkeys using so-called serial reaction time tasks (SRTT), where serial stimuli are either presented in a random or sequential fashion. Learning of sequences is typically inferred from faster reaction times to such sequences as compared to random blocks of stimuli. Work with such tasks has shown that sequential behaviour seems to be mediated by specific brain systems, including the basal ganglia and the neurotransmitter dopamine. We have recently developed a rat version of the human serial reaction time task, in which rats have to respond to visual stimuli in one of four spatial locations by nose-poking in order to obtain food reward under a fixed ratio schedule (FR13). Here, we used a test version where random and sequential condition phases (10 min each) were alternated within-sessions. In support of our previous work, we found that well-trained (i.e. skilled) rats display superior performance under sequential than random conditions, namely, faster reaction times and higher response accuracies. Furthermore, we investigated the effects of selective dopamine-receptor blockade, by systemically administering SKF 83566, a D1 antagonist (.05-.15 mg/kg), or raclopride, a D2 antagonist (.05-.20 mg/kg), in two separate experiments. Both antagonists impaired responding to the conditioned visual stimuli in a dose-related way, i.e. they decreased, or even blocked, nose-poke rates. In those rats, which kept responding, the speeding of reaction times during sequential conditions was no longer observed with the D1 antagonist, whereas the enhancements in accuracy were preserved, or even enhanced as compared to vehicle. The D2 antagonist also impaired instrumental behaviour, but did not alter sequence effects on accuracy or reaction times. In contrast to responses to the conditioned stimuli, reaction times to the unconditioned stimuli (food pellets) were not substantially affected by either drug. These results are discussed with respect to methodological factors, and the possible role of dopamine for instrumental behaviour, in general, and sequential behaviour, in specific.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine Antagonists/pharmacology
- Male
- Practice, Psychological
- Psychomotor Performance/drug effects
- Psychomotor Performance/physiology
- Raclopride/pharmacology
- Random Allocation
- Rats
- Rats, Wistar
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Serial Learning/drug effects
- Serial Learning/physiology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Dorothée Domenger
- Experimental and Physiological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032 Marburg, Germany.
| | | |
Collapse
|
38
|
van Gaalen MM, Brueggeman RJ, Bronius PFC, Schoffelmeer ANM, Vanderschuren LJMJ. Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 2006; 187:73-85. [PMID: 16767417 DOI: 10.1007/s00213-006-0396-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/27/2006] [Indexed: 11/30/2022]
Abstract
RATIONALE Behavioral disinhibition is a manifestation of impulsive behavior that is prominent in the psychopathology of various psychiatric disorders, but the underlying neural mechanisms are unclear. Behavioral disinhibition can be investigated by measuring premature responding in the 5-choice serial reaction time task (5-CSRTT) in which attentional parameters can be measured as well. OBJECTIVE The objective of the study was to investigate the involvement of dopamine neurotransmission in behavioral disinhibition using the 5-CSRTT in rats. METHODS The effects of amphetamine, cocaine, nicotine, the dopamine reuptake inhibitor GBR 12909, the noradrenaline reuptake inhibitor desipramine, the dopamine D1 receptor antagonist SCH 23390, and the dopamine D2 receptor antagonist eticlopride were studied in rats that were well-trained in the 5-CSRTT. Subsequently, the effects of amphetamine, cocaine, and nicotine were tested after pretreatment with SCH 23390 or eticlopride. RESULTS What amphetamine, cocaine, and nicotine had in common is that they increased premature responding. However, these drugs had distinct effects on attentional parameters. GBR 12909 also enhanced premature responding, whereas desipramine reduced it. Eticlopride by itself had no effect on premature responding but it attenuated the increases in this parameter evoked by amphetamine, cocaine, or nicotine. SCH 23390 reduced premature responding on its own and also reduced its drug-induced enhancement. CONCLUSIONS The present data show that behavioral disinhibition, i.e., the inability to withhold a premature response, is a common effect of drugs of abuse and that this effect is the result of enhanced dopaminergic neurotransmission. In addition, dopamine D1 and D2 receptors play important, but perhaps distinct roles, in inhibitory control of behavior.
Collapse
Affiliation(s)
- Marcel M van Gaalen
- Department of Anatomy and Neurosciences, Research Institute Neurosciences Vrije Universiteit, Center for Neurogenomics and Cognitive Research (CNCR), VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Carli M, Baviera M, Invernizzi RW, Balducci C. Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 2006; 31:757-67. [PMID: 16192987 DOI: 10.1038/sj.npp.1300893] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) receptors are increasingly recognized as major targets for cognitive enhancement in schizophrenia. Several lines of evidence suggest a pathophysiological role for glutamate NMDA receptors in the prefrontal cortex in schizophrenia and associated disorders in attention and executive functioning. We investigated how the interactions between 5-HT1A and 5-HT2A and glutamate NMDA receptor mechanisms in the medial prefrontal cortex (mPFC) contribute to the control of different aspects of attentional performance. Rats were trained on a five-choice serial reaction time (5-CSRT) task, which provides indices of attentional functioning (percentage of correct responses), executive control (measured by anticipatory and perseverative responses), and speed. The competitive NMDA receptor antagonist CPP (50 ng/side) was infused directly into the mPFC 5 min after infusion of either 8-OH-DPAT (30 and 100 ng/side) or M100907 (100 and 300 ng/side) into the same brain area. Impairments in attentional functioning induced by CPP were completely abolished by both doses of 8-OH-DPAT or M100907. In addition, M100907 abolished the CPP-induced anticipatory responding but had no effects on perseverative over-responding, while 8-OH-DPAT reduced the perseverative over-responding but had no effects on anticipatory responding induced by CPP. The selective 5-HT(1A) receptor antagonist WAY100635 (30 ng/side) antagonized the effects of 8-OH-DPAT (100 ng/side). 8-OH-DPAT at 30 ng/side reduced the latency of correct responses in controls and CPP-injected rats and lowered the percentage of omissions in CPP-injected rats. The data show that 5-HT1A and 5-HT2A receptors in the mPFC exert opposing actions on attentional functioning and demonstrate a dissociable contribution of 5-HT1A and 5-HT2A receptors in the mPFC to different aspects of executive control such as impulsivity and compulsive perseveration.
Collapse
Affiliation(s)
- Mirjana Carli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | | | | | |
Collapse
|
40
|
Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 2006; 73:19-38. [PMID: 16546312 DOI: 10.1016/j.biopsycho.2006.01.005] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2004] [Indexed: 10/24/2022]
Abstract
A comparative and integrated account is provided of the evidence that implicates frontostriatal systems in neurodegenerative and neuropsychiatric disorders. Specifically, we have made detailed comparisons of performance following basal ganglia disease such as Parkinson's disease, with other informative groups, including Alzheimer's disease, schizophrenia and attention deficit/hyperactivity disorder and structural damage to the frontal lobes themselves. We have reviewed several behavioural paradigms including spatial attention and set-shifting, working memory and decision-making tasks in which optimal performance requires the operation of several cognitive processes that can be successfully dissociated with suitable precision in experimental animals. The role of ascending neurotransmitter systems are analysed from the perspective of different interactions with the prefrontal cortex. In particular, the role of dopamine in attentional control and spatial working memory is surveyed with reference to its deleterious as well as facilitatory effects. Parallels are identified in humans receiving dopaminergic medication, and with monkeys and rats with frontal dopamine manipulations. The effects of serotonergic manipulations are also contrasted with frontal lobe deficits observed in both humans and animals. The main findings are that certain tests of frontal lobe function are very sensitive to several neurocognitive and neuropsychiatric disorders. However, the nature of some of these deficits often differs qualitatively from those produced by frontal lobe lesions, and animal models have been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic, as well as in the reverse direction.
Collapse
Affiliation(s)
- Y Chudasama
- Laboratory of Neuropsychology, National Institute of Mental Health, Convent Drive, Building 49, Room 1B80, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Kim H, Somerville LH, Johnstone T, Polis S, Alexander AL, Shin LM, Whalen PJ. Contextual modulation of amygdala responsivity to surprised faces. J Cogn Neurosci 2005; 16:1730-45. [PMID: 15701225 DOI: 10.1162/0898929042947865] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently demonstrated a functional relationship between fMRI responses within the amygdala and the medial prefrontal cortex based upon whether subjects interpreted surprised facial expressions positively or negatively. In the present fMRI study, we sought to assess amygdala-medial prefrontal cortex responsivity when the interpretations of surprised faces were determined by contextual experimental stimuli, rather than subjective judgment. Subjects passively viewed individual presentations of surprised faces preceded by either a negatively or positively valenced contextual sentence (e. g., She just found $500 vs. She just lost $500). Negative and positive sentences were carefully matched in terms of length, situations described, and arousal level. Negatively cued surprised faces produced greater ventral amygdala activation compared to positively cued surprised faces. Responses to negative versus positive sentences were greater within the ventrolateral prefrontal cortex, whereas responses to positive versus negative sentences were greater within the ventromedial prefrontal cortex. The present study demonstrates that amygdala response to surprised facial expressions can be modulated by negatively versus positively valenced verbal contextual information. Connectivity analyses identified candidate cortical-subcortical systems subserving this modulation.
Collapse
Affiliation(s)
- Hackjin Kim
- University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chudasama Y, Nathwani F, Robbins TW. D-Amphetamine remediates attentional performance in rats with dorsal prefrontal lesions. Behav Brain Res 2005; 158:97-107. [PMID: 15680198 DOI: 10.1016/j.bbr.2004.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 11/25/2022]
Abstract
Although amphetamine treatment has been shown to promote recovery of motor function in animals with cortical ablations, the potential therapeutic effect of amphetamine on processes other than motor control, such as attention and working memory, has been relatively unexplored. Accordingly, we investigated the beneficial effect of D-amphetamine treatment in animals with dorsal prefrontal cortex lesions (dPFC) compared with sham controls on a novel combined attention-memory task (CAM) that simultaneously measures attention to a visual stimulus and memory for that stimulus. The dPFC group was impaired in their ability to correctly detect the visual stimulus. Although this deficit occurred together with increased omissions and slow response latencies, these associated deficits largely recovered within the 10 post-operative baseline sessions revealing a selective attentional deficit in this group of animals. Nonetheless, the dPFC lesion did not substantially affect the working memory component of the task. The systemic administration of d-amphetamine served to ameliorate the attentional deficit in the dPFC group at the low dose only (0.2 mg/kg). By contrast, the dPFC group were less sensitive to the detrimental effects of the high dose (0.8 mg/kg) on any aspect of task performance. However, despite improving attention to the visual stimulus, D-amphetamine did not improve memory for that stimulus which instead appeared to deteriorate. The results provide apparently the first demonstration that low doses of D-amphetamine can ameliorate an attentional deficit in animals with selective dPFC lesions and may be a useful model of cognitive deficit in ADHD, schizophrenia or frontal brain injury.
Collapse
Affiliation(s)
- Y Chudasama
- Department of Experimental Psychology, University of Cambridge, Cambridge CB23EB, UK.
| | | | | |
Collapse
|
43
|
Mirjana C, Baviera M, Invernizzi RW, Balducci C. The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 2004; 29:1637-47. [PMID: 15127084 DOI: 10.1038/sj.npp.1300479] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated whether 5-HT2A receptors contribute to the control of attentional performance by glutamate NMDA receptor mechanisms in the medial prefrontal cortex (mPFC). We examined the effects of NMDA receptor blockade in the mPFC on attentional performance by infusing a competitive glutamate NMDA receptor antagonist, 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) into the mPFC of rats performing a task of divided and sustained visual attention. The five-choice serial reaction time task provides indices of attentional functioning (% correct responses), executive control (measured by anticipatory and perseverative responses) and speed. A dose of 10 ng CPP injected bilaterally into the mPFC increased anticipatory and perseverative responding; 50 ng reduced accuracy. Increasing the stimulus duration alleviated the CPP-induced accuracy deficit but did not reduce its effects on anticipatory and perseverative responses. CPP at 50 ng caused motor hyperactivity whereas lower doses had no effect. [R-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol] (M100907) (M100907), a 5-HT2A receptor antagonist, injected subcutaneously at 10 and 40 microg/kg, had no effect on accuracy but dose dependently reversed the impairment induced by 50 ng CPP. Both doses of M100907 completely abolished CPP-induced anticipatory but not perseverative over-responding. At the dose of 40 microg/kg M100907 reversed CPP-induced motor hyperactivity. This study provides evidence that the prefronto-cortical glutamate NMDA system may make an important contribution to the control of attention and executive functions. It also indicates that 5-HT2A receptors may serve to optimize attentional selectivity and improve some aspects of executive control.
Collapse
Affiliation(s)
- Carli Mirjana
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | | | | | |
Collapse
|
44
|
Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 2004; 174:86-98. [PMID: 15071717 DOI: 10.1007/s00213-004-1805-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 01/11/2004] [Indexed: 11/25/2022]
Abstract
RATIONALE In schizophrenia, attentional disturbance is a core feature which may not only accompany the disorder, but may precede the onset of psychiatric symptoms. OBJECTIVES The five-choice serial reaction time task (5CSRTT) is a test of visuo-spatial attention that has been used extensively in rats for measuring the effects of systemic and central neurochemical manipulations on various aspects of attentional performance, including selective attention, vigilance and executive control. These findings are relevant to our understanding of the neural systems that may be compromised in patients with schizophrenia. METHODS The 5CSRTT is conducted in an operant chamber that has multiple response locations, in which brief visual stimuli can be presented randomly. Performance is maintained using food reinforcers to criterion levels of accuracy. Various aspects of performance are measured, including attentional accuracy and premature responding, especially under different attentional challenges. RESULTS The effects of systemic and intra-cerebral infusions of selective dopamine, serotonin and cholinergic receptor agents on the 5CSRTT are reviewed with a view to identifying attention-enhancing effects that may be relevant to the treatment of cognitive deficits in schizophrenia. In addition, some novel agents such as modafinil and histamine receptor agents are also considered. Examining the effects of selective neurochemical lesions helped define the neural locus of attentional effects. Similarly, findings from microdialysis studies helped identify the extracellular changes in neurotransmitters and their metabolites in freely moving rats during performance of the 5CSRTT. CONCLUSIONS The monoaminergic and cholinergic systems have independent but complementary roles in attentional function, as measured by the 5CSRTT. These functions are predominantly under the control of the prefrontal cortex and striatum. These conclusions are considered in the context of their application towards therapeutic approaches for attentional disturbances that are typically observed in schizophrenic patients.
Collapse
Affiliation(s)
- Y Chudasama
- National Institute of Mental Health, Building 49, Room 1B80, Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Courtière A, Hardouin J, Goujon A, Vidal F, Hasbroucq T. Selective effects of low-dose dopamine D1 and D2 receptor antagonists on rat information processing. Behav Pharmacol 2004; 14:589-98. [PMID: 14665976 DOI: 10.1097/00008877-200312000-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is well established that the dopaminergic system influences simple reaction time (RT) performance. However, the role of this system in more complex information processing remains to be clarified. The present study was aimed at addressing this issue. To this end, we used an inferential method that relies on choice RT procedures and allows one to identify information processing stages in both humans and rats. Long-Evans rats responded to lateral visual cues (left or right). Two task factors, signal intensity and foreperiod duration, were manipulated. Low doses of two pharmacological agents, SCH 23390 (a D1 receptor antagonist; 0.015 and 0.025 micromol/kg) and eticlopride (a D2 receptor antagonist; 0.01 and 0.02 micromol/kg), were administrated systemically. Both drugs increased choice RT: eticlopride interacted with signal intensity on RT, showing that D2 receptors mediate at least the sensory stage of stimulus preprocessing. In addition, eticlopride interacted with signal intensity on omission rate, thereby suggesting an involvement of D2 receptors in attentional processes; and SCH 23390 interacted with foreperiod duration on RT, indicating that D1 receptors specifically mediate the response adjustment stage. The effect of this drug on RT rests entirely in its interaction with foreperiod duration, allowing us to conclude that this D1 antagonist affects the response adjustment stage while sparing all other processing stages.
Collapse
Affiliation(s)
- A Courtière
- Institut de Médecine Navale du Service de Santé des Armées, Toulon, France.
| | | | | | | | | |
Collapse
|
46
|
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27:555-79. [PMID: 14599436 DOI: 10.1016/j.neubiorev.2003.09.003] [Citation(s) in RCA: 653] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prefrontal cortex in rats can be distinguished anatomically from other frontal cortical areas both in terms of cytoarchitectonic characteristics and neural connectivity, and it can be further subdivided into subterritories on the basis of such criteria. Functionally, the prefrontal cortex of rats has been implicated in working memory, attention, response initiation and management of autonomic control and emotion. In humans, dysfunction of prefrontal cortical areas with which the medial prefrontal cortex of the rat is most likely comparable is related to psychopathology including schizophrenia, sociopathy, obsessive-compulsive disorder, depression, and drug abuse. Recent literature points to the relevance of conducting a functional analysis of prefrontal subregions and supports the idea that the area of the medial prefrontal cortex in rats is characterized by its own functional heterogeneity, which may be related to neuroanatomical and neurochemical dissociations. The present review covers recent findings with the intent of correlating these distinct functional differences in the dorso-ventral axis of the rat medial prefrontal cortex with anatomical and neurochemical patterns.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Department of Biology, Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|