1
|
Schreurs BG. Classical Conditioning and Modification of the Rabbit's (Oryctolagus Cuniculus) Unconditioned Nictitating Membrane Response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental tenet of behavior is that a reflex is automatic, unconscious, involuntary, and relatively invariant. However, we have discovered that a reflex can change dramatically as a function of classical conditioning, and this change can be demonstrated independently of the conditioned stimulus. We have termed this phenomenon conditioning-specific reflex modification (CRM). Although the behavioral laws and neural substrates of nonassociative reflex changes have been identified, the behavioral laws and neural substrates of CRM are only now being revealed. For example, CRM is similar to classical conditioning in that (a) it is a function of both the strength of conditioning and (b) the strength of the unconditioned stimulus, (c) it can be extinguished, and (d) it can be generalized from one unconditioned stimulus to another. Preliminary analysis suggests that CRM may have some features in common with post-traumatic stress disorder and may provide insights into treatment of the disorder.
Collapse
|
2
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation. Learn Mem 2015; 22:258-66. [PMID: 25878138 PMCID: PMC4408770 DOI: 10.1101/lm.036947.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/04/2015] [Indexed: 12/05/2022]
Abstract
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.
Collapse
Affiliation(s)
- Hunter E Halverson
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
3
|
Schreurs BG, Burhans LB. Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach. Front Psychiatry 2015; 6:50. [PMID: 25904874 PMCID: PMC4389289 DOI: 10.3389/fpsyt.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute, West Virginia University , Morgantown, WV , USA ; Department of Physiology and Pharmacology, West Virginia University , Morgantown, WV , USA
| | - Lauren B Burhans
- Blanchette Rockefeller Neurosciences Institute, West Virginia University , Morgantown, WV , USA ; Department of Physiology and Pharmacology, West Virginia University , Morgantown, WV , USA
| |
Collapse
|
4
|
Motts SD, Schofield BR. Cholinergic cells in the tegmentum send branching projections to the inferior colliculus and the medial geniculate body. Neuroscience 2011; 179:120-30. [PMID: 21277952 PMCID: PMC3059374 DOI: 10.1016/j.neuroscience.2011.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
The pontomesencephalic tegmentum (PMT) provides cholinergic input to the inferior colliculus (IC) and the medial geniculate body (MG). PMT cells are often characterized as projecting to more than one target. The purpose of this study was to determine whether individual PMT cholinergic cells, (1) innervate the auditory pathways bilaterally via collateral projections to left and right auditory thalamus; or, (2) innervate multiple levels of the auditory pathways via collateral projections to the auditory thalamus and inferior colliculus. We used multiple retrograde tracers to identify individual PMT cells that project to more than one target. We combined the retrograde tracer studies with immunohistochemistry for choline acetyltransferase to determine whether the projecting cells were cholinergic. We found that individual PMT cells send branching axonal projections to two or more auditory targets in the midbrain and thalamus. The collateral projection pattern that we observed most frequently was to the ipsilateral IC and ipsilateral MG. Cells projecting to both MGs were somewhat less common, followed by cells projecting to the contralateral IC and ipsilateral MG. Both cholinergic and non-cholinergic cells contribute to each of these projection patterns. Less often, we found cells that project to one IC and both MGs; there was no evidence for non-cholinergic cells in this projection pattern. It is likely that collateral projections from PMT cells could have coordinated effects bilaterally and at multiple levels of the ascending auditory pathways.
Collapse
Affiliation(s)
- Susan D. Motts
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine
- School of Biomedical Sciences, Kent State University
| | - Brett R. Schofield
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine
- School of Biomedical Sciences, Kent State University
| |
Collapse
|
5
|
Halverson HE, Freeman JH. Medial auditory thalamic input to the lateral pontine nuclei is necessary for auditory eyeblink conditioning. Neurobiol Learn Mem 2010; 93:92-8. [PMID: 19706335 PMCID: PMC2815143 DOI: 10.1016/j.nlm.2009.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/28/2022]
Abstract
Auditory and visual conditioned stimulus (CS) pathways for eyeblink conditioning were investigated with reversible inactivation of the medial (MPN) or lateral (LPN) pontine nuclei. In Experiment 1, Long-Evans rats were given three phases of eyeblink conditioning. Phase 1 consisted of three training sessions with electrical stimulation of the medial auditory thalamic nuclei (MATN) paired with a periorbital shock unconditioned stimulus (US). An additional session was given with a muscimol (0.5muL, 10mM) or saline infusion targeting the LPN followed by a recovery session with no infusions. The same training and testing sequence was then repeated with either a tone or light CS in phases 2 and 3 (counterbalanced). Experiment 2 consisted of the same training as Experiment 1 except that muscimol or saline was infused in the MPN during the retention tests. Muscimol infusions targeting the LPN severely impaired retention of eyeblink conditioned responses (CRs) to the MATN stimulation and tone CSs but only partially reduced CR percentage to the light CS. Muscimol infusions that targeted the MPN had a larger effect on CR retention to the light CS relative to MATN stimulation or tone CSs. The results provide evidence that the auditory CS pathway necessary for delay eyeblink conditioning includes the MATN-LPN projection and the visual CS pathway includes the MPN.
Collapse
Affiliation(s)
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus inactivation prevents acquisition and retention of eyeblink conditioning. Learn Mem 2008; 15:532-8. [PMID: 18626096 PMCID: PMC2505321 DOI: 10.1101/lm.1002508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol infusions into the MATN contralateral to the trained eye before each of four conditioning sessions with an auditory CS. Rats were then given four additional sessions without infusions to assess savings from the initial training. All rats were then given a retention test with a muscimol infusion followed by a recovery session. Muscimol infusions through cannula placements within 0.5 mm of the MGm prevented acquisition of eyeblink conditioned responses (CRs) and also blocked CR retention. Cannula placements more than 0.5 mm from the MATN did not completely block CR acquisition and had a partial effect on CR retention. The primary and secondary effects of MATN inactivation were examined with 2-deoxy-glucose (2-DG) autoradiography. Differences in 2-DG uptake in the auditory thalamus were consistent with the cannula placements and behavioral results. Differences in 2-DG uptake were found between groups in the ipsilateral auditory cortex, basilar pontine nuclei, and inferior colliculus. Results from this experiment indicate that the MATN contralateral to the trained eye and its projection to the pontine nuclei are necessary for acquisition and retention of eyeblink CRs to an auditory CS.
Collapse
Affiliation(s)
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
7
|
Freeman JH, Halverson HE, Hubbard EM. Inferior colliculus lesions impair eyeblink conditioning in rats. Learn Mem 2007; 14:842-6. [PMID: 18086827 PMCID: PMC2151021 DOI: 10.1101/lm.716107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/12/2007] [Indexed: 11/24/2022]
Abstract
The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the cerebellum through its projection to the medial auditory thalamus. The medial auditory thalamus is necessary for eyeblink conditioning in rats and projects to the lateral pontine nuclei, which then project to the cerebellar nuclei and cortex. The current experiment examined the role of the inferior colliculus in auditory eyeblink conditioning. Rats were given bilateral or unilateral (contralateral to the conditioned eye) lesions of the inferior colliculus prior to 10 d of delay eyeblink conditioning with a tone CS. Rats with bilateral or unilateral lesions showed equivalently impaired acquisition. The extent of damage to the contralateral inferior colliculus correlated with several measures of conditioning. The findings indicate that the contralateral inferior colliculus provides auditory input to the cerebellum that is necessary for eyeblink conditioning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
8
|
Campolattaro MM, Halverson HE, Freeman JH. Medial auditory thalamic stimulation as a conditioned stimulus for eyeblink conditioning in rats. Learn Mem 2007; 14:152-9. [PMID: 17351138 PMCID: PMC1838556 DOI: 10.1101/lm.465507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/23/2007] [Indexed: 11/25/2022]
Abstract
The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the sources of sensory input to the pons that are important for eyeblink conditioning. The first experiment of the current study was designed to determine whether electrical stimulation of the medial auditory thalamic nuclei is a sufficient CS for establishing eyeblink conditioning in rats. The second experiment used anterograde and retrograde tract tracing techniques to assess neuroanatomical connections between the medial auditory thalamus and pontine nuclei. Stimulation of the medial auditory thalamus was a very effective CS for eyeblink conditioning in rats, and the medial auditory thalamus has direct ipsilateral projections to the pontine nuclei. The results suggest that the medial auditory thalamic nuclei and their projections to the pontine nuclei are components of the auditory CS pathway in eyeblink conditioning.
Collapse
Affiliation(s)
| | | | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
9
|
Abstract
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated with induced lesions of the medial auditory thalamus contralateral to the trained eye in rats. Rats were given unilateral lesions of the medial auditory thalamus or a control surgery followed by twenty 100-trial sessions of delay eyeblink conditioning with a tone CS and then five sessions of delay conditioning with a light CS. Rats that had complete lesions of the contralateral medial auditory thalamic nuclei, including the medial division of the medial geniculate, suprageniculate, and posterior intralaminar nucleus, showed a severe deficit in conditioning with the tone CS. Rats with complete lesions also showed no cross-modal facilitation (savings) when switched to the light CS. The medial auditory thalamic nuclei may modulate activity in a short-latency auditory CS pathway or serve as part of a longer latency auditory CS pathway that is necessary for eyeblink conditioning.
Collapse
|
10
|
Wikgren J, Ruusuvirta T, Korhonen T. Reflex facilitation during eyeblink conditioning and subsequent interpositus nucleus inactivation in the rabbit (Oryctolagus cuniculus). Behav Neurosci 2002; 116:1052-8. [PMID: 12492303 DOI: 10.1037/0735-7044.116.6.1052] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eyeblink conditioning in the rabbit (Oryctolagus cuniculus), not only is a conditioned response (CR) acquired, but also the original reflex is modified as a function of training. In Experiment 1, by comparing unconditioned responses in unpaired and paired groups, 3 types of reflex facilitation were distinguished. One type was linked to exposure to the unconditioned stimuli (USs) and/or experimental setting. The 2nd type was related to the formation of the memory trace for conditioned eyeblink. The 3rd type was linked to the conditioned stimulus immediately preceding the US in the paired group. In Experiment 2, reversible inactivation of the interpositus nucleus (IPN) abolished the CR and reduced the CR-related reflex facilitation, indicating that the latter depends on the plasticity of the IPN.
Collapse
Affiliation(s)
- Jan Wikgren
- Department of Psychology, University of Jyväskylä, Finland.
| | | | | |
Collapse
|