1
|
Nepomoceno EB, Rodrigues S, de Melo KS, Ferreira TL, Freestone D, Caetano MS. Insular and prelimbic cortices control behavioral accuracy and precision in a temporal decision-making task in rats. Behav Brain Res 2024; 465:114961. [PMID: 38494127 DOI: 10.1016/j.bbr.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The anterior insular cortex (AIC) comprises a region of sensory integration. It appears to detect salient events in order to guide goal-directed behavior, code tracking errors, and estimate the passage of time. Temporal processing in the AIC may be instantiated by the integration of representations of interoception. Projections between the AIC and the medial prefrontal cortex (mPFC) - found both in rats and humans - also suggest a possible role for these structures in the integration of autonomic responses during ongoing behavior. Few studies, however, have investigated the role of AIC and mPFC in decision-making and time estimation tasks. Moreover, their findings are not consistent, so the relationship between temporal decision-making and those areas remains unclear. The present study employed bilateral inactivations to explore the role of AIC and prelimbic cortex (PL) in rats during a temporal decision-making task. In this task, two levers are available simultaneously (but only one is active), one predicting reinforcement after a short, and the other after a long-fixed interval. Optimal performance requires a switch from the short to the long lever after the short-fixed interval elapsed and no reinforcement was delivered. Switch behavior from the short to the long lever was dependent on AIC and PL. During AIC inactivation, switch latencies became more variable, while during PL inactivation switch latencies became both more variable and less accurate. These findings point to a dissociation between AIC and PL in temporal decision-making, suggesting that the AIC is important for temporal precision, and PL is important for both temporal accuracy and precision.
Collapse
Affiliation(s)
- Estela B Nepomoceno
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Neuropsychology laboratory, Universidade Municipal de São Caetano do Sul (USCS), Brazil.
| | - Samanta Rodrigues
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Katia S de Melo
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil
| | - Tatiana L Ferreira
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil
| | | | - Marcelo S Caetano
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino (INCT-ECCE), Brazil
| |
Collapse
|
2
|
Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27001. [PMID: 32073883 PMCID: PMC7064322 DOI: 10.1289/ehp4977] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kadijah Abston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Harvey
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
3
|
Morris-Schaffer K, Sobolewski M, Allen JL, Marvin E, Yee M, Arora M, O'Reilly MA, Cory-Slechta DA. Effect of neonatal hyperoxia followed by concentrated ambient ultrafine particle exposure on cumulative learning in C57Bl/6J mice. Neurotoxicology 2018; 67:234-244. [PMID: 29920326 DOI: 10.1016/j.neuro.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
Hyperoxia during treatment for prematurity may enhance susceptibility to other risk factors for adverse brain development, such as air pollution exposure, as both of these risk factors have been linked to a variety of adverse neurodevelopmental outcomes. This study investigated the combined effects of neonatal hyperoxia followed by inhalation of concentrated ambient ultrafine particles (CAPS, <100 nm in aerodynamic diameter) on learning. C57BL/6 J mice were birthed into 60% oxygen until postnatal day (PND) 4 and subsequently exposed to filtered air or to CAPS using the Harvard University Concentrated Ambient Particle System (HUCAPS) from PND 4-7 and 10-13. Behavior was assessed on a fixed interval (FI) schedule of reinforcement in which reward is available only after a fixed interval of time elapses, as well as expected reductions in behavior during an extinction procedure when reward was withheld. Both produce highly comparable behavioral performance across species. Performance measures included rate of responding, response accuracy, and temporal control (quarter life). Exposure to hyperoxia or CAPS resulted in lower mean quarter life values, an effect that was further enhanced in males by combined exposure, findings consistent with delayed learning of the FI schedule. Females also initially exhibited greater reductions in quarter life values following the combined exposure to hyperoxia and CAPS and delayed reductions in response rates during extinction. Combined hyperoxia and CAPS produced greater learning deficits than either risk factor alone, consistent with enhanced neurodevelopmental toxicity, findings that could reflect a convergence of both insults on common neurobiological systems. The basis for sex differences in outcome warrants further research. This study highlights the potential for heightened risk of adverse neurodevelopment outcomes in individuals born preterm in regions with higher levels of ultrafine particle (UFP) air pollution, in accord with the multiplicity of risk factors extant in the human environment.
Collapse
Affiliation(s)
- Keith Morris-Schaffer
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Joshua L Allen
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester NY, 14642, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester NY, 14642, United States
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States.
| |
Collapse
|
4
|
Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA. Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 2018; 101:36-49. [PMID: 29355495 PMCID: PMC5970043 DOI: 10.1016/j.yhbeh.2018.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 11/24/2022]
Abstract
Metals, including lead (Pb), methylmercury (MeHg) and arsenic (As), are long-known developmental neurotoxicants. More recently, environmental context has been recognized to modulate metals toxicity, including nutritional state and stress exposure. Modulation of metal toxicity by stress exposure can occur through shared targeting of endocrine systems, such as the hypothalamic-pituitary-adrenal axis (HPA). Our previous rodent research has identified that prenatal stress (PS) modulates neurotoxicity of two endocrine active metals (EAMs), Pb and MeHg, by altering HPA and CNS systems disrupting behavior. Here, we review this research and further test the hypothesis that prenatal stress modulates metals neurotoxicity by expanding to test the effect of developmental As ± PS exposure. Serum corticosterone and behavior was assessed in offspring of dams exposed to As ± PS. PS increased female offspring serum corticosterone at birth, while developmental As exposure decreased adult serum corticosterone in both sexes. As + PS induced reductions in locomotor activity in females and reduced response rates on a Fixed Interval schedule of reinforcement in males, with the latter suggesting unique learning deficits only in the combined exposure. As-exposed males showed increased time in the open arms of an elevated plus maze and decreased novel object recognition whereas females did not. These data further confirm the hypothesis that combined exposure to chemical (EAMs) and non-chemical (PS) stressors results in enhanced neurobehavioral toxicity. Given that humans are exposed to multiple environmental risk factors that alter endocrine function in development, such models are critical for risk assessment and public health protection, particularly for children.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States. marissa:
| | - Katherine Conrad
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Marvin
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Joshua L Allen
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| |
Collapse
|
5
|
Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology 2014; 45:121-30. [PMID: 25454719 DOI: 10.1016/j.neuro.2014.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (fixed interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, atrazine (ATR - 10mg/kg), perfluorooctanoic acid (PFOA - 0.1mg/kg), bisphenol-A (BPA - 50 μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD - 0.25 μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across three testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to fully investigate mixtures, including chemicals that converge on common physiological substrates to examine potential mechanisms of toxicity with full dose effect curves to assist in interpretations of relevant mechanisms.
Collapse
|
6
|
Allen JL, Liu X, Weston D, Prince L, Oberdörster G, Finkelstein JN, Johnston CJ, Cory-Slechta DA. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol Sci 2014; 140:160-78. [PMID: 24690596 PMCID: PMC4081635 DOI: 10.1093/toxsci/kfu059] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/06/2014] [Indexed: 11/12/2022] Open
Abstract
The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32-38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may represent a significant underexplored risk factor for central nervous system diseases/disorders and thus a significant public health threat even beyond current appreciation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob N Finkelstein
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| | - Carl J Johnston
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| |
Collapse
|
7
|
The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J Neurosci 2011; 30:16585-600. [PMID: 21147998 DOI: 10.1523/jneurosci.3958-10.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine released in the nucleus accumbens is thought to contribute to the decision to exert effort to seek reward. This hypothesis is supported by findings that performance of tasks requiring higher levels of effort is more susceptible to disruption by manipulations that reduce accumbens dopamine function than tasks that require less effort. However, performance of some low-effort cue-responding tasks is highly dependent on accumbens dopamine. To reconcile these disparate results, we made detailed behavioral observations of rats performing various operant tasks and determined how injection of dopamine receptor antagonists into the accumbens influenced specific aspects of the animals' behavior. Strikingly, once animals began a chain of operant responses, the antagonists did not affect the ability to continue the chain until reward delivery. Instead, when rats left the operandum, the antagonists severely impaired the ability to return. We show that this impairment is specific to situations in which the animal must determine a new set of approach actions on each approach occasion; this behavior is called "flexible approach." Both high-effort operant tasks and some low-effort cue-responding tasks require dopamine receptor activation in the accumbens because animals pause their responding and explore the chamber, and accumbens dopamine is required to terminate these pauses with flexible approach to the operandum. The flexible approach hypothesis provides a unified framework for understanding the contribution of the accumbens and its dopamine projection to reward-seeking behavior.
Collapse
|
8
|
Rossi-George A, Virgolini MB, Weston D, Thiruchelvam M, Cory-Slechta DA. Interactions of lifetime lead exposure and stress: behavioral, neurochemical and HPA axis effects. Neurotoxicology 2010; 32:83-99. [PMID: 20875452 DOI: 10.1016/j.neuro.2010.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 08/12/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
Lead (Pb) and stress co-occur as risk factors, share biological substrates and produce common adverse effects. We previously found that prenatal restraint stress (PS) or offspring stress (OS) could enhance maternal Pb-induced behavioral, brain neurotransmitter level and HPA axis changes. The current study examined how lifetime Pb exposure, consistent with human environmental exposure, interacts with stress. Dams were exposed to Pb beginning 2 mos prior to breeding (0, 50 or 150ppm in drinking water), PS on gestational days 16 and 17, or the combination. Offspring continued on the same Pb exposure as the dam. A subset of Pb+PS offspring also received 3 additional stress challenges (OS), yielding 9 exposure groups/gender: 0-NS, 0-PS, 0-OS, 50-NS, 50-PS, 50-OS, 150-NS, 150-PS and 150-OS. As with maternal Pb (Virgolini et al., 2008a), lifetime Pb and stress influenced Fixed Interval (FI) behavior primarily in females. Relative to 0-NS control, reductions in postreinforcement pause (PRP) times were seen only with combined Pb+PS (50-PS, 50-OS, 150-PS). Stress increased FI response rates when Pb alone was without effect (150-PS, 150-OS), but gradually mitigated rate increases produced by Pb alone (50-PS, 50-OS), effects that appear to be due primarily to PS, as they were of comparable magnitude in PS and OS groups. Individual subject data suggest that enhanced Pb and PS effects reflect increasing numbers of subjects shifting to the high end of the normal range of FI performance values, consistent with a dose-response type of Pb+stress additivity. Consistent with reports of cortico-striatal mediation of both interval timing (PRP) and FI rates, principal component analyses suggested potential mediation via altered frontal cortex norepinephrine, reduced nucleus accumbens dopaminergic control and enhanced striatal monoamine control. Altered FI performance, whether occurring through changes in response rate, PRP, or both, represent behavioral inefficiency and potentially sub-optimal or even dysfunctional resource/energy use.
Collapse
Affiliation(s)
- A Rossi-George
- Environmental and Occupational Health Sciences Institute, a joint Institute of the Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | | | | | | | | |
Collapse
|
9
|
Influence of low level maternal Pb exposure and prenatal stress on offspring stress challenge responsivity. Neurotoxicology 2008; 29:928-39. [PMID: 18951918 DOI: 10.1016/j.neuro.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 11/20/2022]
Abstract
We previously demonstrated potentiated effects of maternal Pb exposure producing blood Pb(PbB) levels averaging 39microg/dl combined with prenatal restraint stress (PS) on stress challenge responsivity of female offspring as adults. The present study sought to determine if: (1) such interactions occurred at lower PbBs, (2) exhibited gender specificity, and (3) corticosterone and neurochemical changes contributed to behavioral outcomes. Rat dams were exposed to 0, 50 or 150ppm Pb acetate drinking water solutions from 2 mos prior to breeding through lactation (pup exposure ended at weaning; mean PbBs of dams at weaning were <1, 11 and 31microg/dl, respectively); a subset in each Pb group underwent prenatal restraint stress (PS) on gestational days 16-17. The effects of variable intermittent stress challenge (restraint, cold, novelty) on Fixed Interval (FI) schedule controlled behavior and corticosterone were examined in offspring when they were adults. Corticosterone changes were also measured in non-behaviorally tested (NFI) littermates. PS alone was associated with FI rate suppression in females and FI rate enhancement in males; Pb exposure blunted these effects in both genders, particularly following restraint stress. PS alone produced modest corticosterone elevation following restraint stress in adult females, but robust enhancements in males following all challenges. Pb exposure blunted these corticosterone changes in females, but further enhanced levels in males. Pb-associated changes showed linear concentration dependence in females, but non-linearity in males, with stronger or selective changes at 50ppm. Statistically, FI performance was associated with corticosterone changes in females, but with frontal cortical dopaminergic and serotonergic changes in males. Corticosterone changes differed markedly in FI vs. NFI groups in both genders, demonstrating a critical role for behavioral history and raising caution about extrapolating biochemical markers across such conditions. These findings demonstrate that maternal Pb interacts with prenatal stress to further modify both behavioral and corticosterone responses to stress challenge, thereby suggesting that studies of Pb in isolation from other disease risk factors will not reveal the extent of its adverse effects. These findings also underscore the critical need to extend screening programs for elevated Pb exposure, now restricted to young children, to pregnant, at risk, women.
Collapse
|
10
|
Virgolini MB, Rossi-George A, Lisek R, Weston DD, Thiruchelvam M, Cory-Slechta DA. CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology 2008; 29:812-27. [PMID: 18440644 DOI: 10.1016/j.neuro.2008.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/22/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Lead (Pb) exposure and elevated stress are co-occurring risk factors. Both impact brain mesolimbic dopamine/glutamate systems involved in cognitive functions. We previously found that maternal stress can potentiate Pb-related adverse effects in offspring at blood Pb levels averaging approximately 40 microg/dl. The current study of combined Pb exposure and stress sought to extend those results to lower levels of Pb exposure, and to examine relationships among consequences in offspring for fixed interval (FI) schedule-controlled behavior, neurochemistry and corticosterone levels. Dams were exposed to maternal Pb beginning 2 months prior to breeding (0, 50 or 150 ppm in drinking water), maternal restraint stress on gestational days 16 and 17 (MS), or the combination. In addition, a subset of offspring from each resultant treatment group was also exposed intermittently to variable stressors as adults (MS+OS). Marked "Pb-stress"-related increases in response rates on a fixed interval schedule, a behavioral performance with demonstrated sensitivity to Pb, occurred preferentially in female offspring even at mean blood Pb levels of 11 microg/dl when 50 ppm Pb was combined with maternal and offspring stress. Greater sensitivity of females to frontal cortex catecholamine changes may contribute to the elevated FI response rates as mesocorticolimbic systems are critical to the mediation of this behavior. Basal and final corticosterone levels of offspring used to evaluate FI performance differed significantly from those of non-behaviorally tested (NFI) littermates, demonstrating that purported mechanisms of Pb, stress or Pb/stress effects determined in non-behaviorally trained animals cannot necessarily be generalized to animals with behavioral histories. Finally, the persistent and permanent consequences of Pb, stress and Pb+stress in offspring of both genders suggest that Pb screening programs should include pregnant women at risk for elevated Pb exposure, and that stress should be considered as an additional risk factor. Pb+stress effects observed in the absence of either risk factor alone (i.e., potentiated effects) raise questions about the capacity of current hazard identification approaches to adequately identify human health risks posed by neurotoxicants.
Collapse
Affiliation(s)
- M B Virgolini
- Environmental and Occupational Health Sciences Institute (University of Medicine and Dentistry of New Jersey and Rutgers, the State University of New Jersey), Piscataway, NJ 08854, United States
| | | | | | | | | | | |
Collapse
|
11
|
Cory-Slechta DA, Virgolini MB, Rossi-George A, Thiruchelvam M, Lisek R, Weston D. Lifetime consequences of combined maternal lead and stress. Basic Clin Pharmacol Toxicol 2008; 102:218-27. [PMID: 18226077 DOI: 10.1111/j.1742-7843.2007.00189.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elevated lead (Pb) exposure and high stress both target low socio-economic status populations. Both also act on the hypothalamic-pituitary-adrenal (HPA) axis. Pb disrupts cognition through effects on the mesocorticolimbic dopamine pathway. Stress hormones act on this same pathway via the HPA axis. The fact that Pb and stress are likely interactive risk factors served as the rationale for a series of studies in our laboratory. These demonstrate that stress can modify Pb effects, that Pb can modify stress responsivity, and, notably, that Pb + stress effects can occur in the absence of an effect of either alone in rats. Furthermore, maternal only Pb exposure can permanently alter basal corticosterone levels, stress responsivity (i.e. permanent modification of HPA axis function) and brain catecholamines in offspring of both genders. Interactive effects of Pb + stress are not limited to early development: even Pb exposures initiated post-weaning alter basal corticosterone and stress responsivity. Outcomes differ in relation to gender, brain region, stressor and time of measurement, making Pb + stress interactions complex. Altered HPA axis function may serve as a mechanism for the behavioural and catecholaminergic neurotoxicity associated with Pb, as well as for the increased incidence of disease and dysfunctions associated with low socio-economic status. The permanent consequences of maternal only Pb exposure suggest that Pb screening programmes should include pregnant women at risk for elevated Pb exposure, and that stress should be considered as an additional risk factor. Pb + stress effects observed in the absence of either risk factor alone raise questions about the capacity of current hazard identification approaches to adequately identify human health risks posed by neurotoxicants.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 2007; 191:521-50. [PMID: 16983543 DOI: 10.1007/s00213-006-0510-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 07/03/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND The nucleus accumbens is the ventral extent of the striatum, the main input nucleus of the basal ganglia. Recent hypotheses propose that the accumbens and its dopamine projection from the midbrain contribute to appetitive behaviors required to obtain reward. However, the specific nature of this contribution is unclear. In contrast, significant advances have been made in understanding the role of the dorsal striatum in action selection and decision making. OBJECTIVE In order to develop a hypothesis of the role of nucleus accumbens dopamine in action selection, the physiology and behavioral pharmacology of the nucleus accumbens are compared to those of the dorsal striatum. HYPOTHESES Three hypotheses concerning the role of dopamine in these structures are proposed: (1) that dopamine release in the dorsal striatum serves to facilitate the ability to respond appropriately to temporally predictable stimuli (that is, stimuli that are so predictable that animals engage in anticipatory behavior just prior to the stimulus); (2) that dopamine in the nucleus accumbens facilitates the ability to respond to temporally unpredictable stimuli (which require interruption of ongoing behavior); and (3) that accumbens neurons participate in action selection in response to such stimuli by virtue of their direct (monosynaptic inhibitory) and indirect (polysynaptic excitatory) projections to basal ganglia output nuclei.
Collapse
Affiliation(s)
- Saleem M Nicola
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Ste. 200, Emeryville, CA 94608, USA.
| |
Collapse
|
13
|
Giertler C, Bohn I, Hauber W. Transient inactivation of the rat nucleus accumbens does not impair guidance of instrumental behaviour by stimuli predicting reward magnitude. Behav Pharmacol 2004; 15:55-63. [PMID: 15075627 DOI: 10.1097/00008877-200402000-00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The involvement of the nucleus accumbens (NAc) in the determination of reaction times (RTs) of instrumental responses by the expectancy of future reward was investigated. A simple RT task demanding conditioned lever release was used, in which the upcoming reward magnitude (5 versus 1 pellet) was signalled in advance by discriminative cues. In rats which acquired the task, RTs of instrumental responses were significantly shorter to the discriminative cue predictive of high reward magnitude. Inactivation of the NAc by lidocaine had no effect on RTs and their determination by cue-associated reward magnitudes, and did not affect the rate of correct responses. In keeping with an earlier study, intra-NAc infusion of amphetamine decreased RTs, impaired RT determination by cue-associated reward magnitudes and reduced the rate of correct responses. The unexpected finding that lidocaine inactivation of the NAc had no effect parallels previous data showing that lesions of NAc did not impair RT performance, while manipulation of intra-NAc glutamate or dopamine transmission impaired various aspects of RT performance in comparable tasks. It is suggested that experimental manipulations such as transient and permanent inactivation, which almost completely inhibit NAc neuronal output, allow alternative routes to be used to effectively control behaviour in the task employed here.
Collapse
Affiliation(s)
- C Giertler
- Abteilung Tierphysiologie, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
14
|
MacPhail RC, O'Callaghan JP, Cohn J. Acquisition, steady-state performance, and the effects of trimethyltin on the operant behavior and hippocampal GFAP of Long-Evans and Fischer 344 rats. Neurotoxicol Teratol 2003; 25:481-90. [PMID: 12798965 DOI: 10.1016/s0892-0362(03)00012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Strain differences represent an overlooked variable that may play an important role in neurotoxic outcomes that can impact regulatory decision making. Here, we examined the strain-dependent effects of trimethyltin (TMT), a compound used as a positive control for behavioral and neurochemical assessments of neurotoxicity. Adult male Long-Evans (LE) and Fischer 344 (F344) rats (n=12 each) were trained to respond under a multiple, fixed-interval 3-min fixed-ratio 10-response (multi FI 3-min FR10) schedule of milk reinforcement. Acquisition was characterized by time-dependent changes in several behavioral endpoints in both strains, although rate of acquisition of the fixed-interval pattern of responding was slower in F344 rats. Steady-state (baseline) performance was characterized by slower overall rates of responding in F344 rats. There was little evidence of strain differences in many of the other baseline performance measures. Rats of each strain were then divided into two equal groups that received either 1 ml/kg saline or 8.0 mg/kg iv TMT approximately 18 h before the next test session. TMT produced transient changes in the performance of LE and F344 rats that lasted for several sessions. For many behavioral measures, F344 rats were more affected by TMT than were LE rats. TMT-induced reactive gliosis, as assessed by assaying glial fibrillary acidic protein (GFAP), was also greater in F344 rats than in LE rats. These results suggest F344 rats may be more susceptible to TMT-induced neurotoxicity than are LE rats.
Collapse
Affiliation(s)
- R C MacPhail
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
15
|
Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 2002. [PMID: 11826135 DOI: 10.1523/jneurosci.22-03-01063.2002] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through its complex role in cognition, memory, and emotion, the mammalian prefrontal cortex is thought to contribute to the organization of adaptive behavioral actions. In the present studies we examined the role of dopaminergic D1 and glutamatergic NMDA receptors within the prefrontal cortex of the rat during the development of adaptive instrumental learning. Hungry rats with bilateral indwelling cannulas aimed at the medial prefrontal cortex were trained to lever-press for food. Infusion of the selective D1 antagonist SCH-23390 (0.15, 0.3, 3.0 nmol) dose-dependently impaired acquisition of this behavior. Higher doses also impaired expression of this task. Co-infusion of the lowest dose of SCH 23390 with a low dose of the NMDA antagonist AP-5 (0.5 nmol), each of which had no effect on learning when infused alone, potently reduced the ability to acquire the response. Inhibition of intracellular protein kinase A with the selective PKA inhibitor Rp-cAMPS also disrupted acquisition, suggesting that PKA is an intracellular substrate for a D1-NMDA receptor interaction. In control experiments, drug infusions that impaired learning did not affect food intake or locomotion, suggesting a specific effect on learning. We hypothesize that coincident detection of D1-NMDA receptor activation and its transcriptional consequences, within multiple sites of a distributed corticostriatal network, may represent a conserved molecular mechanism for instrumental learning.
Collapse
|
16
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|