1
|
Singh D, Patri S, Narahari V, Segireddy RR, Dey S, Saurabh A, Macha V, Prabhu NP, Srivastava A, Kolli SK, Kota AK. A Conserved Plasmodium Structural Integrity Maintenance Protein (SIMP) is associated with sporozoite membrane and is essential for maintaining shape and infectivity. Mol Microbiol 2022; 117:1324-1339. [PMID: 35301756 DOI: 10.1111/mmi.14894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium sporozoites are extracellular forms introduced during mosquito bite that selectively invade mammalian hepatocytes. Sporozoites are delimited by a cell membrane that is linked to the underlying acto-myosin molecular motor. While membrane proteins with roles in motility and invasion have been well studied, very little is known about proteins that maintain the sporozoite shape. We demonstrate that in Plasmodium berghei (Pb) a conserved hypothetical gene, PBANKA_1422900 specifies sporozoite structural integrity maintenance protein (SIMP) required for maintaining the sporozoite shape and motility. Sporozoites lacking SIMP exhibited loss of regular shape, extensive membrane blebbing at multiple foci and membrane detachment. The mutant sporozoites failed to infect hepatocytes, though the altered shape did not affect the organisation of cytoskeleton or inner membrane complex (IMC). Interestingly, the components of IMC failed to extend under the membrane blebs likely suggesting that SIMP may assist in anchoring the membrane to IMC. Endogenous C-terminal HA tagging localized SIMP to membrane and revealed the C-terminus of the protein to be extracellular. Since SIMP is highly conserved amongst Plasmodium species, these findings have important implications for utilising it as a novel sporozoite specific vaccine candidate.
Collapse
Affiliation(s)
- Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Smita Patri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Veeda Narahari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameswara R Segireddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vijay Macha
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Arun Kumar Kota
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
2
|
Gliding motility in apicomplexan parasites. Semin Cell Dev Biol 2015; 46:135-42. [DOI: 10.1016/j.semcdb.2015.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
3
|
Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol 2013; 16:438-44. [DOI: 10.1016/j.mib.2013.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 02/03/2023]
|
4
|
Siden-Kiamos I, Ganter M, Kunze A, Hliscs M, Steinbüchel M, Mendoza J, Sinden RE, Louis C, Matuschewski K. Stage-specific depletion of myosin A supports an essential role in motility of malarial ookinetes. Cell Microbiol 2011; 13:1996-2006. [PMID: 21899701 DOI: 10.1111/j.1462-5822.2011.01686.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional analysis of Plasmodium genes by classical reverse genetics is currently limited to mutants that are viable during erythrocytic schizogony, the pathogenic phase of the malaria parasite where transfection is performed. Here, we describe a conceptually simple experimental approach to study the function of genes essential to the asexual blood stages in a subsequent life cycle stage by a promoter-swap approach. As a proof of concept we targeted the unconventional class XIV myosin MyoA, which is known to be required for Toxoplasma gondii tachyzoite locomotion and host cell invasion. By placing the corresponding Plasmodium berghei gene, PbMyoA, under the control of the apical membrane antigen 1 (AMA1) promoter, expression in blood stages is maintained but switched off during transmission to the insect vector, i.e. ookinetes. In those mutant ookinetes gliding motility is entirely abolished resulting in a complete block of life cycle progression in Anopheles mosquitoes. Similar approaches should permit the analysis of gene function in the mosquito forms that are shared with the erythrocytic stages of the malaria parasite.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71110 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kortagere S, Welsh WJ, Morrisey JM, Daly T, Ejigiri I, Sinnis P, Vaidya AB, Bergman LW. Structure-based design of novel small-molecule inhibitors of Plasmodium falciparum. J Chem Inf Model 2010; 50:840-9. [PMID: 20426475 PMCID: PMC2881581 DOI: 10.1021/ci100039k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malaria is endemic in most developing countries, with nearly 500 million cases estimated to occur each year. The need to design a new generation of antimalarial drugs that can combat the most drug-resistant forms of the malarial parasite is well recognized. In this study, we wanted to develop inhibitors of key proteins that form the invasion machinery of the malarial parasite. A critical feature of host-cell invasion by apicomplexan parasites is the interaction between the carboxy terminal tail of myosin A (MyoA) and the myosin tail interacting protein (MTIP). Using the cocrystal structure of the Plasmodium knowlesi MTIP and the MyoA tail peptide as input to the hybrid structure-based virtual screening approach, we identified a series of small molecules as having the potential to inhibit MTIP-MyoA interactions. Of the initial 15 compounds tested, a pyrazole-urea compound inhibited P. falciparum growth with an EC(50) value of 145 nM. We screened an additional 51 compounds belonging to the same chemical class and identified 8 compounds with EC(50) values less than 400 nM. Interestingly, the compounds appeared to act at several stages of the parasite's life cycle to block growth and development. The pyrazole-urea compounds identified in this study could be effective antimalarial agents because they competitively inhibit a key protein-protein interaction between MTIP and MyoA responsible for the gliding motility and the invasive features of the malarial parasite.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kuehn A, Simon N, Pradel G. Family members stick together: multi-protein complexes of malaria parasites. Med Microbiol Immunol 2010; 199:209-26. [PMID: 20419315 DOI: 10.1007/s00430-010-0157-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/24/2022]
Abstract
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.
Collapse
Affiliation(s)
- Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, Würzburg, Germany
| | | | | |
Collapse
|
7
|
Heintzelman MB, Mateer MJ. GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol 2008; 94:158-68. [PMID: 18372636 DOI: 10.1645/ge-1339.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents the first characterization of a WD40 repeat-containing myosin identified in the apicomplexan parasite Gregarina polymorpha. This 222.7 kDa myosin, GpMyoF, contains a canonical myosin motor domain, a neck domain with 6 IQ motifs, a tail domain containing short regions of predicted coiled-coil structure, and, most notably, multiple WD40 repeats at the C-terminus. In other proteins such repeats assemble into a beta-propeller structure implicated in mediating protein-protein interactions. Confocal microscopy suggests that GpMyoF is localized to the annular myonemes that gird the parasite cortex. Extraction studies indicate that this myosin shows an unusually tight association with the cytoskeletal fraction and can be solubilized only by treatment with high pH (11.5) or the anionic detergent sarkosyl. This novel myosin and its homologs, which have been identified in several related genera, appear to be unique to the Apicomplexa and represent the only myosins known to contain the WD40 domain. The function of this myosin in G. polymorpha or any of the other apicomplexan parasites remains uncertain.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | |
Collapse
|
8
|
Schüler H, Matuschewski K. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 2006; 7:1433-9. [PMID: 17010119 DOI: 10.1111/j.1600-0854.2006.00484.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and rapid host cell invasion is a prerequisite for an intracellular parasitic life style. Pathogens typically induce receptor-mediated endocytosis and hijack the force-transducing system of a host cell to gain access to a replication-competent niche. In striking contrast, apicomplexan parasites such as Plasmodium, the causative agent of malaria, and the human and animal pathogens Toxoplasma and Cryptosporidium employ their own actomyosin motor machinery to propel themselves into prospective host cells. Understanding the regulation and dynamics of actin-based motility of these parasites is therefore central to understanding their pathogenesis. The parasite genomes harbour surprisingly few potential actin-regulatory proteins indicating that a basic repertoire meets the requirements to regulate actin dynamics. In this article, we summarize our current knowledge of Plasmodium microfilament dynamics and describe its potential players.
Collapse
Affiliation(s)
- Herwig Schüler
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.
| | | |
Collapse
|
9
|
Siden-Kiamos I, Pinder JC, Louis C. Involvement of actin and myosins in Plasmodium berghei ookinete motility. Mol Biochem Parasitol 2006; 150:308-17. [PMID: 17028009 DOI: 10.1016/j.molbiopara.2006.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/04/2006] [Accepted: 09/04/2006] [Indexed: 11/27/2022]
Abstract
Ookinetes of the genus Plasmodium are motile, invasive cells that develop in the mosquito midgut following ingestion of a parasite-infected blood meal. We show here that ookinetes display gliding motility on glass slides in the presence of insect cells. Moreover, in addition to stationary "flexing" and "twirling" of the cells, two distinct types of movements occur: productive forward translocational motility in straight segment that progresses with an average speed of approximately 6mum/min and rotational motility, which does not lead to forward translocation. Locomotion is reduced by treatment with butanedione monoxime, an inhibitor of myosin ATPase, and by three different actin inhibitors. We also studied the expression during ookinete development of genes encoding actin and two small class XIV myosins, PbMyoA, and PbMyoB. Western immunoblots revealed that PbMyoA is only present in fully mature ookinetes, whilst the other two proteins are additionally expressed in gametocytes and zygotes. Immunofluorescence experiments reveal that MyoA and actin co-localize in the apical tip of the parasite whereas MyoB displays a punctate pattern of expression around the entire cell periphery. Following treatment with jasplakinolide, the apparent level of detectable actin appears to substantially increase and becomes concentrated in a discrete area in the basal pole of the ookinete.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, Crete, Greece
| | | | | |
Collapse
|
10
|
Jones ML, Kitson EL, Rayner JC. Plasmodium falciparum erythrocyte invasion: A conserved myosin associated complex. Mol Biochem Parasitol 2006; 147:74-84. [PMID: 16513191 DOI: 10.1016/j.molbiopara.2006.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
Host cell invasion by apicomplexan parasites is powered by an actin/myosin motor complex that has been most thoroughly described in Toxoplasma gondii tachyzoites. In T. gondii, two inner membrane complex (IMC) proteins, the peripheral protein TgGAP45 and the transmembrane protein TgGAP50, form a complex with the myosin, TgMyoA, and its light chain, TgMLC1. This complex, referred to as the glideosome, anchors the invasion motor to the IMC. We have identified and characterized orthologues of TgMLC1, TgGAP45 and TgGAP50 in blood-stages of the major human pathogen Plasmodium falciparum, supporting the idea that the same basic complex drives host cell invasion across the apicomplexan phylum. The P. falciparum glideosome proteins are transcribed, expressed and localized in a manner consistent with a role in erythrocyte invasion. Furthermore, PfMyoA interacts with PfMTIP through broadly conserved mechanisms described in other eukaryotes, and forms a complex with PfGAP45 and PfGAP50 in late schizonts and merozoites. P. falciparum is known to use multiple alternative invasion pathways to enter erythrocytes, hampering vaccine development efforts targeting erythrocyte invasion. Our data suggests that the same invasion motor underpins all alternative invasion pathways, making it an attractive target for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Matthew L Jones
- Division of Geographic Medicine, Department of Medicine, 845 19th St. South, BBRB 567, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
11
|
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 2006; 103:3681-6. [PMID: 16505385 PMCID: PMC1533776 DOI: 10.1073/pnas.0506307103] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.
Collapse
Affiliation(s)
- Bernardo J Foth
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|
12
|
Herm-Götz A, Delbac F, Weiss S, Nyitrai M, Stratmann R, Tomavo S, Sibley LD, Geeves MA, Soldati D. Functional and biophysical analyses of the class XIV Toxoplasma gondii Myosin D. J Muscle Res Cell Motil 2006; 27:139-51. [PMID: 16470333 DOI: 10.1007/s10974-005-9046-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The obligate intracellular parasite Toxoplasma gondii uses gliding motility to migrate across the biological barriers of the host and to invade cells. This unique form of locomotion requires an intact actin cytoskeleton and involves at least one motor protein (TgMyoA) that belongs to the class XIV of the myosin superfamily. TgMyoA is anchored in the inner membrane complex and is essential for the gliding motion, host cell invasion and egress of T. gondii tachyzoites. TgMyoD is the smallest T. gondii myosin and is structurally very closely related to TgMyoA. We show here that TgMyoD exhibits similar transient kinetic properties as the fast single-headed TgMyoA. To determine if TgMyoD also contributes to parasite gliding motility, the TgMyoD gene was disrupted by double homologous recombination. In contrast to TgMyoA, TgMyoD gene is dispensable for tachyzoite propagation and motility. Parasites lacking TgMyoD glide normally and their virulence is not compromised in mice. The fact that TgMyoD is predominantly expressed in bradyzoites explains the absence of a phenotype observed with myodko in tachyzoites and does not exclude a role of this motor in gliding that would be restricted to the cyst forming but nevertheless motile stage of the parasite.
Collapse
Affiliation(s)
- Angelika Herm-Götz
- Hygieneinstitut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heintzelman MB. Cellular and Molecular Mechanics of Gliding Locomotion in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:79-129. [PMID: 16939778 DOI: 10.1016/s0074-7696(06)51003-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliding is a form of substrate-dependent cell locomotion exploited by a variety of disparate cell types. Cells may glide at rates well in excess of 1 microm/sec and do so without the gross distortion of cellular form typical of amoeboid crawling. In the absence of a discrete locomotory organelle, gliding depends upon an assemblage of molecules that links cytoplasmic motor proteins to the cell membrane and thence to the appropriate substrate. Gliding has been most thoroughly studied in the apicomplexan parasites, including Plasmodium and Toxoplasma, which employ a unique assortment of proteins dubbed the glideosome, at the heart of which is a class XIV myosin motor. Actin and myosin also drive the gliding locomotion of raphid diatoms (Bacillariophyceae) as well as the intriguing form of gliding displayed by the spindle-shaped cells of the primitive colonial protist Labyrinthula. Chlamydomonas and other flagellated protists are also able to abandon their more familiar swimming locomotion for gliding, during which time they recruit a motility apparatus independent of that driving flagellar beating.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
14
|
Chaparro-Olaya J, Margos G, Coles DJ, Dluzewski AR, Mitchell GH, Wasserman MM, Pinder JC. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. ACTA ACUST UNITED AC 2005; 60:200-13. [PMID: 15754360 DOI: 10.1002/cm.20055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Six myosins genes are now annotated in the Plasmodium falciparum Genome Project. Malaria myosins have been named alphabetically; accordingly, we refer to the two latest additions as Pfmyo-E and Pfmyo-F. Both new myosins contain regions characteristic of the functional motor domain of "true" myosins and, unusually for P. falciparum myosins, Pfmyo-F encodes two consensus IQ light chain-binding motifs. Phylogenetic analysis of the 17 currently known apicomplexan myosins together with one representative of each myosin class clusters all but one of the apicomplexan sequences together in Class XIV. This refines the earlier definition of the Class XIV Subclasses XIVa and XIVb. RT-PCR on blood stage parasite mRNA amplifies a specific product for all six myosins and each shows developmentally regulated transcription. Thus: Pfmyo-A and Pfmyo-B genes are transcribed throughout development; Pfmyo-C is predominant in trophozoites; Pfmyo-D occurs in trophozoites and schizonts; Pfmyo-E though barely present in earlier stages is abundant in schizonts; Pfmyo-F increases steadily throughout development and maturation. It is known that Pfmyo-A and Pfmyo-B are synthesised during late schizogony and we now show that Pfmyo-D expression is also temporally regulated to late trophozoites and schizonts where it distributes close to segregating nuclei. Thus, in asexual stages myosin synthesis does not always parallel transcript accumulation, showing that translation is also regulated. The implication is that the mRNAs are either subjected to turnover, synthesised and degraded, or that they are sequestered in an inactivate form until required for protein synthesis.
Collapse
|
15
|
Moreira CK, Marrelli MT, Jacobs-Lorena M. Gene expression in Plasmodium: from gametocytes to sporozoites. Int J Parasitol 2004; 34:1431-40. [PMID: 15582520 DOI: 10.1016/j.ijpara.2004.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/17/2004] [Accepted: 10/05/2004] [Indexed: 02/06/2023]
Abstract
Completion of the complex developmental program of Plasmodium in the mosquito is essential for parasite transmission, yet this part of its life cycle is still poorly understood. In recent years, considerable progress has been made in the identification and characterization of genes expressed during parasite development in the mosquito. This line of investigation was greatly facilitated by the availability of the genome sequence of several Plasmodium, and by the application of approaches such as proteomics, microarrays, gene disruption by homologous recombination (gene knockout) and by use of subtraction libraries. Here, we review what is presently known about genes expressed in gametocytes and during the Plasmodium life cycle in the mosquito.
Collapse
Affiliation(s)
- C K Moreira
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, The Johns Hopkins University, 615 N Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
Kaiser K, Matuschewski K, Camargo N, Ross J, Kappe SHI. Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol Microbiol 2004; 51:1221-32. [PMID: 14982620 DOI: 10.1046/j.1365-2958.2003.03909.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasive sporozoite and merozoite stages of malaria parasites that infect mammals enter and subsequently reside in hepatocytes and red blood cells respectively. Each invasive stage may exhibit unique adaptations that allow it to interact with and survive in its distinct host cell environment, and these adaptations are likely to be controlled by differential gene expression. We used suppression subtractive hybridization (SSH) of Plasmodium yoelii salivary gland sporozoites versus merozoites to identify stage-specific pre-erythrocytic transcripts. Sequencing of the SSH library and matching the cDNA sequences to the P. yoelii genome yielded 25 redundantly tagged genes including the only two previously characterized sporozoite-specific genes encoding the circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP). Twelve novel genes encode predicted proteins with signal peptides, indicating that they enter the secretory pathway of the sporozoite. We show that one novel protein bearing a thrombospondin type 1 repeat (TSR) exhibits an expression pattern that suggests localization in the sporozoite secretory rhoptry organelles. In addition, we identified a group of four genes encoding putative low-molecular-mass proteins. Two proteins in this group exhibit an expression pattern similar to TRAP, and thus possibly localize in the sporozoite secretory micronemes. Proteins encoded by the differentially expressed genes identified here probably mediate specific interactions of the sporozoite with the mosquito vector salivary glands or the mammalian host hepatocyte and are not used during merozoite-red blood cell interactions.
Collapse
Affiliation(s)
- Karine Kaiser
- Michael Heidelberger Division, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
17
|
Ulschmid JK, Rahlfs S, Schirmer RH, Becker K. Adenylate kinase and GTP:AMP phosphotransferase of the malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 2004; 136:211-20. [PMID: 15478799 DOI: 10.1016/j.molbiopara.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For coping with energetic and synthetic challenges, parasites require high activities of adenylate kinase (AK; ATP + AMP <==> 2 ADP) and GTP:AMP phosphotransferase (GAK; GTP + AMP <==> GDP + ADP). These enzymes were identified in erythrocytic stages of Plasmodium falciparum. The genes encoding PfAK and PfGAK are located on chromosomes 10 and 4, respectively. Molecular cloning and heterologous expression in E. coli yielded enzymatically active proteins of 28.9 (PfAK) and 28.0 kDa (PfGAK). Recombinant PfAK resembles authentic PfAK in its biochemical characteristics including the possible association with a stabilizing protein and the high specificity for AMP as the mononucleotide substrate. Specificity is less stringent for the triphosphate, with ATP as the best substrate (75 U/mg; kcat = 2160 min(-1) at 25 degrees C). PfAK contains the sequence of the amphiphatic helix that is known to mediate translocation of the cytosolic protein into the mitochondrial intermembrane space. PfGAK exhibits substrate preference for GTP and AMP (100 U/mg; kcat = 2800 min(-1) at 25 degrees C); notably, there is no detectable activity with ATP. In contrast to its human orthologue (AK3), PfGAK contains a zinc finger motif and binds ionic iron. The dinucleoside pentaphosphate compounds AP5A and GP5A inhibited PfAK and PfGAK, respectively, with Ki values of approximately 0.2 microM which is more than 250-fold lower than the KM values determined for the nucleotide substrates. The disubstrate inhibitors are useful for studying the enzymatic mechanism of PfAK and PfGAK as well as their function in adenine nucleotide homeostasis; in addition, the chimeric inhibitors represent interesting lead compounds for developing nucleosides to be used as antiparasitic agents.
Collapse
Affiliation(s)
- Julia K Ulschmid
- Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
Motility is a characteristic of most living organisms and often requires specialized structures like cilia or flagella. An alternative is amoeboid movement, where the polymerization/depolymerization of actin leads to the formation of pseudopodia, filopodia and/or lamellipodia that enable the cell to crawl along a surface. Despite their lack of locomotive organelles and in absence of cell deformation, members of the apicomplexan parasites employ a unique form of locomotion called gliding motility to promote their migration across biological barriers and to power host-cell invasion and egress. Detailed studies in Toxoplasma gondii and Plasmodium species have revealed that this unique mode of movement is dependent on a myosin of class XIV and necessitates actin dynamics and the concerted discharge and processing of adhesive proteins. Gliding is essential for the survival and infectivity of these obligate intracellular parasites, which cause severe disease in humans and animals.
Collapse
Affiliation(s)
- Dominique Soldati
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London UK, SW7 2AZ.
| | | |
Collapse
|
19
|
Buscaglia CA, Coppens I, Hol WGJ, Nussenzweig V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Mol Biol Cell 2003; 14:4947-57. [PMID: 14595113 PMCID: PMC284797 DOI: 10.1091/mbc.e03-06-0355] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gliding motility and host cell invasion by apicomplexan parasites are empowered by an acto-myosin motor located underneath the parasite plasma membrane. The motor is connected to host cell receptors through trans-membrane invasins belonging to the thrombospondin-related anonymous protein (TRAP) family. A recent study indicates that aldolase bridges the cytoplasmic tail of MIC2, the homologous TRAP protein in Toxoplasma, and actin. Here, we confirm these unexpected findings in Plasmodium sporozoites and identify conserved features of the TRAP family cytoplasmic tail required to bind aldolase: a subterminal tryptophan residue and two noncontiguous stretches of negatively charged amino acids. The aldolase substrate and other compounds that bind to the active site inhibit its interaction with TRAP and with F-actin, suggesting that the function of the motor is metabolically regulated. Ultrastructural studies in salivary gland sporozoites localize aldolase to the periphery of the secretory micronemes containing TRAP. Thus, the interaction between aldolase and the TRAP tail takes place during or preceding the biogenesis of the micronemes. The release of their contents in the anterior pole of the parasite upon contact with the target cells should bring simultaneously aldolase, TRAP and perhaps F-actin to the proper subcellular location where the motor is engaged.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Michael Heidelberg Division of Immunology, Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
In apicomplexan parasites, gliding motility and host cell invasion are driven by an actomyosin-based system. Recent studies have characterized several components of the gliding motility apparatus and have provided new insight into the molecular architecture of this locomotory system.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Departments of Anatomy & Pathology, Dartmouth Medical School, 03755, Hanover, NH, USA
| |
Collapse
|
21
|
Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V, Kappe SHI. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 2003; 116:39-49. [PMID: 12456714 DOI: 10.1242/jcs.00194] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apicomplexan host cell invasion and gliding motility depend on the parasite's actomyosin system located beneath the plasma membrane of invasive stages. Myosin A (MyoA), a class XIV unconventional myosin, is the motor protein. A model has been proposed to explain how the actomyosin motor operates but little is known about the components, topology and connectivity of the motor complex. Using the MyoA neck and tail domain as bait in a yeast two-hybrid screen we identified MTIP, a novel 24 kDa protein that interacts with MyoA. Deletion analysis shows that the 15 amino-acid C-terminal tail domain of MyoA, rather than the neck domain, specifically interacts with MTIP. In Plasmodium sporozoites MTIP localizes to the inner membrane complex (IMC), where it is found clustered with MyoA. The data support a model for apicomplexan motility and invasion in which the MyoA motor protein is associated via its tail domain with MTIP, immobilizing it at the outer IMC membrane. The head domain of the immobilized MyoA moves actin filaments that, directly or via a bridging protein, connect to the cytoplasmic domain of a transmembrane protein of the TRAP family. The actin/TRAP complex is then redistributed by the stationary MyoA from the anterior to the posterior end of the zoite, leading to its forward movement on a substrate or to penetration of a host cell.
Collapse
Affiliation(s)
- Lawrence W Bergman
- Division of Molecular Parasitology, Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mota MM, Hafalla JCR, Rodriguez A. Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 2002; 8:1318-22. [PMID: 12379848 DOI: 10.1038/nm785] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Accepted: 09/19/2002] [Indexed: 11/09/2022]
Abstract
Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, migrate through several hepatocytes before infecting a final one. Migration through hepatocytes occurs by breaching their plasma membranes, and final infection takes place with the formation of a vacuole around the sporozoite. Once in the liver, sporozoites have already reached their target cells, making migration through hepatocytes prior to infection seem unnecessary. Here we show that this migration is required for infection of hepatocytes. Migration through host cells, but not passive contact with hepatocytes, induces the exocytosis of sporozoite apical organelles, a prerequisite for infection with formation of a vacuole. Sporozoite activation induced by migration through host cells is an essential step of Plasmodium life cycle.
Collapse
Affiliation(s)
- Maria M Mota
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
23
|
Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, Kappe SHI. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem 2002; 277:41948-53. [PMID: 12177071 DOI: 10.1074/jbc.m207315200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Injection of Plasmodium salivary gland sporozoites into the vertebrate host by Anopheles mosquitoes initiates malaria infection. Sporozoites develop within oocysts in the mosquito midgut and then enter and mature in the salivary glands. Although morphologically similar, oocyst sporozoites and salivary gland sporozoites differ strikingly in their infectivity to the mammalian host, ability to elicit protective immune responses, and cell motility. Here, we show that differential gene expression coincides with these dramatic phenotypic differences. Using suppression subtractive cDNA hybridization we identified highly up-regulated mRNAs transcribed from 30 distinct genes in salivary gland sporozoites. Of those genes, 29 are not significantly expressed in the parasite's blood stages. The most frequently recovered transcript encodes a protein kinase. Developmental up-regulation of specific mRNAs in the infectious transmission stage of Plasmodium indicates that their translation products may have unique roles in hepatocyte infection and/or development of liver stages.
Collapse
Affiliation(s)
- Kai Matuschewski
- Michael Heidelberger Division, Department of Pathology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Lew AE, Dluzewski AR, Johnson AM, Pinder JC. Myosins of Babesia bovis: molecular characterisation, erythrocyte invasion, and phylogeny. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:202-20. [PMID: 12112135 DOI: 10.1002/cm.10046] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50-60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35-39%) with all members of Class XIV, and 5'-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite.
Collapse
Affiliation(s)
- A E Lew
- Queensland Department of Primary Industries, Moorooka, 4105, Queensland, Australia.
| | | | | | | |
Collapse
|
25
|
Opitz C, Soldati D. 'The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 2002; 45:597-604. [PMID: 12139608 DOI: 10.1046/j.1365-2958.2002.03056.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motion is an intrinsic property of all living organisms, and each cell displays a variety of shapes and modes of locomotion. How structural proteins support cellular movement and how cytoskeletal dynamics and motor proteins are harnessed to generate order and movement are among the fundamental and not fully resolved questions in biology today. Protozoan parasites belonging to the Apicomplexa are of enormous medical and veterinary significance, being responsible for a wide variety of diseases in human and animals, including malaria, toxoplasmosis, coccidiosis and cryptosporidiosis. These obligate intracellular parasites exhibit a unique form of actin-based gliding motility, which is essential for host cell invasion and spreading of parasites throughout the infected hosts. A motor complex composed of a small myosin of class XIV associated with a myosin light chain and a plasma membrane-docking protein is present beneath the parasite's plasma membrane. According to the capping model, this complex is connected directly or indirectly to transmembrane adhesin complexes, which are delivered to the parasite surface upon microneme secretion. Together with F-actin and as yet unknown bridging molecules and proteases, these complexes are among the structural and functional components of the 'glideosome'.
Collapse
|
26
|
Herm-Götz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhöfer E, Soldati T, Manstein DJ, Geeves MA, Soldati D. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 2002; 21:2149-58. [PMID: 11980712 PMCID: PMC125985 DOI: 10.1093/emboj/21.9.2149] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Revised: 02/26/2002] [Accepted: 03/08/2002] [Indexed: 11/14/2022] Open
Abstract
Successful host cell invasion is a prerequisite for survival of the obligate intracellular apicomplexan parasites and establishment of infection. Toxoplasma gondii penetrates host cells by an active process involving its own actomyosin system and which is distinct from induced phagocytosis. Toxoplasma gondii myosin A (TgMyoA) is presumed to achieve power gliding motion and host cell penetration by the capping of apically released adhesins towards the rear of the parasite. We report here an extensive biochemical characterization of the functional TgMyoA motor complex. TgMyoA is anchored at the plasma membrane and binds a novel type of myosin light chain (TgMLC1). Despite some unusual features, the kinetic and mechanical properties of TgMyoA are unexpectedly similar to those of fast skeletal muscle myosins. Microneedle-laser trap and sliding velocity assays established that TgMyoA moves in unitary steps of 5.3 nm with a velocity of 5.2 microm/s towards the plus end of actin filaments. TgMyoA is the first fast, single-headed myosin and fulfils all the requirements for power parasite gliding.
Collapse
Affiliation(s)
- Angelika Herm-Götz
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Stefan Weiss
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Rolf Stratmann
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Setsuko Fujita-Becker
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Christine Ruff
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Edgar Meyhöfer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Thierry Soldati
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Dietmar J. Manstein
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Michael A. Geeves
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| | - Dominique Soldati
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Department of Biophysics and Department of Molecular Cell Research, Max-Plank-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Department of Molecular and Cellular Physiology, Medical School Hanover,Carl-Neuberg Strasse 1, D-30625 Hanover, Germany and Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK Present address: Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK Present address: Department of Mechanical Engineering, University of Michigan, 3130 G.G.Brown Building, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA Corresponding author e-mail:
| |
Collapse
|
27
|
Abstract
Malaria is transmitted through the bite of an infected mosquito, which introduces Plasmodium sporozoites into the mammalian host. Sporozoites rapidly reach the liver of the host where they are sequestered, a process probably mediated by circumsporozoite (CS) protein. Once in the liver, sporozoites migrate through several hepatocytes by breaching their plasma membranes before infecting a final hepatocyte with formation of a vacuole around the sporozoite, where development occurs into blood stage parasites. We propose that migration through several host cells activates sporozoites for ultimate productive invasion. This migration triggers sporozoite exocytosis, which is necessary for hepatocyte invasion, probably because it provides molecules, such as thrombospondin-related anonymous protein (TRAP), likely required for sporozoite invasion with the formation of a vacuole. How sporozoites migrate from the skin to the liver and invade hepatocytes remains unclear. Understanding this initial stage of malaria is crucial for the development of new approaches against the disease.
Collapse
Affiliation(s)
- Maria M Mota
- Department of Pathology, New York University School of Medicine, 341 E. 25th Street, New York, NY 10010, USA
| | | |
Collapse
|
28
|
Kappe SH, Gardner MJ, Brown SM, Ross J, Matuschewski K, Ribeiro JM, Adams JH, Quackenbush J, Cho J, Carucci DJ, Hoffman SL, Nussenzweig V. Exploring the transcriptome of the malaria sporozoite stage. Proc Natl Acad Sci U S A 2001; 98:9895-900. [PMID: 11493695 PMCID: PMC55549 DOI: 10.1073/pnas.171185198] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2001] [Indexed: 11/18/2022] Open
Abstract
Most studies of gene expression in Plasmodium have been concerned with asexual and/or sexual erythrocytic stages. Identification and cloning of genes expressed in the preerythrocytic stages lag far behind. We have constructed a high quality cDNA library of the Plasmodium sporozoite stage by using the rodent malaria parasite P. yoelii, an important model for malaria vaccine development. The technical obstacles associated with limited amounts of RNA material were overcome by PCR-amplifying the transcriptome before cloning. Contamination with mosquito RNA was negligible. Generation of 1,972 expressed sequence tags (EST) resulted in a total of 1,547 unique sequences, allowing insight into sporozoite gene expression. The circumsporozoite protein (CS) and the sporozoite surface protein 2 (SSP2) are well represented in the data set. A BLASTX search with all tags of the nonredundant protein database gave only 161 unique significant matches (P(N) < or = 10(-4)), whereas 1,386 of the unique sequences represented novel sporozoite-expressed genes. We identified ESTs for three proteins that may be involved in host cell invasion and documented their expression in sporozoites. These data should facilitate our understanding of the preerythrocytic Plasmodium life cycle stages and the development of preerythrocytic vaccines.
Collapse
Affiliation(s)
- S H Kappe
- Michael Heidelberger Division, Department of Pathology, Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|