1
|
Kals E, Kals M, Lees RA, Introini V, Kemp A, Silvester E, Collins CR, Umrekar T, Kotar J, Cicuta P, Rayner JC. Application of optical tweezer technology reveals that PfEBA and PfRH ligands, not PfMSP1, play a central role in Plasmodium falciparum merozoite-erythrocyte attachment. PLoS Pathog 2024; 20:e1012041. [PMID: 39312588 PMCID: PMC11449297 DOI: 10.1371/journal.ppat.1012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/03/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.
Collapse
Affiliation(s)
- Emma Kals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca A. Lees
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- EMBL Barcelona, Barcelona, Spain
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Silvester
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Trishant Umrekar
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
3
|
|
4
|
Pillai-Kastoori L, Heaton S, Shiflett SD, Roberts AC, Solache A, Schutz-Geschwender AR. Antibody validation for Western blot: By the user, for the user. J Biol Chem 2019; 295:926-939. [PMID: 31819006 PMCID: PMC6983856 DOI: 10.1074/jbc.ra119.010472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Well-characterized antibody reagents play a key role in the reproducibility of research findings, and inconsistent antibody performance leads to variability in Western blotting and other immunoassays. The current lack of clear, accepted standards for antibody validation and reporting of experimental details contributes to this problem. Because the performance of primary antibodies is strongly influenced by assay context, recommendations for validation and usage are unique to each type of immunoassay. Practical strategies are proposed for the validation of primary antibody specificity, selectivity, and reproducibility using Western blot analysis. The antibody should produce reproducible results within and between Western blotting experiments and the observed effect confirmed with a complementary or orthogonal method. Routine implementation of standardized antibody validation and reporting in immunoassays such as Western blotting may promote improved reproducibility across the global life sciences community.
Collapse
Affiliation(s)
| | - Sam Heaton
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | | - Annabelle C Roberts
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | - Alejandra Solache
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | |
Collapse
|
5
|
Proto WR, Siegel SV, Dankwa S, Liu W, Kemp A, Marsden S, Zenonos ZA, Unwin S, Sharp PM, Wright GJ, Hahn BH, Duraisingh MT, Rayner JC. Adaptation of Plasmodium falciparum to humans involved the loss of an ape-specific erythrocyte invasion ligand. Nat Commun 2019; 10:4512. [PMID: 31586047 PMCID: PMC6778099 DOI: 10.1038/s41467-019-12294-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/02/2019] [Indexed: 11/30/2022] Open
Abstract
Plasmodium species are frequently host-specific, but little is currently known about the molecular factors restricting host switching. This is particularly relevant for P. falciparum, the only known human-infective species of the Laverania sub-genus, all other members of which infect African apes. Here we show that all tested P. falciparum isolates contain an inactivating mutation in an erythrocyte invasion associated gene, PfEBA165, the homologues of which are intact in all ape-infective Laverania species. Recombinant EBA165 proteins only bind ape, not human, erythrocytes, and this specificity is due to differences in erythrocyte surface sialic acids. Correction of PfEBA165 inactivating mutations by genome editing yields viable parasites, but is associated with down regulation of both PfEBA165 and an adjacent invasion ligand, which suggests that PfEBA165 expression is incompatible with parasite growth in human erythrocytes. Pseudogenization of PfEBA165 may represent a key step in the emergence and evolution of P. falciparum. Here, Proto et al. show that human infective Plasmodium falciparum isolates contain an inactivating mutation in the erythrocyte invasion associated gene PfEBA165, while homologues of ape-infective Laverania species are intact, and that expression of intact PfEBA165 is incompatible with parasite growth in human erythrocytes.
Collapse
Affiliation(s)
- William R Proto
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Sasha V Siegel
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Selasi Dankwa
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison Kemp
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Sarah Marsden
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Zenon A Zenonos
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Steve Unwin
- Chester Zoo, Chester, CH2 1LH, UK.,School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gavin J Wright
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
6
|
Otto TD, Gilabert A, Crellen T, Böhme U, Arnathau C, Sanders M, Oyola SO, Okouga AP, Boundenga L, Willaume E, Ngoubangoye B, Moukodoum ND, Paupy C, Durand P, Rougeron V, Ollomo B, Renaud F, Newbold C, Berriman M, Prugnolle F. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol 2018; 3:687-697. [PMID: 29784978 PMCID: PMC5985962 DOI: 10.1038/s41564-018-0162-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022]
Abstract
Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000-60,000 years ago followed by a population bottleneck around 4,000-6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans.
Collapse
Affiliation(s)
- Thomas D. Otto
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Aude Gilabert
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
| | - Thomas Crellen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Céline Arnathau
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Samuel O. Oyola
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Alain Prince Okouga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | | | | | - Christophe Paupy
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
| | - Virginie Rougeron
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - François Renaud
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
| | - Chris Newbold
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Franck Prugnolle
- Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD 224-UM, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| |
Collapse
|
7
|
Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin Immunother 2016; 11:1465-73. [PMID: 25844685 DOI: 10.1080/21645515.2015.1026496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Rosalynn L Ord
- a Blood-Borne Parasites; Lindsley Kimball Research Institute; New York Blood Center ; New York , NY , USA
| | | | | |
Collapse
|
8
|
Schmidt CQ, Kennedy AT, Tham WH. More than just immune evasion: Hijacking complement by Plasmodium falciparum. Mol Immunol 2015; 67:71-84. [PMID: 25816986 DOI: 10.1016/j.molimm.2015.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstraße 20, Ulm, Germany.
| | - Alexander T Kennedy
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia.
| |
Collapse
|
9
|
Persson KEM, Fowkes FJI, McCallum FJ, Gicheru N, Reiling L, Richards JS, Wilson DW, Lopaticki S, Cowman AF, Marsh K, Beeson JG. Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. THE JOURNAL OF IMMUNOLOGY 2013; 191:785-94. [PMID: 23776178 DOI: 10.4049/jimmunol.1300444] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abs that inhibit Plasmodium falciparum invasion of erythrocytes form an important component of human immunity against malaria, but key target Ags are largely unknown. Phenotypic variation by P. falciparum mediates the evasion of inhibitory Abs, contributing to the capacity of P. falciparum to cause repeat and chronic infections. However, Ags involved in mediating immune evasion have not been defined, and studies of the function of human Abs are limited. In this study, we used novel approaches to determine the importance of P. falciparum erythrocyte-binding Ags (EBAs), which are important invasion ligands, as targets of human invasion-inhibitory Abs and define their role in contributing to immune evasion through variation in function. We evaluated the invasion-inhibitory activity of acquired Abs from malaria-exposed children and adults from Kenya, using P. falciparum with disruption of genes encoding EBA140, EBA175, and EBA181, either individually or combined as EBA140/EBA175 or EBA175/EBA181 double knockouts. Our findings provide important new evidence that variation in the expression and function of the EBAs plays an important role in evasion of acquired Abs and that a substantial amount of phenotypic diversity results from variation in expression of different EBAs that contributes to immune evasion by P. falciparum. All three EBAs were identified as important targets of naturally acquired inhibitory Abs demonstrated by differential inhibition of parental parasites greater than EBA knockout lines. This knowledge will help to advance malaria vaccine development and suggests that multiple invasion ligands need to be targeted to overcome the capacity of P. falciparum for immune evasion.
Collapse
Affiliation(s)
- Kristina E M Persson
- Karolinska Institutet, Microbiology, Tumor and Cell Biology, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol 2012; 183:23-31. [PMID: 22273481 DOI: 10.1016/j.molbiopara.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
Abstract
The malaria parasite Plasmodium falciparum invades human erythrocytes through multiple pathways utilizing several ligand-receptor interactions. These interactions are broadly classified in two groups according to their dependency on sialic acid residues. Here, we focus on the sialic acid-dependent pathway by using purified glycophorins and red blood cells (RBCs) to screen a cDNA phage display library derived from P. falciparum FCR3 strain, a sialic acid-dependent strain. This screen identified several parasite proteins including the erythrocyte-binding ligand-1, EBL-1. The phage cDNA insert encoded the 69-amino acid peptide, termed F2i, which is located within the F2 region of the DBL domain, designated here as D2, of EBL-1. Recombinant D2 and F2i polypeptides bound to purified glycophorins and RBCs, and the F2i peptide was found to interfere with binding of D2 domain to its receptor. Both D2 and F2i polypeptides bound to trypsin-treated but not neuraminidase or chymotrypsin-treated erythrocytes, consistent with known glycophorin B resistance to trypsin, and neither the D2 nor F2i polypeptide bound to glycophorin B-deficient erythrocytes. Importantly, purified D2 and F2i polypeptides partially inhibited merozoite reinvasion in human erythrocytes. Our results show that the host erythrocyte receptor glycophorin B directly interacts with the DBL domain of parasite EBL-1, and the core binding site is contained within the 69 amino acid F2i region (residues 601-669) of the DBL domain. Together, these findings suggest that a recombinant F2i peptide with stabilized structure could provide a protective function at blood stage infection and represents a valuable addition to a multi-subunit vaccine against malaria.
Collapse
|
11
|
The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res 2011; 110:1711-21. [PMID: 22033736 DOI: 10.1007/s00436-011-2690-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Invasion of Plasmodium falciparum merozoites into host erythrocyte involves a series of highly specific and sequential interaction between merozoite and host erythrocyte surface protein. The key step in the invasion process is the formation of a tight protein-protein interaction between host and parasite called as moving junction. A number of parasite proteins secreted from two organelles, microneme and rhoptry, play a role in initial interaction and junction formation between merozoite with host red blood cells (RBCs) during the invasion process. In the present study, we investigated the role of different domains of a P. falciparum rhoptry neck protein PfRON2. Immunofluorescence assay revealed close association of PfAMA1 and PfRON2 in the merozoites during the invasion process. PfRON2 domains were expressed on COS-7 cell surface, and their interaction was analysed with host RBCs and PfAMA1 protein by rosetting assays. The rosetting assays suggest that the C-terminal cysteine-rich domain of PfRON2 plays a role in binding with host erythrocyte. The C-terminal as well as the central cysteine-rich domain of PfRON2 interact with PfAMA1; this binding can be inhibited by monoclonal antibody (mAb 4 G2) against PfAMA1, suggesting that the hydrophobic groove of PfAMA1 binds to PfRON2. These results suggest that PfRON2 plays a role in merozoite invasion and thus it can be an important vaccine candidate antigen.
Collapse
|
12
|
Plasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRh2a and b binding domains. PLoS Pathog 2011; 7:e1002075. [PMID: 21698217 PMCID: PMC3116812 DOI: 10.1371/journal.ppat.1002075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/09/2011] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes. The causative agent of the most severe form of malaria in humans is the protozoan parasite Plasmodium falciparum. These parasites are carried by a mosquito that infects humans during feeding resulting in injection of sporozoite forms that infect and develop in the liver into the merozoite stage. The merozoites are released into the blood stream where they invade erythrocytes in which they can grow and divide. Invasion of the red blood cell by P. falciparum merozoites involves a cascade of protein-protein interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are an important protein family involved in binding to specific receptors on the red blood cell. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show that they undergo a complex series of cleavage events before and during merozoite invasion. We have defined the region of these ligands that bind red blood cells and show that antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain.
Collapse
|
13
|
Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun 2011; 79:3421-30. [PMID: 21628513 DOI: 10.1128/iai.00201-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum reticulocyte-binding-like protein homologue (RH) and erythrocyte binding-like (EBL) protein families play important roles during invasion, though their exact roles are not clear. Both EBL and RH proteins are thought to directly bind different receptors on the surface of the erythrocyte, and the binding properties for a number of EBLs and RHs have been described. While P. falciparum RH1 (PfRH1) and PfRH4 have been shown to act directly in two alternative invasion pathways used by merozoites, the functions of PfRH2a and PfRH2b during invasion are less defined. Here, using monoclonal antibodies raised against a unique region of PfRH2a, we show that PfRH2a moves from the rhoptry neck to the moving junction during merozoite invasion. The movement of PfRH2a to the junction is independent of the invasion pathway used by the merozoite, suggesting an additional function of the protein that is independent of receptor binding. We further show that PfRH2a is processed both in the schizont and during invasion, resulting in proteins with different erythrocyte binding properties. Our findings suggest that PfRH2a and, most likely, the other members of the RH family, depending on their processing stage, can engage different receptors at different stages of the invasion process.
Collapse
|
14
|
Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One 2011; 6:e17102. [PMID: 21386888 PMCID: PMC3046117 DOI: 10.1371/journal.pone.0017102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
Erythrocyte invasion by Plasmodium merozoites is a complex, multistep process that is mediated by a number of parasite ligand-erythrocyte receptor interactions. One such family of parasite ligands includes the P. falciparum reticulocyte binding homologue (PfRH) proteins that are homologous with the P. vivax reticulocyte binding proteins and have been shown to play a role in erythrocyte invasion. There are five functional PfRH proteins of which only PfRH2a/2b have not yet been demonstrated to bind erythrocytes. In this study, we demonstrated that native PfRH2a/2b is processed near the N-terminus yielding fragments of 220 kDa and 80 kDa that exhibit differential erythrocyte binding specificities. The erythrocyte binding specificity of the 220 kDa processed fragment of native PfRH2a/2b was sialic acid-independent, trypsin resistant and chymotrypsin sensitive. This specific binding phenotype is consistent with previous studies that disrupted the PfRH2a/2b genes and demonstrated that PfRH2b is involved in a sialic acid independent, trypsin resistant, chymotrypsin sensitive invasion pathway. Interestingly, we found that the smaller 80 kDa PfRH2a/2b fragment is processed from the larger 220 kDa fragment and binds erythrocytes in a sialic acid dependent, trypsin resistant and chymotrypsin sensitive manner. Thus, the two processed fragments of PfRH2a/2b differed with respect to their dependence on sialic acids for erythrocyte binding. Further, we mapped the erythrocyte binding domain of PfRH2a/2b to a conserved 40 kDa N-terminal region (rPfRH240) in the ectodomain that is common to both PfRH2a and PfRH2b. We demonstrated that recombinant rPfRH240 bound human erythrocytes with the same specificity as the native 220 kDa processed protein. Moreover, antibodies generated against rPfRH240 blocked erythrocyte invasion by P. falciparum through a sialic acid independent pathway. PfRH2a/2b thus plays a key role in erythrocyte invasion and its conserved receptor-binding domain deserves attention as a promising candidate for inclusion in a blood-stage malaria vaccine.
Collapse
|
15
|
Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 2010; 79:1107-17. [PMID: 21149582 DOI: 10.1128/iai.01021-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans and invades erythrocytes using multiple ligand-receptor interactions. Two important protein families involved in erythrocyte binding are the erythrocyte binding-like (EBL) and the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) proteins. We constructed P. falciparum lines lacking expression of EBL proteins by creating single and double knockouts of the corresponding genes for eba-175, eba-181, and eba-140 and show that the EBL and PfRh proteins function cooperatively, consistent with them playing a similar role in merozoite invasion. We provide evidence that PfRh and EBL proteins functionally interact, as loss of function of EBA-181 ablates the ability of PfRh2a/b protein antibodies to inhibit merozoite invasion. Additionally, loss of function of some ebl genes results in selection for increased transcription of the PfRh family. This provides a rational basis for considering PfRh and EBL proteins for use as a combination vaccine against P. falciparum. We immunized rabbits with combinations of PfRh and EBL proteins to test the ability of antibodies to block merozoite invasion in growth inhibition assays. A combination of EBA-175, PfRh2a/b, and PfRh4 recombinant proteins induced antibodies that potently blocked merozoite invasion. This validates the use of a combination of these ligands as a potential vaccine that would have broad activity against P. falciparum.
Collapse
|
16
|
Persson KE. Erythrocyte invasion and functionally inhibitory antibodies in Plasmodium falciparum malaria. Acta Trop 2010; 114:138-43. [PMID: 19481996 DOI: 10.1016/j.actatropica.2009.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
Malaria is a disease that kills several million people every year. P. falciparum merozoites invade new erythrocytes every 48 h, causing fever, anemia and cerebral malaria. Effective immunity against malaria develops slowly and only after repeated exposure. Antibodies are an important part of this immunity. However, the antigens that mediate immunity by inducing functionally imperative antibodies have not yet been identified. This review gives an overview of the erythrocyte invasion process, which has been described to include several different antigens. Invasion inhibitory antibodies can inhibit merozoite penetration of new erythrocytes, and different methods for measurement of the presence of functionally important antibodies have been employed. ELISA, Invasion inhibition assays and ADCI are some of the methods discussed.
Collapse
|
17
|
Arevalo-Pinzon G, Curtidor H, Reyes C, Pinto M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Fine mapping of Plasmodium falciparum ribosomal phosphoprotein PfP0 revealed sequences with highly specific binding activity to human red blood cells. J Mol Med (Berl) 2010; 88:61-74. [PMID: 19768630 DOI: 10.1007/s00109-009-0533-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 11/24/2022]
Abstract
The Plasmodium falciparum P0 ribosomal phosphoprotein (PfP0) was identified for the first time by screening a cDNA expression library of P. falciparum parasites with sera from malaria-immune individuals. Due to its localization on the surface of different parasite life-cycle stages (merozoites and gametocytes) and its recognition by invasion-blocking antibodies, PfP0 has been considered a potential malaria-vaccine component. In this study, 16 20-mer-long synthetic peptides spanning the entire PfP0 sequence were evaluated by means of receptor-ligand assays with human red blood cells (RBCs) in order to determine the role played by these peptides in the invasion process. Four RBC high-activity binding peptides (HABPs), located mostly toward the N-terminal region, were identified: HABP 33898 ((1)MAKLSKQQKKQMYIEKLSSL(20)), HABP 33900 ((41)ASVRKSLRGKATILMGKNTRY(60)), HABP 33901 ((61)IRTALKKNLQAVPQIEKLLPY (80)), and HABP 33906 ((161)LIKQGEKVTASSATLLRKFNY(180)). The binding pattern of HABPs 33898 and 33906 to enzyme-treated RBCs suggests receptors of protein nature for these two HABPs, one of which could correspond to a common 58-kDa RBC membrane protein, as indicated by results of cross-linking assays. Both HABPs exhibited high content of alpha-helical features and prevented P. falciparum merozoite invasion to RBCs in vitro by up to 91%. The invasion-blocking ability reported here for these PfP0 HABPs supports their inclusion in immunological studies with the aim of assessing their potential as candidates for a vaccine against P. falciparum malaria.
Collapse
|
18
|
Githui EK, Peterson DS, Aman RA, Abdi AI. Prevalence of 5' insertion mutants and analysis of single nucleotide polymorphism in the erythrocyte binding-like 1 (ebl-1) gene in Kenyan Plasmodium falciparum field isolates. INFECTION GENETICS AND EVOLUTION 2009; 10:834-9. [PMID: 19879379 DOI: 10.1016/j.meegid.2009.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/19/2022]
Abstract
Plasmodium merozoites attach to and invade red blood cells (RBCs) during the erythrocytic cycle. The invasion process requires recognition of RBC surface receptors by proteins of the Plasmodium Duffy binding like erythrocyte binding like (DBL-EBP) family. Clones and isolates of Plasmodium falciparum have varying abilities to utilize different RBC receptors, and multiple distinct pathways so far identified depend on glycophorins A, B, C, and as yet unidentified receptors. At present, five members of the DBL-EBP family have been identified in the P. falciparum genome, based on gene structure and amino acid sequence homology. The cardinal features of this family consist of conserved 5' and 3' cysteine-rich regions (regions II and VI, respectively) whose cysteine residues are highly conserved along with the majority of aromatic amino acids. In contrast to the single DBL-EBP family member in Plasmodium vivax, in P. falciparum all DBL-EBP family members have a duplication of the conserved 5' cysteine-rich region denoted as the F1 and F2 domains. These cysteine-rich regions are considered crucial in recognition of erythrocyte receptors and it has been shown that several bind to glycophorins on the erythrocyte surface. Several studies, on both field isolates and laboratory strains have uncovered a relatively high degree of sequence polymorphism in the DBP-EBL genes. This study is now extended to include field isolates collected from sites within Kenya. DNA isolated from blood samples of infected patients was utilized to amplify the region I sequence of ebl-1 gene in order to investigate polymorphism in the region immediately adjacent to the 5' cysteine-rich domains, and to determine the prevalence of an insertion mutant that effectively knocks out the gene.
Collapse
Affiliation(s)
- Elijah K Githui
- Molecular Genetics Laboratory, National Museums of Kenya, PO Box 40658, Nairobi, Kenya.
| | | | | | | |
Collapse
|
19
|
Coppel RL. Vaccinating with the genome: a Sisyphean task? Trends Parasitol 2009; 25:205-12. [PMID: 19359219 DOI: 10.1016/j.pt.2009.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/27/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Human trials of subunit vaccines against the asexual blood stage of malaria are yielding disappointing results, supporting the premise that a single recombinant protein will not be particularly efficacious and that additional proteins must be added. The genome sequence of Plasmodium falciparum offers a large number of additional candidates, but which should be chosen? Various criteria have been suggested to rank the additional candidates, but in the absence of even a partially effective asexual-stage vaccine, the criteria remain unvalidated. These issues are discussed here, together with some suggestions as to how the development of an asexual-stage vaccine could be progressed.
Collapse
Affiliation(s)
- Ross L Coppel
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
20
|
Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes. Infect Immun 2009; 77:2427-35. [PMID: 19307208 DOI: 10.1128/iai.00048-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum invasion into human erythrocytes relies on the interaction between multiple parasite ligands and their respective erythrocyte receptors. The sialic acid-independent invasion pathway is dependent on the expression of P. falciparum reticulocyte binding protein-like homologue 4 (PfRh4), as disruption of the gene abolishes the ability of parasites to switch to this pathway. We show that PfRh4 is present as an invasion ligand in culture supernatants as a 160-kDa proteolytic fragment. We confirm that PfRh4 binds to the surfaces of erythrocytes through recognition of an erythrocyte receptor that is neuraminidase resistant but trypsin and chymotrypsin sensitive. Serum antibodies from malaria-exposed individuals show reactivity against the binding domain of PfRh4. Purified immunoglobulin G raised in rabbits against the binding domain of PfRh4 blocked the binding of native PfRh4 to the surfaces of erythrocytes and inhibited erythrocyte invasion of parasites using sialic acid-independent invasion pathways and grown in neuraminidase-treated erythrocytes. Our results suggest PfRh4 is a potential vaccine candidate.
Collapse
|
21
|
Erythrocyte invasion by Plasmodium falciparum: multiple ligand-receptor interactions and phenotypic switching. Subcell Biochem 2008; 47:46-57. [PMID: 18512340 DOI: 10.1007/978-0-387-78267-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
DeSimone TM, Bei AK, Jennings CV, Duraisingh MT. Genetic analysis of the cytoplasmic domain of the PfRh2b merozoite invasion protein of Plasmodium falciparum. Int J Parasitol 2008; 39:399-405. [PMID: 18831976 DOI: 10.1016/j.ijpara.2008.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/19/2008] [Accepted: 08/31/2008] [Indexed: 11/15/2022]
Abstract
Apicomplexan parasites employ multiple adhesive ligands for recognition and entry into host cells. The Duffy binding-like (DBL) and the reticulocyte binding protein-like (RBL) families are central to the invasion of erythrocytes by the malaria parasite. These type-1 transmembrane proteins are composed of large ectodomains and small conserved cytoplasmic tail domains. The cytoplasmic tail domain of the micronemal DBL protein EBA-175 is required for a functional ligand-receptor interaction, but not for correct trafficking and localisation. Here we focus on the cytoplasmic tail domain of the rhoptry-localised Plasmodium falciparum RBL PfRh2b. We have identified a conserved sequence of six amino acids, enriched in acidic residues, in the cytoplasmic tail domains of RBL proteins from Plasmodium spp. Genetic analyses reveal that the entire cytoplasmic tail and the conserved motif within the cytoplasmic tail are indispensable for invasion P. falciparum. Site-directed mutagenesis of the conserved moiety reveals that changes in the order of the amino acids of the conserved moiety, but not the charge of the sequence, can be tolerated. Shuffling of the motif has no effect on either invasion phenotype or PfRh2b expression and trafficking. Although the PfRh2b gene can be readily disrupted, our results suggest that modification of the PfRh2b cytoplasmic tail results in strong dominant negative activity, highlighting important differences between the PfRh2b and EBA-175 invasion ligands.
Collapse
|
23
|
Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, Lambert L, Furuya T, Bouttenot R, Doll M, Nawaz F, Mu J, Jiang L, Miller LH, Wellems TE. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 2008; 4:40-51. [PMID: 18621009 DOI: 10.1016/j.chom.2008.06.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/28/2008] [Accepted: 05/05/2008] [Indexed: 11/17/2022]
Abstract
Some human malaria Plasmodium falciparum parasites, but not others, also cause disease in Aotus monkeys. To identify the basis for this variation, we crossed two clones that differ in Aotus nancymaae virulence and mapped inherited traits of infectivity to erythrocyte invasion by linkage analysis. A major pathway of invasion was linked to polymorphisms in a putative erythrocyte binding protein, PfRH5, found in the apical region of merozoites. Polymorphisms of PfRH5 from the A. nancymaae-virulent parent transformed the nonvirulent parent to a virulent parasite. Conversely, replacements that removed these polymorphisms from PfRH5 converted a virulent progeny clone to a nonvirulent parasite. Further, a proteolytic fragment of PfRH5 from the infective parasites bound to A. nancymaae erythrocytes. Our results also suggest that PfRH5 is a parasite ligand for human infection, and that amino acid substitutions can cause its binding domain to recognize different human erythrocyte surface receptors.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Persson KEM, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, Marsh K, Beeson JG. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest 2008; 118:342-51. [PMID: 18064303 DOI: 10.1172/jci32138] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022] Open
Abstract
Antibodies that inhibit Plasmodium falciparum invasion of erythrocytes are believed to be an important component of immunity against malaria. During blood-stage infection, P. falciparum can use different pathways for erythrocyte invasion by varying the expression and/or utilization of members of 2 invasion ligand families: the erythrocyte-binding antigens (EBAs) and reticulocyte-binding homologs (PfRhs). Invasion pathways can be broadly classified into 2 groups based on the use of sialic acid (SA) on the erythrocyte surface by parasite ligands. We found that inhibitory antibodies are acquired by malaria-exposed Kenyan children and adults against ligands of SA-dependent and SA-independent invasion pathways, and the ability of antibodies to inhibit erythrocyte invasion depended on the pathway used by P. falciparum isolates. Differential inhibition of P. falciparum lines that varied in their use of specific EBA and PfRh proteins pointed to these ligand families as major targets of inhibitory antibodies. Antibodies against recombinant EBA and PfRh proteins were acquired in an age-associated manner, and inhibitory antibodies against EBA175 appeared prominent among some individuals. These findings suggest that variation in invasion phenotype might have evolved as a mechanism that facilitates immune evasion by P. falciparum and that a broad inhibitory response against multiple ligands may be required for effective immunity.
Collapse
Affiliation(s)
- Kristina E M Persson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Iyer J, Grüner AC, Rénia L, Snounou G, Preiser PR. Invasion of host cells by malaria parasites: a tale of two protein families. Mol Microbiol 2007; 65:231-49. [PMID: 17630968 DOI: 10.1111/j.1365-2958.2007.05791.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malaria parasites are obligate intracellular parasites whose invasive stages select and invade the unique host cell in which they can develop with exquisite specificity and efficacy. Most studies aimed at elucidating the molecules and the mechanisms implicated in the selection and invasion processes have been conducted on the merozoite, the stage that invades erythrocytes to perpetuate the pathological cycles of parasite multiplication in the blood. Bioinformatic analysis has helped identify the members of two parasite protein families, the reticulocyte-binding protein homologues (RBL) and erythrocyte binding like (EBL), in recently sequenced genomes of different Plasmodium species. In this article we review data from classical studies and gene disruption experiments that are helping to illuminate the role of these proteins in the selection-invasion processes. The manner in which subsets of proteins from each of the families act in concert suggests a model to explain the ability of the parasites to use alternate pathways of invasion. Future perspectives and implications are discussed.
Collapse
Affiliation(s)
- Jayasree Iyer
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
26
|
Verra F, Chokejindachai W, Weedall GD, Polley SD, Mwangi TW, Marsh K, Conway DJ. Contrasting signatures of selection on the Plasmodium falciparum erythrocyte binding antigen gene family. Mol Biochem Parasitol 2006; 149:182-90. [PMID: 16837078 DOI: 10.1016/j.molbiopara.2006.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/12/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Erythrocyte binding antigens of Plasmodium falciparum are involved in erythrocyte invasion, and may be targets of acquired immunity. Of the five eba genes, protein products have been detected for eba-175, eba-181 and eba-140, but not for psieba-165 or ebl-1, providing opportunity for comparative analysis of genetic variation to identify selection. Region II of each of these genes was sequenced from a cross-sectional sample of parasites in an endemic Kenyan population, and the frequency distributions of polymorphisms analysed. A positive value of Tajima's D was observed for eba-175 (D=1.13) indicating an excess of intermediate frequency polymorphisms, while all other genes had negative values, the most negative being ebl-1 (D=-2.35) followed by psieba-165 (D=-1.79). The eba-175 and ebl-1 genes were then studied in a sample of parasites from Thailand, for which a positive Tajima's D value was again observed for eba-175 (D=1.79), and a negative value for ebl-1 (D=-1.85). This indicates that eba-175 is under balancing selection in each population, in strong contrast to the other members of the gene family, particularly ebl-1 and psieba-165 that may have been under recent directional selection. Population expansion simulations were performed under a neutral model, further supporting the departures from neutrality of these genes.
Collapse
Affiliation(s)
- Federica Verra
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
27
|
Baum J, Maier AG, Good RT, Simpson KM, Cowman AF. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLoS Pathog 2005; 1:e37. [PMID: 16362075 PMCID: PMC1315277 DOI: 10.1371/journal.ppat.0010037] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/27/2005] [Indexed: 11/19/2022] Open
Abstract
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines.
Collapse
Affiliation(s)
- Jake Baum
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alexander G Maier
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Robert T Good
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ken M Simpson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alan F Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Gaur D, Furuya T, Mu J, Jiang LB, Su XZ, Miller LH. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol 2005; 145:205-15. [PMID: 16289357 DOI: 10.1016/j.molbiopara.2005.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/23/2005] [Accepted: 10/04/2005] [Indexed: 11/21/2022]
Abstract
The Plasmodium falciparum clone, Dd2, that requires sialic acid for invasion can switch to a sialic acid independent pathway, Dd2(NM). To elucidate the molecular basis of the switch in invasion phenotype of Dd2 to Dd2(NM), we performed expression profiling of the parasites using an oligonucleotide microarray and real-time RT-PCR. We found that four genes were upregulated in Dd2(NM) by microarray analysis, only two of which could be confirmed by real time RT-PCR. One gene, PfRH4, is a member of the reticulocyte homology family and the other, PEBL, is a pseudogene of the Duffy binding-like family. The two genes are contiguous but transcribed in opposite directions. The DNA sequence of these ORFs, their 5'-intergenic region and a 1.1kb region 3' to each ORF are identical between Dd2 and Dd2(NM), suggesting that their transcription upregulation relates to transactivating factors. The transcription upregulation of PfRH4 was reflected at the protein level as PfRH4 protein expression was detected in Dd2(NM) and not in Dd2. Other sialic acid independent and dependent clones of P. falciparum showed variable transcript levels of PfRH4 and PEBL, unrelated to their dependence on sialic acid for invasion, suggesting that different P. falciparum clones use different receptors for sialic acid independent invasion. As Dd2(NM) is a selected subclone of Dd2, the marked upregulation of PfRH4 expression in Dd2(NM) suggests its role in erythrocyte invasion through the sialic acid independent pathway of Dd2(NM).
Collapse
Affiliation(s)
- Deepak Gaur
- Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases/NIH, 12735 Twinbrook Parkway, Building Twinbrook III/Room 3E-32D, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005; 309:1384-7. [PMID: 16123303 DOI: 10.1126/science.1115257] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The malaria parasite, Plasmodium falciparum, exploits multiple ligand-receptor interactions, called invasion pathways, to invade the host erythrocyte. Strains of P. falciparum vary in their dependency on sialated red cell receptors for invasion. We show that switching from sialic acid-dependent to -independent invasion is reversible and depends on parasite ligand use. Expression of P. falciparum reticulocyte-binding like homolog 4 (PfRh4) correlates with sialic acid-independent invasion, and PfRh4 is essential for switching invasion pathways. Differential activation of PfRh4 represents a previously unknown mechanism to switch invasion pathways and provides P. falciparum with exquisite adaptability in the face of erythrocyte receptor polymorphisms and host immune responses.
Collapse
Affiliation(s)
- Janine Stubbs
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Curtidor H, Rodríguez LE, Ocampo M, López R, García JE, Valbuena J, Vera R, Puentes A, Vanegas M, Patarroyo ME. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Sci 2005; 14:464-73. [PMID: 15659376 PMCID: PMC2254251 DOI: 10.1110/ps.041084305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.
Collapse
Affiliation(s)
- Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Drummond PB, Peterson DS. An analysis of genetic diversity within the ligand domains of the Plasmodium falciparum ebl-1 gene. Mol Biochem Parasitol 2005; 140:241-5. [PMID: 15760663 DOI: 10.1016/j.molbiopara.2005.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 11/23/2022]
Affiliation(s)
- Paul B Drummond
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
32
|
Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell 2005; 122:183-93. [PMID: 16051144 DOI: 10.1016/j.cell.2005.05.033] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/22/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
Erythrocyte binding antigen 175 (EBA-175) is a P. falciparum protein that binds the major glycoprotein found on human erythrocytes, glycophorin A, during invasion. Here we present the crystal structure of the erythrocyte binding domain of EBA-175, RII, which has been established as a vaccine candidate. Binding sites for the heavily sialylated receptor glycophorin A are proposed based on a complex of RII with a glycan that contains the essential components required for binding. The dimeric organization of RII displays two prominent channels that contain four of the six observed glycan binding sites. Each monomer consists of two Duffy binding-like (DBL) domains (F1 and F2). F2 more prominently lines the channels and makes the majority of the glycan contacts, underscoring its role in cytoadherence and in antigenic variation in malaria. Our studies provide insight into the mechanism of erythrocyte invasion by the malaria parasite and aid in rational drug design and vaccines.
Collapse
Affiliation(s)
- Niraj H Tolia
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
33
|
Meissner M, Soldati D. The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microbes Infect 2005; 7:1376-84. [PMID: 16087378 DOI: 10.1016/j.micinf.2005.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 02/06/2023]
Abstract
The phylum of Apicomplexa groups a large variety of obligate intracellular protozoan parasites that exhibit complicated life cycles, involving transmission and differentiation within and between different hosts. Little is known about the level of regulation and the nature of the factors controlling gene expression throughout their life stages. Unravelling the mechanisms that govern gene regulation is critical for the development of adequate tools to manipulate these parasites and modulate gene expression, in order to study their function in molecular terms in vivo. A comparative analysis of the transcriptional machinery of several apicomplexan genomes and other protozoan parasites has revealed the existence of a primitive eukaryotic transcription apparatus consisting only of a subset of the general transcription factors found in higher eukaryotes. These findings have some direct implications on development of tools.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut, abteilung parasitologie, universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Ntumngia FB, Bahamontes-Rosa N, Kun JFJ. Genes coding for tryptophan-rich proteins are transcribed throughout the asexual cycle of Plasmodium falciparum. Parasitol Res 2005; 96:347-53. [PMID: 15924221 DOI: 10.1007/s00436-005-1398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Multigene families are a common feature in Plasmodia spp. and constitute a substantial content of the parasite genome. Here, we analyse the structural organisation and sequence diversity of two further members of the Trp-rich multigene family of P. falciparum. The complete DNA sequence of both genes was determined from a series of laboratory adapted and field isolates. Based on the amino acid sequences, we have termed them tryptophan-rich antigen-3 (TrpA-3) and lysine-tryptophan-rich antigen (LysTrpA). Analysis of the genes using reverse transcriptase-polymerase chain reaction (RT-PCR), showed that both genes are transcribed and that introns are spliced out at predicted positions. Gene expression profiles obtained from microarray analysis indicate that both genes are expressed in the mid-stages of the asexual cycle. In-frame stop codons were detected which interrupted the reading frame of LysTrpA. Whereas the number of the Trp-rich proteins is rather low in P. falciparum, P. chabaudi, P. berghei and P. yoelii, this family seems to have 15 or more members in P. knowlesi and P. vivax.
Collapse
Affiliation(s)
- Francis B Ntumngia
- Department of Parasitology, Institute of Tropical Medicine, Wilhelmstr. 27, 72074 Tübingen, Germany
| | | | | |
Collapse
|
35
|
Rayner JC, Huber CS, Barnwell JW. Conservation and divergence in erythrocyte invasion ligands: Plasmodium reichenowi EBL genes. Mol Biochem Parasitol 2005; 138:243-7. [PMID: 15555736 DOI: 10.1016/j.molbiopara.2004.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 08/02/2004] [Accepted: 08/14/2004] [Indexed: 11/28/2022]
Affiliation(s)
- Julian C Rayner
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, MS F-13, 4770 Buford Highway, Atlanta, GA 30341, USA
| | | | | |
Collapse
|
36
|
Pearce JA, Mills K, Triglia T, Cowman AF, Anders RF. Characterisation of two novel proteins from the asexual stage of Plasmodium falciparum, H101 and H103. Mol Biochem Parasitol 2005; 139:141-51. [PMID: 15664649 DOI: 10.1016/j.molbiopara.2004.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 09/22/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
The merozoite surface of the pathogenic malaria parasite Plasmodium falciparum is comprised of proteins that are important for the identification and invasion of human red cells. Merozoite surface protein (MSP)3 is a polymorphic protein associated with the surface of merozoites and is also a vaccine candidate. A distinct feature of the MSP3 sequence is three blocks of alanine-rich heptad repeats that are predicted to form an intramolecular coiled-coil. Three orthologues of MSP3 that also contain alanine-rich heptad repeats have been described in P. vivax and we therefore searched the P. falciparum genome database for MSP3 paralogues. We have identified two genes, H101 and H103 related to MSP3, however like another MSP3 paralogue, MSP6, H101 and H103 do not contain heptad repeats. H101 and H103 are expressed during the asexual cycle and immunofluorescence indicates H103 localises to the merozoite surface as a peripheral membrane protein. Transfected parasite lines that express truncated forms of H101 or H103 were viable and grew at the same rate as the parental parasite line. This result may reflect redundancy in function among members of the MSP3/MSP6 gene family as has been described for other families of paralogue genes in P. falciparum.
Collapse
Affiliation(s)
- J Andrew Pearce
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Vic. 3050, Australia.
| | | | | | | | | |
Collapse
|
37
|
Singh N, Preiser P, Rénia L, Balu B, Barnwell J, Blair P, Jarra W, Voza T, Landau I, Adams JH. Conservation and developmental control of alternative splicing in maebl among malaria parasites. J Mol Biol 2004; 343:589-99. [PMID: 15465047 DOI: 10.1016/j.jmb.2004.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/18/2022]
Abstract
Genes of malaria parasites and other unicellular organisms have larger exons with fewer and smaller introns than metaozoans. Such differences in gene structure are perceived to extend to simpler mechanisms for transcriptional control and mRNA processing. Instead, we discovered a surprisingly complex level of post-transcriptional mRNA processing in analysis of maebl transcripts in several Plasmodium species. Mechanisms for internal alternative cis-splicing and exon skipping were active in multiple life cycle stages to change exon structure in the deduced coding sequence (CDS). The major alternatively spliced transcript utilized a less favorable acceptor splice site, which shifted codon triplet usage to a different CDS with a hydrophilic C terminus, changing the canonical type I membrane MAEBL product to a predicted soluble isoform. We found that developmental control of the alternative splicing pattern was distinct from the canonical splicing pattern. Western blot analysis indicated that MAEBL expression was better correlated with the appearance of the canonical ORF1 transcript. Together these data reveal that RNA metabolism in unicellular eukaryotes like Plasmodium is more sophisticated than believed and may have a significant role regulating gene expression in Plasmodium.
Collapse
Affiliation(s)
- Naresh Singh
- Department of Biological Sciences, University of Notre Dame, 220 Galvin, PO Box 369, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gaur D, Mayer DCG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol 2004; 34:1413-29. [PMID: 15582519 DOI: 10.1016/j.ijpara.2004.10.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Malaria parasites must recognise and invade different cells during their life cycle. The efficiency with which Plasmodium falciparum invades erythrocytes of all ages is an important virulence factor, since the ability of the parasite to reach high levels of parasitemia is often associated with severe pathology and morbidity. The merozoite invasion of erythrocytes is a highly complex, multi-step process that is dependent on a cascade of specific molecular interactions. Although many proteins are known to play an important role in invasion, their functional characteristics remain unclear. Therefore, a complete understanding of the molecular interactions that are the basis of the invasion process is absolutely crucial, not only in improving our knowledge about the basic biology of the malarial parasite, but also for the development of intervention strategies to counter the disease. Here we review the current state of knowledge about the receptor-ligand interactions that mediate merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Deepak Gaur
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Building Twinbrook III/Room 3E-32D, Bethesda, MD 20892-8132, USA
| | | | | |
Collapse
|
39
|
Valbuena JJ, Bravo RV, Ocampo M, Lopez R, Rodriguez LE, Curtidor H, Puentes A, Garcia JE, Tovar D, Gomez J, Leiton J, Patarroyo ME. Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. Biochem Biophys Res Commun 2004; 321:835-44. [PMID: 15358103 DOI: 10.1016/j.bbrc.2004.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Erythrocyte binding antigen-160 (EBA-160) protein is a Plasmodium falciparum antigen homologue from the erythrocyte binding protein family (EBP). It has been shown that the EBP family plays a role in parasite binding to the erythrocyte surface. The EBA-160 sequence has been chemically synthesised in seventy 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte binding assays to identify possible EBA-160 functional regions. Five EBA-160 high activity binding peptides (HABPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants lay between 200 and 460 nM and Hill coefficients between 1.5 and 2.3. Erythrocyte membrane protein binding peptide cross-linking assays using SDS-PAGE showed that these peptides bound specifically to 12, 28, and 44 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. HABPs were able to block merozoite in vitro invasion of erythrocytes. HABPs' potential as anti-malarial vaccine candidates is also discussed.
Collapse
Affiliation(s)
- John Jairo Valbuena
- Fundacion Instituto de Inmunologia de Colombia, Universidad Nacional de Colombia, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|
41
|
Tinti M, Possenti A, Cherchi S, Barca S, Spano F. Analysis of the SAG5 locus reveals a distinct genomic organisation in virulent and avirulent strains of Toxoplasma gondii. Int J Parasitol 2003; 33:1605-16. [PMID: 14636676 DOI: 10.1016/s0020-7519(03)00265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently characterised, in the virulent strain RH of Toxoplasma gondii, three glycosylphosphatidylinositol-anchored surface antigens related to SAG1 (p30) and encoded by highly homologous, tandemly arrayed genes named SAG5A, SAG5B and SAG5C. In the present study, we compared the genomic organisation of the SAG5 locus in strains belonging to the three major genotypes of T. gondii. Southern blot analysis using a SAG5-specific probe produced two related but distinct hybridisation patterns, one exclusive of genotype I virulent strains, the other shared by avirulent strains of either genotype II or genotype III. To understand the molecular bases of this intergenotypic heterogeneity, we cloned and sequenced the SAG5 locus in the genotype II strain Me49. We found that in this isolate the SAG5B gene is missing, with SAG5A and SAG5C laying contiguously. This genomic arrangement explains the hybridisation profiles observed for all the avirulent strains examined and indicates that the presence of SAG5B is a distinctive trait of genotype I. Furthermore, we identified two novel SAG1-related genes, SAG5D and SAG5E, mapping respectively 1.8 and 4.0 kb upstream of SAG5A. SAG5D is transcribed in tachyzoites and encodes a polypeptide of 362 amino acids sharing 50% identity with SAG5A-C, whereas SAG5E is a transcribed pseudogene. We also evaluated polymorphisms at the SAG5 locus by comparing the coding regions of SAG5A-E from strains representative of the three archetypal genotypes. In agreement with the strict allelic dimorphism of T. gondii, we identified two alleles for SAG5D, whereas SAG5A, SAG5C and SAG5E were found to be three distinct nucleotide variants. The higher intergenotypic polymorphism of SAG5A, SAG5C and SAG5E suggests that these genes underwent a more rapid genetic drift than the other members of the SAG1 family. Finally, we developed a new PCR-restriction fragment length polymorphism method based on the SAG5C gene that is able to discriminate between strains of genotype I, II and III by a single endonuclease digestion.
Collapse
Affiliation(s)
- Michele Tinti
- Laboratorio di Parassitologia, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
42
|
Roelofs WL, Rooney AP. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc Natl Acad Sci U S A 2003; 100:9179-84. [PMID: 12876197 PMCID: PMC170892 DOI: 10.1073/pnas.1233767100a] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A great diversity of pheromone structures are used by moth species (Insecta: Lepidoptera) for long-distance mating signals. The signal/response channel seems to be narrow for each species, and a major conundrum is how signal divergence has occurred in the face of strong selection pressures against small changes in the signal. Observations of various closely related and morphologically similar species that use pheromone components biosynthesized by different enzymes and biosynthetic routes underscore the question as to how major jumps in the biosynthetic routes could have evolved with a mate recognition system that is based on responses to a specific blend of chemicals. Research on the desaturases used in the pheromone biosynthetic pathway for various moth species has revealed that one way to make a major shift in the pheromone blend is by activation of a different desaturase from mRNA that already exists in the pheromone gland. Data will be presented to support the hypothesis that this process was used in the evolution of the Asian corn borer, Ostrinia furnacalis species. In that context, moth sex-pheromone desaturase genes seem to be evolving under a birth-and-death process. According to this model of multigene family evolution, some genes are maintained in the genome for long periods of time, whereas others become deleted or lose their functionality, and new genes are created through gene duplication. This mode of evolution seems to play a role in moth speciation, as exemplified by the case of the Asian corn borer and European corn borer, Ostrinia nubilalis species.
Collapse
Affiliation(s)
- Wendell L Roelofs
- New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA.
| | | |
Collapse
|
43
|
Gilberger TW, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J Biol Chem 2003; 278:14480-6. [PMID: 12556470 DOI: 10.1074/jbc.m211446200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recognition and invasion of human erythrocytes by the most lethal malaria parasite Plasmodium falciparum is dependent on multiple ligand-receptor interactions. Members of the erythrocyte binding-like (ebl) family, including the erythrocyte binding antigen-175 (EBA-175), are responsible for high affinity binding to glycoproteins on the surface of the erythrocyte. Here we describe a paralogue of EBA-175 and show that this protein (EBA-181/JESEBL) binds in a sialic acid-dependent manner to erythrocytes. EBA-181 is expressed at the same time as EBA-175 and co-localizes with this protein in the microneme organelles of asexual stage parasites. The receptor binding specificity of EBA-181 to erythrocytes differs from other members of the ebl family and is trypsin-resistant and chymotrypsin-sensitive. Furthermore, using glycophorin B-deficient erythrocytes we show that binding of EBA-181 is not dependent on this sialoglycoprotein. The level of expression of EBA-181 differs among parasite lines, and the importance of this ligand for invasion appears to be strain-dependent as the EBA-181 gene can be disrupted in W2mef parasites, without affecting the invasion phenotype, but cannot be targeted in 3D7 parasites.
Collapse
Affiliation(s)
- Tim-Wolf Gilberger
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Suarez CE, Palmer GH, Florin-Christensen M, Hines SA, Hötzel I, McElwain TF. Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Mol Biochem Parasitol 2003; 127:101-12. [PMID: 12672519 DOI: 10.1016/s0166-6851(02)00311-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Babesia bigemina rap-1 gene locus contains five tandemly arranged copies of rap-1a genes. However, the size of the locus, as defined by conserved, unrelated orfs at the 5' and 3' ends, suggests that additional genes may be present. In this study, we identified all additional genes in the locus and characterized their pattern of expression in merozoites. The rap-1a genes are separated by 3.38-kbp intergenic (IG) regions, each of which contains an identical copy of a related gene designated rap-1b. One additional copy of rap-1b and one copy of another related gene designated rap-1c is present in the 3' end of the locus. Common sequence features that define the Babesia rap-1 family are present in rap-1b and rap-1c, but otherwise these genes average only 27% identity to rap-1a. Homologues of the rap-1b and rap-1c genes identified in diverse B. bigemina strains have a high degree of predicted amino acid sequence conservation (averaging >90%), with the largest number of changes in the carboxyl end of RAP-1c. We tested whether all rap-1 genes in the locus are co-transcribed in merozoites using RT-PCR, Northern blots, and quantitative real-time PCR. Rap-1a genes produce the most abundant transcripts of the family, while rap-1b transcripts are the least abundant despite the large number of gene copies. Similar patterns of transcription were observed whether merozoites were obtained from in vitro cultures or in vivo infection. Immunoblot analysis of merozoites revealed the expected RAP-1a expression but failed to detect expressed RAP-1b and RAP-1c, indicating that expression of the rap-1 genes is regulated both at the transcriptional and translational levels.
Collapse
Affiliation(s)
- Carlos E Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Baum J, Thomas AW, Conway DJ. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics 2003; 163:1327-36. [PMID: 12702678 PMCID: PMC1462517 DOI: 10.1093/genetics/163.4.1327] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses.
Collapse
Affiliation(s)
- Jake Baum
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | | | |
Collapse
|
46
|
Wu Y, Wang X, Liu X, Wang Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 2003; 13:601-16. [PMID: 12671001 PMCID: PMC430172 DOI: 10.1101/gr.913403] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development, especially in the processes of host erythrocyte rupture/invasion and hemoglobin degradation. However, to date, only a small number of proteases have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search, we have identified 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain, metacaspase, and signal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover, of the 92, at least 88 have been demonstrated to code for gene products at the transcriptional levels, based upon the microarray and RT-PCR results, and the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed, active, and essential proteases as targets for inhibitor-based drug design.
Collapse
Affiliation(s)
- Yimin Wu
- Department of Protistology, American Type Culture Collection, Manassas, Virginia 20110, USA
| | | | | | | |
Collapse
|
47
|
Taylor HM, Grainger M, Holder AA. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun 2002; 70:5779-89. [PMID: 12228308 PMCID: PMC128319 DOI: 10.1128/iai.70.10.5779-5789.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 05/20/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
The PfRH protein family of Plasmodium falciparum is implicated in erythrocyte invasion. Here we report variations in the sequence, transcription, and protein expression of four different members of this family in three parasite lines, 3D7, T996, and FCB1. There are sequence polymorphisms in PfRH1, PfRH2a, PfRH2b, and PfRH3, ranging from variations across repeat regions to a 585-bp deletion in the 3' end of PfRH2b in T996. Not all the genes are transcribed: although all members of the family are transcribed in 3D7 and T996, PfRH2a and PfRH2b are not transcribed in FCB1. The PfRH1, PfRH2a, and PfRH2b proteins are expressed in late schizonts and merozoites and are located in apical organelles and on the apical surface. However, the PfRH1 protein does not appear to be correctly targeted to the apex in 3D7 and T996. In contrast, the PfRH1 protein is present at the apical end of FCB1 merozoites, but the PfRH2a and PfRH2b proteins are undetectable. The apparent redundancy in the PfRH family of proteins at the level of gene number and sequence and the variations in transcription and protein expression may allow the parasite to use alternative invasion pathways.
Collapse
Affiliation(s)
- Helen M Taylor
- National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | |
Collapse
|
48
|
Michon P, Stevens JR, Kaneko O, Adams JH. Evolutionary relationships of conserved cysteine-rich motifs in adhesive molecules of malaria parasites. Mol Biol Evol 2002; 19:1128-42. [PMID: 12082132 DOI: 10.1093/oxfordjournals.molbev.a004171] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malaria parasites invade erythrocytes in a process mediated by a series of molecular interactions. Invasion of human erythrocytes by Plasmodium vivax is dependent upon the presence of a single receptor, but P. falciparum, as well as some other species, exhibits the ability to utilize multiple alternative invasion pathways. Conserved cysteine-rich domains play important roles at critical times during this invasion process and at other stages in the life cycle of malaria parasites. Duffy-binding-like (DBL) domains, expressed as a part of the erythrocyte-binding proteins (DBL-EBP), are such essential cysteine-rich ligands that recognize specific host cell surface receptors. DBL-EBP, which are products of the erythrocyte-binding-like (ebl) gene family, act as critical determinants of erythrocyte specificity and are the best-defined ligands from invasive stages of malaria parasites. The ebl genes include the P. falciparum erythrocyte-binding antigen-175 (EBA-175) and P. vivax Duffy-binding protein. DBL domains also mediate cytoadherence as a part of the variant erythrocytic membrane protein-1 (PfEMP-1) antigens expressed from var genes on the surface of P. falciparum-infected erythrocytes. A paralogue of the ebl family is the malarial ligand MAEBL, which has a chimeric structure where the DBL domain is functionally replaced with a distinct cysteine-rich erythrocyte-binding domain with similarity to the apical membrane antigen-1 (AMA-1) ligand domain. The Plasmodium AMA-1 ligand domain, which encompasses the extracellular cysteine domains 1 and 2 and is well conserved in a Toxoplasma gondii AMA-1, has erythrocyte-binding activity distinct from that of MAEBL. These important families of Plasmodium molecules (DBL-EBP, PfEMP-1, MAEBL, AMA-1) are interrelated through the MAEBL. Because MAEBL and the other ebl products have the characteristics expected of homologous ligands involved in equivalent alternative invasion pathways to each other, we sought to better understand their roles during invasion by determining their relative origins in the Plasmodium genome. An analysis of their multiple cysteine-rich domains permitted a unique insight into the evolutionary development of PLASMODIUM: Our data indicate that maebl, ama-1, and ebl genes have ancient origins which predate Plasmodium speciation. The maebl evolved as a single locus, including its unique chimeric structure, in each Plasmodium species, in parallel with the ama-1 and the ebl genes families. The ancient character of maebl, along with its different expression characteristics suggests that MAEBL is unique and does not play an alternative role in invasion to ebl products such as EBA-175. The multiple P. falciparum ebl paralogues that express DBL domains, which have occurred by duplication and diversification, potentially do provide multiple functionally equivalent ligands to EBA-175 for alternative invasion pathways.
Collapse
Affiliation(s)
- Pascal Michon
- Department of Biological Sciences, University of Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
49
|
Blair PL, Witney A, Haynes JD, Moch JK, Carucci DJ, Adams JH. Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Res 2002; 30:2224-31. [PMID: 12000842 PMCID: PMC115288 DOI: 10.1093/nar/30.10.2224] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2001] [Revised: 03/26/2002] [Accepted: 03/26/2002] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum intraerythrocytic development is a complex process. Development proceeds rapidly from the trophozoite phase of nutrient acquisition and growth through to the synthetic and reproductive schizont phase, which ends with production of new invasive merozoites. During this process, the malaria parasite must express a series of different gene products, depending on its metabolic and synthetic needs. We are particularly interested in the development of the merozoite's organelles in the apical complex, which form during the later schizont stages. We have used quantitative real-time RT-PCR fluorogenic 5' nuclease assays (TaqMan) for the first time on malaria parasites for analysis of erythrocytic stage-specific gene expression. We analyzed transcripts of the P.falciparum eba-175 and other erythrocyte binding-like (ebl) family genes in temperature-synchronized parasites and found ebl genes have tightly controlled, stage-specific transcription. As expected, eba-175 transcripts were abundant only at the end of schizont development in a pattern most common among ebl, including baebl, pebl and jesebl. The maebl transcript pattern was unique, peaking at mid-late trophozoite stage, but absent in late-stage schizonts. ebl-1 demonstrated another pattern of expression, which peaked during mid-schizont stage and then significantly diminished in late-stage schizonts. Our analysis demonstrates that using real-time RT-PCR fluorogenic 5' nuclease assays is a sensitive, quantitative method for analysis of Plasmodium transcripts.
Collapse
Affiliation(s)
- Peter L Blair
- Department of Biological Sciences, PO Box 369, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | | | | | | | |
Collapse
|