1
|
Rodríguez-Hernández D, Fenwick MK, Zigweid R, Sankaran B, Myler PJ, Sunnerhagen P, Kaushansky A, Staker BL, Grøtli M. Exploring Subsite Selectivity within Plasmodium vivax N-Myristoyltransferase Using Pyrazole-Derived Inhibitors. J Med Chem 2024; 67:7312-7329. [PMID: 38680035 PMCID: PMC11089503 DOI: 10.1021/acs.jmedchem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
- Department
of Structural and Functional Biology, Synthetic Biology Laboratory,
Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Michael K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Advanced Light Source, Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Morten Grøtli
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Oda K, Wlodawer A. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry 2023; 62:672-694. [PMID: 36705990 DOI: 10.1021/acs.biochem.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven peptidase (proteinase) families─aspartic, cysteine, metallo, serine, glutamic, threonine, and asparagine─are in the peptidase database MEROPS, version 12.4 (https://www.ebi.ac.uk/merops/). The glutamic peptidase family is assigned two clans, GA and GB, and comprises six subfamilies. This perspective summarizes the unique features of their representatives. (1) G1, scytalidoglutamic peptidase, has a β-sandwich structure containing catalytic residues glutamic acid (E) and glutamine (Q), thus the name eqolisin. Most family members are pepstatin-insensitive and act as plant pathogens. (2) G2, preneck appendage protein, originates in phages, is a transmembrane protein, and its catalytic residues consist of glutamic and aspartic acids. (3) G3, strawberry mottle virus glutamic peptidase, originates in viruses and has a β-sandwich structure with catalytic residues E and Q. Neprosin has propyl endopeptidase activity, is associated with celiac disease, has a β-sandwich structure, and contains catalytic residues E-E and Q-tryptophan. (4) G4, Tiki peptidase, of the erythromycin esterase family, is a transmembrane protein, and its catalytic residues are E-histidine pairs. (5) G5, RCE1 peptidase, is associated with cancer, is a transmembrane protein, and its catalytic residues are E-histidine and asparagine-histidine. Microcystinase, a bacterial toxin, is a transmembrane protein with catalytic residues E-histidine and asparagine-histidine. (6) G6, Ras/Rap1-specific peptidase, is a bacterial pathogen, a transmembrane protein, and its catalytic residues are E-histidine pairs. This family's common features are that their catalytic residues consist of a glutamic acid and another (variable) amino acid and that they exhibit a diversity of biological functions─plant and bacterial pathogens and involvement in celiac disease and cancer─that suggests they are viable drug targets.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Mishra A, Jha V, Rajak H. Molecular structural investigations of quinoxaline derivatives through 3D-QSAR, molecular docking, ADME prediction and pharmacophore modeling studies for the search of novel antimalarial agent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Araujo-Silva CA, De Souza W, Martins-Duarte ES, Vommaro RC. HDAC inhibitors Tubastatin A and SAHA affect parasite cell division and are potential anti-Toxoplasma gondii chemotherapeutics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 15:25-35. [PMID: 33360687 PMCID: PMC7771113 DOI: 10.1016/j.ijpddr.2020.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The redirectioning of drugs in the pharmaceutical market is a well-known practice to identify new therapies for parasitic diseases. The histone deacetylase inhibitors Tubastatin A (TST) and Suberoylanilide Hydroxamic Acid (SAHA), firstly developed for cancer treatment, are effective against protozoa parasites. In this work, we aimed to demonstrate the activity of these drugs as potential agents against Toxoplasma gondii, the causative agent of toxoplasmosis. TST and SAHA were active against different genotypes of Toxoplasma gondii, such as, RH (type I), EGS (I/III) and ME49 (type II) strains. The IC₅₀ values for the RH strain were 19 ± 1 nM and 520 ± 386 nM for TST and 41 ± 3 nM and 67 ± 36 nM for SAHA, for 24 and 48 h, respectively. Both compounds were highly selective for T. gondii and their anti-proliferative effect was irreversible for 8 days. The calculated selectivity indexes (39 for TST and 30 for SAHA) make them lead compounds for the future development of anti-Toxoplasma molecules. Western blotting showed TST led to a significant increase of the nuclear histone H4 and a decrease of H3 acetylation levels. Treatment with 1 μM TST and 0.1 μM SAHA for 48 h decreased the amount of global α-tubulin. Fluorescence and electron microscopy showed that both drugs affected the endodyogeny process impairing the budding of daughter cells. The drugs led to the formation of large, rounded masses of damaged parasites with several centrosomes randomly dispersed and incorrect apicoplast division and positioning. TST-treated parasites showed a rupture of the mitochondrial membrane potential and led to a failure of the IMC assembling of new daughter cells. SAHA and TST possibly inhibit HDAC3 and other cytoplasmic or organelle targeted HDACs involved in the modification of proteins other than histones.
Collapse
Affiliation(s)
- Carlla Assis Araujo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer - Universidade Federal do Rio de Janeiro - Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, 373 -Cidade Universitária, Rio de Janeiro - RJ, 21941-170, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer - Universidade Federal do Rio de Janeiro - Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, 373 -Cidade Universitária, Rio de Janeiro - RJ, 21941-170, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil
| | - Erica S Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia - ICB - Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos, 6.627 -Pampulha - Belo Horizonte, MG, 31270-901, Brazil.
| | - Rossiane C Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer - Universidade Federal do Rio de Janeiro - Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, 373 -Cidade Universitária, Rio de Janeiro - RJ, 21941-170, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
6
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
7
|
Harrison JR, Brand S, Smith V, Robinson DA, Thompson S, Smith A, Davies K, Mok N, Torrie LS, Collie I, Hallyburton I, Norval S, Simeons FRC, Stojanovski L, Frearson JA, Brenk R, Wyatt PG, Gilbert IH, Read KD. A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N-Myristoyltransferase Inhibitors. J Med Chem 2018; 61:8374-8389. [PMID: 30207721 PMCID: PMC6167002 DOI: 10.1021/acs.jmedchem.8b00884] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.
Collapse
Affiliation(s)
- Justin R Harrison
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Brand
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - David A Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Alasdair Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kenneth Davies
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ngai Mok
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Leah S Torrie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Iain Collie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Suzanne Norval
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Julie A Frearson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ruth Brenk
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| |
Collapse
|
8
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
10
|
Suazo KF, Schaber C, Palsuledesai CC, Odom John AR, Distefano MD. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 2016; 6:38615. [PMID: 27924931 PMCID: PMC5141570 DOI: 10.1038/srep38615] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development. In this study, we used a chemical biology strategy to experimentally characterize the entire complement of prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we found robust experimental evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. Our work contributes to an increasingly complete picture of essential, post-translational hydrophobic modifications in blood-stage P. falciparum.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Chad Schaber
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Audrey R Odom John
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
11
|
Thomas SM, Purmal A, Pollastri M, Mensa-Wilmot K. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Sci Rep 2016; 6:32083. [PMID: 27561392 PMCID: PMC5000474 DOI: 10.1038/srep32083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a "drug repurposing" approach, we tested anti-trypanosomal effects of carbazole-derived compounds called "Curaxins". In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of "mitotic slippage" or endoreplication observed in some other eukaryotes.
Collapse
Affiliation(s)
- Sarah M Thomas
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Andrei Purmal
- Cleveland BioLabs, Inc., Buffalo, New York 14203, USA
| | - Michael Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
12
|
Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment ofTrypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:993-1015. [DOI: 10.1080/13543776.2016.1209487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones. Antimicrob Agents Chemother 2016; 60:4217-28. [PMID: 27139466 DOI: 10.1128/aac.01575-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria.
Collapse
|
14
|
Repurposing strategies for tropical disease drug discovery. Bioorg Med Chem Lett 2016; 26:2569-76. [PMID: 27080183 DOI: 10.1016/j.bmcl.2016.03.103] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
Neglected tropical diseases (NTDs) and other diseases of the developing world, such as malaria, attract research investments that are disproportionately low compared to their impact on human health worldwide. Therefore, pragmatic methods for launching new drug discovery programs have emerged that repurpose existing chemical matter as new drugs or new starting points for optimization. In this Digest we describe applications of different repurposing approaches for NTDs, and provide a means by which these approaches may be differentiated from each other. These include drug repurposing, target repurposing, target class repurposing, and lead repurposing.
Collapse
|
15
|
Using a non-image-based medium-throughput assay for screening compounds targeting N-myristoylation in intracellular Leishmania amastigotes. PLoS Negl Trop Dis 2014; 8:e3363. [PMID: 25522361 PMCID: PMC4270692 DOI: 10.1371/journal.pntd.0003363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022] Open
Abstract
We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania N-myristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors. We have developed an assay for screening test compounds for their ability to kill intracellular amastigotes of Leishmania parasites, causative agents of human leishmaniasis. The assay is based on freeing amastigotes from infected macrophages by mild detergent lysis and measuring the number of parasites following their extracellular replication by a fluorescence-based method. The validity of the assay has been confirmed using the gold standard drugs, Amphotericin B and Miltefosine, which kill parasites at highly reproducible concentrations. Our results show that this assay is easily transferable between laboratories, can be adapted to specific applications and used to test any parasite species or strain, and does not rely on genetically-modified parasites. These features will enable its use in screening isolates taken directly from patients, vectors or reservoir hosts. We used this assay, in parallel with enzyme activity data, to test lead-like and hit-like inhibitors of a validated target enzyme, Leishmania N-myristoyltransferase (NMT). Compounds from two of four newly-identified Leishmania NMT-selective hit series displayed host cell cytotoxicity, while all four series displayed low translation of enzyme to cellular activity in analysis of intracellular parasite viability. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors.
Collapse
|
16
|
Olaleye TO, Brannigan JA, Roberts SM, Leatherbarrow RJ, Wilkinson AJ, Tate EW. Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites. Org Biomol Chem 2014; 12:8132-7. [PMID: 25230674 PMCID: PMC4224572 DOI: 10.1039/c4ob01669f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptidomimetic inhibitors of N-myristoyltransferase from malaria and leishmaniasis parasites have been designed with nanomolar potency, and reveal the first direct structural evidence for a ternary NMT/CoA/myristoyl peptide product complex.
N-Myristoyltransferase (NMT) has been shown to be essential in Leishmania and subsequently validated as a drug target in Plasmodium. Herein, we discuss the use of antifungal NMT inhibitors as a basis for inhibitor development resulting in the first sub-micromolar peptidomimetic inhibitors of Plasmodium and Leishmania NMTs. High-resolution structures of these inhibitors with Plasmodium and Leishmania NMTs permit a comparative analysis of binding modes, and provide the first crystal structure evidence for a ternary NMT-Coenzyme A/myristoylated peptide product complex.
Collapse
Affiliation(s)
- Tayo O Olaleye
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
17
|
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes. PLoS Negl Trop Dis 2014; 8:e3145. [PMID: 25188325 PMCID: PMC4154664 DOI: 10.1371/journal.pntd.0003145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis. Lymphatic filariasis and onchocerciasis are neglected tropical diseases caused by filarial nematodes. The limitations of existing drugs to treat these infections highlight the need for new drugs. In the present study, we investigated myristoylation, a lipid modification of a subset of proteins that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in protozoan parasites. We performed kinetic analyses on Caenorhabditis elegans and Brugia malayi NMTs. NMT inhibitors were active against B. malayi microfilariae and adult worms, and C. elegans in culture. RNA interference and gene deletion in C. elegans further demonstrated that NMT is essential for nematode viability. Our genetic and chemical studies indicate the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of new therapies against nematode infection including filarial diseases.
Collapse
|
18
|
Recent Advances in The Discovery ofN-Myristoyltransferase Inhibitors. ChemMedChem 2014; 9:2425-37. [DOI: 10.1002/cmdc.201402174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Indexed: 01/08/2023]
|
19
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Mabanglo MF, Hast MA, Lubock NB, Hellinga HW, Beese LS. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design. Protein Sci 2014; 23:289-301. [PMID: 24347326 PMCID: PMC3945837 DOI: 10.1002/pro.2411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Michael A Hast
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Nathan B Lubock
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| |
Collapse
|
21
|
New chemical scaffolds for human african trypanosomiasis lead discovery from a screen of tyrosine kinase inhibitor drugs. Antimicrob Agents Chemother 2014; 58:2202-10. [PMID: 24468788 DOI: 10.1128/aac.01691-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human African trypanosomiasis (HAT) is caused by the protozoan Trypanosoma brucei. New drugs are needed to treat HAT because of undesirable side effects and difficulties in the administration of the antiquated drugs that are currently used. In human proliferative diseases, protein tyrosine kinase (PTK) inhibitors (PTKIs) have been developed into drugs (e.g., lapatinib and erlotinib) by optimization of a 4-anilinoquinazoline scaffold. Two sets of facts raise a possibility that drugs targeted against human PTKs could be "hits" for antitrypanosomal lead discoveries. First, trypanosome protein kinases bind some drugs, namely, lapatinib, CI-1033, and AEE788. Second, the pan-PTK inhibitor tyrphostin A47 blocks the endocytosis of transferrin and inhibits trypanosome replication. Following up on these concepts, we performed a focused screen of various PTKI drugs as possible antitrypanosomal hits. Lapatinib, CI-1033, erlotinib, axitinib, sunitinib, PKI-166, and AEE788 inhibited the replication of bloodstream T. brucei, with a 50% growth inhibitory concentration (GI50) between 1.3 μM and 2.5 μM. Imatinib had no effect (i.e., GI50>10 μM). To discover leads among the drugs, a mouse model of HAT was used in a proof-of-concept study. Orally administered lapatinib reduced parasitemia, extended the survival of all treated mice, and cured the trypanosomal infection in 25% of the mice. CI-1033 and AEE788 reduced parasitemia and extended the survival of the infected mice. On the strength of these data and noting their oral bioavailabilities, we propose that the 4-anilinoquinazoline and pyrrolopyrimidine scaffolds of lapatinib, CI-1033, and AEE788 are worth optimizing against T. brucei in medicinal chemistry campaigns (i.e., scaffold repurposing) to discover new drugs against HAT.
Collapse
|
22
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Design, synthesis and biological evaluation of WC-9 analogs as antiparasitic agents. Eur J Med Chem 2013; 69:480-9. [PMID: 24090919 DOI: 10.1016/j.ejmech.2013.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/20/2022]
Abstract
As a part of our project pointed at the search of new safe chemotherapeutic and chemoprophylactic agents against parasitic diseases, several compounds structurally related to 4-phenoxyphenoxyethyl thiocyanate (WC-9), which were modified at the terminal aromatic ring, were designed, synthesized and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible of American trypanosomiasis (Chagas disease) and Toxoplasma gondii, the etiological agent of toxoplasmosis. Most of the synthetic analogs exhibited similar antiparasitic activity being slightly more potent than the reference compound WC-9. For example, the nitro derivative 13 showed an ED₅₀ value of 5.2 μM. Interestingly, the regioisomer of WC-9, compound 36 showed similar inhibitory action than WC-9 indicating that para-phenyl substitution pattern is not necessarily required for biological activity. The biological evaluation against T. gondii was also very promising. The ED₅₀ values corresponding for 13, 36 and 37 were at the very low micromolar level against tachyzoites of T. gondii.
Collapse
|
24
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|
25
|
Mani L, Jullian V, Mourkazel B, Valentin A, Dubois J, Cresteil T, Folcher E, Hooper JNA, Erpenbeck D, Aalbersberg W, Debitus C. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem Biodivers 2013; 9:1436-51. [PMID: 22899605 DOI: 10.1002/cbdv.201100309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four samples of Suberea ianthelliformis were investigated and furnished five new and 13 known brominated tyrosine-derived compounds. Two of the new compounds were identified as araplysillin N20-formamide and its N-oxide derivative. Three other new compounds, araplysillins IV, V, and VI, were isolated and identified as analogs of araplysillin II. Most of these compounds exhibit moderate inhibitory activities against chloroquine-resistant and -sensitive strains of Plasmodium falciparum, and were investigated for their PFTase inhibitory properties. The chemical content of the investigated sponges is correlated with their molecular phylogeny.
Collapse
Affiliation(s)
- Luke Mani
- UMR 152, IRD, 118, route de Narbonne, FR-31062 Toulouse cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Negl Trop Dis 2012; 6:e1896. [PMID: 23209849 PMCID: PMC3510080 DOI: 10.1371/journal.pntd.0001896] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. Human African Sleeping Sickness (HAT) is a disease caused by sub-species of Trypanosoma. The disease affects developing countries within Africa, mainly occurring in rural regions that lack resources to purchase drugs for treatment. Drugs that are currently available have significant side effects, and treatment regimes are lengthy and not always transferrable to the field. In consideration of these factors, new drugs are urgently needed for the treatment of HAT. To discover compounds suitable for drug discovery, cultured trypanosomes can be tested against libraries of compounds to identify candidates for further biological analysis. We have utilised a 384-well format, Alamar Blue viability assay to screen a large non-proprietary compound collection against Trypanosoma brucei brucei bloodstream form lister 427. The assay was shown to be reproducible, with reference compounds exhibiting activity in agreement with previously published results. Primary screening hits were retested against T.b. brucei and HEK293 mammalian cells in order to assess selectivity against the parasite. Selective hits were characterised by chemical analysis, taking into consideration drug-like properties amenable to further progression. Priority compounds were tested against a panel of protozoan parasites, including Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Five new compound classes were discovered that are amenable to progression in the drug discovery process for HAT.
Collapse
|
27
|
Yu Z, Brannigan JA, Moss DK, Brzozowski AM, Wilkinson AJ, Holder AA, Tate EW, Leatherbarrow RJ. Design and synthesis of inhibitors of Plasmodium falciparum N-myristoyltransferase, a promising target for antimalarial drug discovery. J Med Chem 2012; 55:8879-90. [PMID: 23035716 PMCID: PMC3863768 DOI: 10.1021/jm301160h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Design of inhibitors for N-myristoyltransferase (NMT), an enzyme responsible for protein trafficking in Plasmodium falciparum , the most lethal species of parasites that cause malaria, is described. Chemistry-driven optimization of compound 1 from a focused NMT inhibitor library led to the identification of two early lead compounds 4 and 25, which showed good enzyme and cellular potency and excellent selectivity over human NMT. These molecules provide a valuable starting point for further development.
Collapse
Affiliation(s)
- Zhiyong Yu
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | - James A. Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - David K. Moss
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, U.K
| | - A. Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, U.K
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | | |
Collapse
|
28
|
Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, Engel JC, Ang KKH, Mulvaney J, Chen S, Arkin MR, McKerrow JH, Podust LM. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 2012; 6:e1736. [PMID: 22860142 PMCID: PMC3409115 DOI: 10.1371/journal.pntd.0001736] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. METHODOLOGY/PRINCIPAL FINDINGS The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D) values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50) <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50) of 17 nM and was trypanocidal at 40 nM. CONCLUSIONS/SIGNIFICANCE The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.
Collapse
Affiliation(s)
- Shamila S. Gunatilleke
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Claudia M. Calvet
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Chiung-Kuang Chen
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Grigori Erenburg
- King's University College at the University of Western Ontario, London, Ontario, Canada
| | - Jiri Gut
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Juan C. Engel
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Kenny K. H. Ang
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph Mulvaney
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa M. Podust
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
29
|
Abate-Pella D, Zeliadt NA, Ochocki JD, Warmka JK, Dore TM, Blank DA, Wattenberg EV, Distefano MD. Photochemical modulation of Ras-mediated signal transduction using caged farnesyltransferase inhibitors: activation by one- and two-photon excitation. Chembiochem 2012; 13:1009-16. [PMID: 22492666 PMCID: PMC3436068 DOI: 10.1002/cbic.201200063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 01/04/2023]
Abstract
The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase is described. The inhibitor, FTI, was caged by alkylation of a critical thiol group with a bromohydroxycoumarin (Bhc) moiety. While Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryl groups. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies.
Collapse
Affiliation(s)
- Daniel Abate-Pella
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Nicholette A. Zeliadt
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Joshua D. Ochocki
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Janel K. Warmka
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Timothy M. Dore
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | - David A. Blank
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Elizabeth V. Wattenberg
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Mark D. Distefano
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
30
|
Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Negl Trop Dis 2012; 6:e1625. [PMID: 22545171 PMCID: PMC3335879 DOI: 10.1371/journal.pntd.0001625] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/07/2012] [Indexed: 01/11/2023] Open
Abstract
Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases. Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (HsNMT1 and HsNMT2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. We have identified eight series of protozoan NMT inhibitors, six having good selectivity for either Plasmodium or Leishmania NMTs over the other orthologues in this study. We believe that all of these series could form the basis of medicinal chemistry programs to deliver drug candidates against either malaria or leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as the UK Medical Research Council and Wellcome Trust can stimulate research for neglected diseases.
Collapse
|
31
|
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22:311-33. [PMID: 22404108 DOI: 10.1517/13543776.2012.668886] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. AREAS COVERED This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. EXPERT OPINION A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets.
Collapse
Affiliation(s)
- Juan Bautista Rodriguez
- Universidad de Buenos Aires, Química Orgánica & UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina.
| | | |
Collapse
|
32
|
Brand S, Cleghorn LAT, McElroy SP, Robinson DA, Smith VC, Hallyburton I, Harrison JR, Norcross NR, Spinks D, Bayliss T, Norval S, Stojanovski L, Torrie LS, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Read KD, Wyatt PG, Gilbert IH. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 2011; 55:140-52. [PMID: 22148754 PMCID: PMC3256935 DOI: 10.1021/jm201091t] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC(50) = 2 nM) and T. brucei (EC(50) = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.
Collapse
Affiliation(s)
- Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Experimental chemotherapy and approaches to drug discovery for Trypanosoma cruzi infection. ADVANCES IN PARASITOLOGY 2011; 75:89-119. [PMID: 21820553 DOI: 10.1016/b978-0-12-385863-4.00005-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the 100 years since the discovery of Chagas disease, only two drugs have been developed and introduced into clinical practice, and these drugs were introduced over 40 years ago. The tools of drug discovery have improved dramatically in the interim; however, this has not translated into new drugs for Chagas disease. This has been largely because the main practitioners of drug discovery are pharmaceutical companies who are not financially motivated to invest in Chagas disease and other "orphan" diseases. As a result, it has largely been up to academic groups to bring drug candidates through the discovery pipeline and to clinical trials. The difficulty with drug discovery in academia has been the challenge of bringing together the diverse expertise in biology, chemistry, and pharmacology in concerted efforts towards a common goal of developing therapeutics. Funding is often inadequate, but lack of coordination amongst academic investigators with different expertise has also contributed to the slow progress. The purpose of this chapter is to provide an overview of approaches that can be accomplished in academic settings for preclinical drug discovery for Chagas disease. The chapter addresses methods of drug screening against Trypanosoma cruzi cultures and in animal models and includes general topics on compound selection, testing for drug-like properties (including oral bioavailability), investigating the pharmacokinetics and toxicity of compounds, and finally providing parameters to help with triaging compounds.
Collapse
|
34
|
Engelson EJ, Buckner FS, Van Voorhis WC. An essential farnesylated kinesin in Trypanosoma brucei. PLoS One 2011; 6:e26508. [PMID: 22073170 PMCID: PMC3206815 DOI: 10.1371/journal.pone.0026508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 12/04/2022] Open
Abstract
Kinesins are a family of motor proteins conserved throughout eukaryotes. In our present study we characterize a novel kinesin, Kinesin(CaaX), orthologs of which are only found in the kinetoplastids and not other eukaryotes. Kinesin(CaaX) has the CVIM amino acids at the C-terminus, and CVIM was previously shown to be an ideal signal for protein farnesylation in T. brucei. In this study we show Kinesin(CaaX) is farnesylated using radiolabeling studies and that farnesylation is dependent on the CVIM motif. Using RNA interference, we show Kinesin(CaaX) is essential for T. brucei proliferation. Additionally RNAi Kinesin(CaaX) depleted T. brucei are 4 fold more sensitive to the protein farneysltransferase (PFT) inhibitor LN-59, suggesting that Kinesin(CaaX) is a target of PFT inhibitors' action to block proliferation of T. brucei. Using tetracycline-induced exogenous tagged Kinesin(CaaX) and Kinesin(CVIMdeletion) (non-farnesylated Kinesin) expression lines in T. brucei, we demonstrate Kinesin(CaaX) is farnesylated in T. brucei cells and this farnesylation has functional effects. In cells expressing a CaaX-deleted version of Kinesin, the localization is more diffuse which suggests correct localization depends on farnesylation. Through our investigation of cell cycle, nucleus and kinetoplast quantitation and immunofluorescence assays an important role is suggested for Kinesin(CaaX) in the separation of nuclei and kinetoplasts during and after they have been replicated. Taken together, our work suggests Kinesin(CaaX) is a target of PFT inhibition of T. brucei cell proliferation and Kinesin(CaaX) functions through both the motor and farnesyl groups.
Collapse
Affiliation(s)
- Erin J. Engelson
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Frederick S. Buckner
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Durrant JD, Cao R, Gorfe AA, Zhu W, Li J, Sankovsky A, Oldfield E, McCammon JA. Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design. Chem Biol Drug Des 2011; 78:323-32. [PMID: 21696546 PMCID: PMC3155669 DOI: 10.1111/j.1747-0285.2011.01164.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/03/2011] [Accepted: 06/17/2011] [Indexed: 11/28/2022]
Abstract
The relaxed complex scheme, a virtual-screening methodology that accounts for protein receptor flexibility, was used to identify a low-micromolar, non-bisphosphonate inhibitor of farnesyl diphosphate synthase. Serendipitously, we also found that several predicted farnesyl diphosphate synthase inhibitors were low-micromolar inhibitors of undecaprenyl diphosphate synthase. These results are of interest because farnesyl diphosphate synthase inhibitors are being pursued as both anti-infective and anticancer agents, and undecaprenyl diphosphate synthase inhibitors are antibacterial drug leads.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, Beese LS. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem 2011; 286:35149-62. [PMID: 21816822 DOI: 10.1074/jbc.m111.250506] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.
Collapse
Affiliation(s)
- Michael A Hast
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kumar S, Singh B, Dimmock JR, Sharma RK. N-myristoyltransferase in the leukocytic development processes. Cell Tissue Res 2011; 345:203-11. [PMID: 21698528 PMCID: PMC3327710 DOI: 10.1007/s00441-011-1202-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/03/2011] [Indexed: 02/07/2023]
Abstract
The lipidic modification of proteins has recently been shown to be of immense importance, although many of the roles of these modifications remain as yet unidentified. One of such key modifications occurring on several proteins is the covalent addition of a 14-carbon long saturated fatty acid, a process termed myristoylation. Myristoylation can occur during both co-translational protein synthesis and posttranslationally, confers lipophilicity to protein molecules, and controls protein functions. The protein myristoylation process is catalyzed by the enzyme N-myristoyltransferase (NMT), which exists as two isoforms: NMT1 and NMT2. NMT1 is essential for growth and development, during which rapid cellular proliferation is required, in a variety of organisms. NMT1 is also reported to be elevated in many cancerous states, which also involve rapid cellular growth, albeit in an unwanted and uncontrolled manner. The delineation of myristoylation-dependent cellular functions is still in a state of infancy, and many of the roles of the myristoylated proteins remain to be established. The development of cells of the leukocytic lineage represents a phase of rapid growth and development, and we have observed that NMT1 plays a role in this process. The current review outlines the roles of NMT1 in the growth and differentiation of the cells of leukocytic origin. The described studies clearly demonstrate the roles of NMT1 in the regulation of the developmental processes of the leukocytes cells and provide a basis for further research with the aim of unraveling the roles of protein myristoylation in both cellular and physiological context.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
38
|
Deshpande S, Jaiswal S, Katti SB, Prabhakar YS. CoMFA and CoMSIA analysis of tetrahydroquinolines as potential antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:473-488. [PMID: 21598193 DOI: 10.1080/1062936x.2011.569945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used on a dataset of compounds, some of them having been reported to inhibit Plasmodium falciparum protein, farnesyltransferase. The co-crystal structure of the lead molecule, BMS-214662 bound to Rat-PFT was used as a template. CoMFA yielded a good model, with r²(ncv) = 0.909, r²(cv) = 0.617 and was validated using an external set r²(pred) = 0.748). It compared favourably with CoMSIA. In the CoMFA model the steric and electrostatic fields exerted an almost equal influence on activity. The contour maps indicated the necessity for sterically large electropositive groups with electronegative tail to be present in these molecules for activity, and sterically large electronegative moieties on the sulfonamide linker. By incorporating these features some new compounds have been identified for further investigation.
Collapse
Affiliation(s)
- S Deshpande
- Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR, Lucknow, India
| | | | | | | |
Collapse
|
39
|
Rosso VS, Szajnman SH, Malayil L, Galizzi M, Moreno SNJ, Docampo R, Rodriguez JB. Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2011; 19:2211-7. [PMID: 21419634 PMCID: PMC3071284 DOI: 10.1016/j.bmc.2011.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 μM, while this compound showed an IC(50) value of 0.81 μM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 μM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 μM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 μM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.
Collapse
Affiliation(s)
- Valeria S Rosso
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei Infection in Mice. Antimicrob Agents Chemother 2011; 55:1982-9. [PMID: 21282428 DOI: 10.1128/aac.01796-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human African trypanosomiasis continues to be an important public health threat in extensive regions of sub-Saharan Africa. Treatment options for infected patients are unsatisfactory due to toxicity, difficult administration regimes, and poor efficacy of available drugs. The aminoacyl-tRNA synthetases were selected as attractive drug targets due to their essential roles in protein synthesis and cell survival. Comparative sequence analysis disclosed differences between the trypanosome and mammalian methionyl-tRNA synthetases (MetRSs) that suggested opportunities for selective inhibition using drug-like molecules. Experiments using RNA interference on the single MetRS of Trypanosoma brucei demonstrated that this gene product was essential for normal cell growth. Small molecules (diaryl diamines) similar to those shown to have potent activity on prokaryotic MetRS enzymes were synthesized and observed to have inhibitory activity on the T. brucei MetRS (50% inhibitory concentration, <50 nM) and on bloodstream forms of T. brucei cultures (50% effective concentration, as low as 4 nM). Twenty-one compounds had a close correlation between enzyme binding/inhibition and T. brucei growth inhibition, indicating that they were likely to be acting on the intended target. The compounds had minimal effects on mammalian cell growth at 20 μM, demonstrating a wide therapeutic index. The most potent compound was tested in the murine model of trypanosomiasis and demonstrated profound parasite suppression and delayed mortality. A homology model of the T. brucei MetRS based on other MetRS structures was used to model binding of the lead diaryl diamine compounds. Future studies will focus on improving the pharmacological properties of the MetRS inhibitors.
Collapse
|
41
|
Global Identification of Protein Prenyltransferase Substrates. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-381339-8.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
|
42
|
Crowther GJ, Napuli AJ, Gilligan JH, Gagaring K, Borboa R, Francek C, Chen Z, Dagostino EF, Stockmyer JB, Wang Y, Rodenbough PP, Castaneda LJ, Leibly DJ, Bhandari J, Gelb MH, Brinker A, Engels IH, Taylor J, Chatterjee AK, Fantauzzi P, Glynne RJ, Van Voorhis WC, Kuhen KL. Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol 2011; 175:21-9. [PMID: 20813141 PMCID: PMC3108854 DOI: 10.1016/j.molbiopara.2010.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/09/2010] [Accepted: 08/24/2010] [Indexed: 02/05/2023]
Abstract
The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25μM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.
Collapse
|
43
|
Bahl D, Athar F, Soares MBP, de Sá MS, Moreira DRM, Srivastava RM, Leite ACL, Azam A. Structure–activity relationships of mononuclear metal–thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg Med Chem 2010; 18:6857-64. [DOI: 10.1016/j.bmc.2010.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/16/2010] [Indexed: 02/01/2023]
|
44
|
Smith TK, Bütikofer P. Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 2010; 172:66-79. [PMID: 20382188 PMCID: PMC3744938 DOI: 10.1016/j.molbiopara.2010.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Terry K Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, Scotland KY16 9ST, UK. <>
| | | |
Collapse
|
45
|
Brannigan JA, Smith BA, Yu Z, Brzozowski AM, Hodgkinson MR, Maroof A, Price HP, Meier F, Leatherbarrow RJ, Tate EW, Smith DF, Wilkinson AJ. N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis. J Mol Biol 2010; 396:985-99. [PMID: 20036251 PMCID: PMC2829124 DOI: 10.1016/j.jmb.2009.12.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 12/30/2022]
Abstract
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovani NMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 A resolution. The structure has as its defining feature a 14-stranded twisted beta-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.
Collapse
Key Words
- arf, adp-ribosylation factor
- dig, digoxigenin
- hasp, hydrophilic acylated surface protein
- hyg, hygromycin
- neo, neomycin
- nhm, non-hydrolysable myristoyl-coa analogue
- nmt, n-myristoyltransferase
- orf, open reading frame
- pac, puromycin
- spa, scintillation proximity assay
- vl, visceral leishmaniasis
- canmt, hsnmt, ldnmt and scnmt, n-myristoyltransferase from candida albicans, homo sapiens, leishmania donovani and saccharomyces cerevisiae, respectively
- n-myristoyltransferase
- leishmania
- visceral leishmaniasis
- crystal structure
- drug target
Collapse
Affiliation(s)
- James A. Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | - Barbara A. Smith
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Zhiyong Yu
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | - Michael R. Hodgkinson
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Asher Maroof
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Helen P. Price
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Franziska Meier
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | | | - Edward W. Tate
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
- Corresponding author.
| |
Collapse
|
46
|
Hougland JL, Hicks KA, Hartman HL, Kelly RA, Watt TJ, Fierke CA. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J Mol Biol 2010; 395:176-90. [PMID: 19878682 PMCID: PMC2916699 DOI: 10.1016/j.jmb.2009.10.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Prenylation is a posttranslational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development, and farnesyltransferase inhibitors are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for farnesyltransferase inhibitor efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover (MTO) reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under single-turnover (STO) conditions. Based on these results, a second library was designed that yielded an additional 29 novel MTO FTase substrates and 45 STO substrates. The two classes of substrates exhibit different specificity requirements. Efficient MTO reactivity correlates with the presence of a nonpolar amino acid at the a(2) position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca(1)a(2)X sequence model. In contrast, the sequences of the STO substrates vary significantly more at both the a(2) and the X residues and are not well described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets. Finally, these data illuminate the potential for in vivo regulation of prenylation through modulation of STO versus MTO peptide reactivity with FTase.
Collapse
Affiliation(s)
- James L. Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine A. Hicks
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Heather L. Hartman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebekah A. Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Terry J. Watt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
47
|
XIE AIHUA, CLARK SHAWNAR, PRASANNA SIVAPRAKASAM, DOERKSEN ROBERTJ. Three-dimensional quantitative structure-farnesyltransferase inhibition analysis for some diaminobenzophenones. J Enzyme Inhib Med Chem 2009; 24:1220-8. [PMID: 19912055 PMCID: PMC10725738 DOI: 10.3109/14756360902781389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.
Collapse
Affiliation(s)
- AIHUA XIE
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - SHAWNA R. CLARK
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Tougaloo College, Jackson, MS, 39174
| | - SIVAPRAKASAM PRASANNA
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - ROBERT J. DOERKSEN
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
48
|
Na-Bangchang K, Karbwang J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin Pharmacol 2009; 23:387-409. [PMID: 19709319 DOI: 10.1111/j.1472-8206.2009.00709.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimalarial drugs have played a mainstream role in controlling the spread of malaria through the treatment of patients infected with the plasmodial parasites and controlling its transmissibility. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to currently used antimalarials, and the lack of affordable new drugs are the limiting factors in the fight against malaria. In addition, other problems with some existing agents include unfavorable pharmacokinetic properties and adverse effects/toxicity. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. In recent years, major advances have been made in the pharmacology of several antimalarial drugs both in pharmacokinetics and pharmacodynamics aspects. These include the design, development, and optimization of appropriate dosage regimens of antimalarials, basic knowledge in metabolic pathways of key antimalarials, as well as the elucidation of mechanisms of action and resistance of antimalarials. Pharmacologists have been working in close collaboration with scientists in other disciplines of science/biomedical sciences for more understanding on the biology of the parasite, host, in order to exploit rational design of drugs. Multiple general approaches to the identification of new antimalarials are being pursued at this time. All should be implemented in parallel with focus on the rational development of new agents directed against newly identified parasite targets. With major advances in our understanding of malaria parasite biology coupled with the completion of the malaria genome, has presented exciting opportunities for target-based antimalarial drug discovery.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand.
| | | |
Collapse
|
49
|
Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, Smith DF. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis 2009; 3:e476. [PMID: 19582145 PMCID: PMC2701600 DOI: 10.1371/journal.pntd.0000476] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/02/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Genome sequencing of Leishmania species that give rise to a range of disease phenotypes in the host has revealed highly conserved gene content and synteny across the genus. Only a small number of genes are differentially distributed between the three species sequenced to date, L. major, L. infantum and L. braziliensis. It is not yet known how many of these genes are expressed in the disease-promoting intracellular amastigotes of these species or whether genes conserved between the species are differentially expressed in the host. METHODS/PRINCIPAL FINDINGS We have used customised oligonucleotide microarrays to confirm that all of the differentially distributed genes identified by genome comparisons are expressed in intracellular amastigotes, with only a few of these subject to regulation at the RNA level. In the first large-scale study of gene expression in L. braziliensis, we show that only approximately 9% of the genes analysed are regulated in their RNA expression during the L. braziliensis life cycle, a figure consistent with that observed in other Leishmania species. Comparing amastigote gene expression profiles between species confirms the proposal that Leishmania transcriptomes undergo little regulation but also identifies conserved genes that are regulated differently between species in the host. We have also investigated whether host immune competence influences parasite gene expression, by comparing RNA expression profiles in L. major amastigotes derived from either wild-type (BALB/c) or immunologically compromised (Rag2(-/-) gamma(c) (-/-)) mice. While parasite dissemination from the site of infection is enhanced in the Rag2(-/-) gamma(c) (-/-) genetic background, parasite RNA expression profiles are unperturbed. CONCLUSION/SIGNIFICANCE These findings support the hypothesis that Leishmania amastigotes are pre-adapted for intracellular survival and undergo little dynamic modulation of gene expression at the RNA level. Species-specific parasite factors contributing to virulence and pathogenicity in the host may be limited to the products of a small number of differentially distributed genes or the differential regulation of conserved genes, either of which are subject to translational and/or post-translational controls.
Collapse
Affiliation(s)
- Daniel P. Depledge
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | - Krystal J. Evans
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | | | - Naveed Aziz
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Asher Maroof
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
50
|
Xie A, Odde S, Prasanna S, Doerksen RJ. Imidazole-containing farnesyltransferase inhibitors: 3D quantitative structure-activity relationships and molecular docking. J Comput Aided Mol Des 2009; 23:431-48. [PMID: 19479325 DOI: 10.1007/s10822-009-9278-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/02/2009] [Indexed: 11/29/2022]
Abstract
One of the most promising anticancer and recent antimalarial targets is the heterodimeric zinc-containing protein farnesyltransferase (FT). In this work, we studied a highly diverse series of 192 Abbott-initiated imidazole-containing compounds and their FT inhibitory activities using 3D-QSAR and docking, in order to gain understanding of the interaction of these inhibitors with FT to aid development of a rational strategy for further lead optimization. We report several highly significant and predictive CoMFA and CoMSIA models. The best model, composed of CoMFA steric and electrostatic fields combined with CoMSIA hydrophobic and H-bond acceptor fields, had r (2) = 0.878, q (2) = 0.630, and r (pred) (2) = 0.614. Docking studies on the statistical outliers revealed that some of them had a different binding mode in the FT active site based on steric bulk and available active site space, explaining why the predicted activities differed from the experimental activities.
Collapse
Affiliation(s)
- Aihua Xie
- Department of Medicinal Chemistry, University of Mississippi, University, MS 38677-1848, USA
| | | | | | | |
Collapse
|