1
|
Sardar SK, Ghosal A, Haldar T, Prasad A, Mal S, Saito-Nakano Y, Kobayashi S, Dutta S, Nozaki T, Ganguly S. Genetic characterization of the Entamoeba moshkovskii population based on different potential genetic markers. Parasitology 2024; 151:429-439. [PMID: 38571301 PMCID: PMC11044060 DOI: 10.1017/s003118202400026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1–M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.
Collapse
Affiliation(s)
- Sanjib K. Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Sweety Mal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiki Kobayashi
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| |
Collapse
|
2
|
Abstract
Entamoeba histolytica, a protozoan parasite, causes amoebiasis in humans. Amoebiasis transmission is solely mediated by chitin-walled cysts, which are produced in the large intestine of humans from proliferative trophozoites by a cell differentiation process called encystation. Resistance to environmental stresses, an essential characteristic for transmission, is attributed to the cyst wall, which is constructed from chitin and several protein components, including chitinase. Chitinase may play a key role in cyst wall formation; however, this has not been confirmed. Here, to elucidate the physiological role of chitinase during Entamoeba encystation, we identified a new chitinase inhibitor, 2,6-dichloro-4-[2-(1-piperazinyl)-4-pyridinyl]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzenesulfonamide, by recombinant-Entamoeba chitinase-based screening of 400 Pathogen Box chemicals. This compound dose dependently inhibited native chitinase associated with Entamoeba invadens encystation, a model for E. histolytica encystation, with an 50% inhibitory concentration (IC50) of ∼0.6 μM, which is comparable to the IC50s (0.2 to 2.5 μM) for recombinant E. histolytica and E. invadens chitinases. Furthermore, the addition of this compound to E. invadens encystation-inducing cultures increased the generation of cyst walls with an abnormal shape, the most characteristic of which was a "pot-like structure." A similar structure also appeared in standard culture, but at a far lower frequency. These results indicate that chitinase inhibition increases the number of abnormal encysting cells, thereby significantly reducing the efficiency of cyst formation. Transmission electron microscopy showed that compound-treated encysting cells formed an abnormally loose cyst wall and an unusual gap between the cyst wall and cell membrane. Hence, Entamoeba chitinase is required for the formation of mature round cysts. IMPORTANCE Amoebiasis is caused by Entamoeba histolytica infection and is transmitted by dormant Entamoeba cells or cysts. Cysts need to be tolerant to severe environmental stresses faced outside and inside a human host. To confer this resistance, Entamoeba parasites synthesize a wall structure around the cell during cyst formation. This cyst wall consists of chitin and several protein components, including chitinase. The physiological roles of these components are not fully understood. Here, to elucidate the role of chitinase during cyst formation, we identified a new chitinase inhibitor by screening a library of 400 compounds. Using this inhibitor, we showed that chitinase inhibition causes the formation of abnormal cyst walls, the most characteristic of which is a "pot-like structure." This results in decreased production of mature cysts. Chitinase is therefore required for Entamoeba to produce mature cysts for transmission to a new host.
Collapse
|
3
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Rawat A, Singh P, Jyoti A, Kaushik S, Srivastava VK. Averting transmission: A pivotal target to manage amoebiasis. Chem Biol Drug Des 2020; 96:731-744. [PMID: 32356312 DOI: 10.1111/cbdd.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Amoebiasis is a parasitic infectious disease caused by the enteric protozoan Entamoeba histolytica, a leading basis of deaths accounted to parasites, succeeding malaria and schistosomiasis. Conventional treatment methodologies used to deal with amoebiasis mainly rely on the administration of anti-amoebic compounds and vaccines but are often linked with substantial side-effects on the patient. Besides, cases of development of drug resistance in protozoans have been recorded, contributing further to the reduction in the efficiency of the treatment. Loopholes in the efficacious management of the disease call for the development of novel methodologies to manage amoebiasis. A way to achieve this is by targeting the essential metabolic processes of 'encystation' and 'excystation', and the associated biomolecules, thus interrupting the biphasic life cycle of the parasite. Technologies like the CRISPR-Cas9 system can efficiently be exploited to discover novel and essential molecules that regulate the protozoan's metabolism, while efficiently manipulating and managing the known drug targets, leading to an effective halt and forestall to the enteric infection. This review presents a perspective on these essential metabolic processes and the associated molecules that can be targeted efficaciously to prevent the transmission of amoebiasis, thus managing the disease and proving to be a fruitful endeavour.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Parikshit Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | |
Collapse
|
5
|
Philips SA, Manochitra K, Parija SC. Chitinase-gene-based analysis of the genetic variability among the clinical isolates of Entamoeba dispar from Puducherry, India. Trop Parasitol 2017; 7:107-110. [PMID: 29114489 PMCID: PMC5652047 DOI: 10.4103/tp.tp_31_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Amebiasis is known to be caused by the protozoan parasite Entamoeba histolytica. Entamoeba dispar is considered to be a sibling species of E. histolytica, as the two are phylogenetically closest. There are reports that certain strains of E. dispar isolated were capable of causing hepatic lesions in the experimental animal models. The intra-/inter-species genetic variation has been found to have profound implication in the invasiveness of the disease. Thus, studying polymorphism in E. dispar aids to improve our perspective related to the variability in the genome of the parasite. Materials and Methods: The highly polymorphic region of the gene encoding the enzyme chitinase was targeted for the strain variation analysis in E. dispar. Isolates from the stool and liver abscess aspirate were subjected to the polymerase chain reaction (PCR) for the amplification of the targeted polymorphic loci. The PCR products were sequenced, and genetic variability analysis was carried out. Results: A total of 23 samples in the stool and 1 sample from liver abscess pus were positive for E. dispar by nested multiplex PCR which was confirmed by sequencing. Of these positive samples, 13 amplified for chitinase gene by PCR. We observed seven genotypes in our study isolates, of which four were found to be distinct. Conclusion: This study shows that high degree of genetic variation exists among the clinical isolates of E. dispar in our location. The future studies including the analysis of other genetic makers such as serine-rich E. dispar protein or other loci have to be carried out to get an idea about the distribution of the different strains of E. dispar.
Collapse
Affiliation(s)
- Selvarathinam Ajay Philips
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Kumar Manochitra
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Subhash Chandra Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
6
|
Herman E, Siegesmund MA, Bottery MJ, van Aerle R, Shather MM, Caler E, Dacks JB, van der Giezen M. Membrane Trafficking Modulation during Entamoeba Encystation. Sci Rep 2017; 7:12854. [PMID: 28993644 PMCID: PMC5634486 DOI: 10.1038/s41598-017-12875-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is an intestinal parasite that infects 50-100 million people and causes up to 55,000 deaths annually. The transmissive form of E. histolytica is the cyst, with a single infected individual passing up to 45 million cysts per day, making cyst production an attractive target for infection control. Lectins and chitin are secreted to form the cyst wall, although little is known about the underlying membrane trafficking processes supporting encystation. As E. histolytica does not readily form cysts in vitro, we assessed membrane trafficking gene expression during encystation in the closely related model Entamoeba invadens. Genes involved in secretion are up-regulated during cyst formation, as are some trans-Golgi network-to-endosome trafficking genes. Furthermore, endocytic and general trafficking genes are up-regulated in the mature cyst, potentially preserved as mRNA in preparation for excystation. Two divergent dynamin-related proteins found in Entamoeba are predominantly expressed during cyst formation. Phylogenetic analyses indicate that they are paralogous to, but quite distinct from, classical dynamins found in human, suggesting that they may be potential drug targets to block encystation. The membrane-trafficking machinery is clearly regulated during encystation, providing an additional facet to understanding this crucial parasitic process.
Collapse
Affiliation(s)
- Emily Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada
| | | | - Michael J Bottery
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ronny van Aerle
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | | | - Elisabet Caler
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD, 20892-7950, USA
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada.
| | | |
Collapse
|
7
|
Muñoz PLA, Minchaca AZ, Mares RE, Ramos MA. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica. Parasitol Int 2015; 65:70-77. [PMID: 26526675 DOI: 10.1016/j.parint.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed.
Collapse
Affiliation(s)
- Patricia L A Muñoz
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Alexis Z Minchaca
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico.
| |
Collapse
|
8
|
Han B, Zhou K, Li Z, Sun B, Ni Q, Meng X, Pan G, Li C, Long M, Li T, Zhou C, Li W, Zhou Z. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb). J Eukaryot Microbiol 2015; 63:37-45. [PMID: 26108336 DOI: 10.1111/jeu.12246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/31/2015] [Accepted: 06/13/2015] [Indexed: 11/28/2022]
Abstract
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β-(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)(2-5) detected by high-performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)(3-5). On the basis of structure-based multiple-sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site-directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Kang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhihong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Bin Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qi Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weifang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
9
|
Das K, Ganguly S. Evolutionary genomics and population structure of Entamoeba histolytica. Comput Struct Biotechnol J 2014; 12:26-33. [PMID: 25505504 PMCID: PMC4262060 DOI: 10.1016/j.csbj.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/02/2023] Open
Abstract
Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba.
Collapse
Affiliation(s)
- Koushik Das
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
10
|
Strategies to discover the structural components of cyst and oocyst walls. EUKARYOTIC CELL 2013; 12:1578-87. [PMID: 24096907 DOI: 10.1128/ec.00213-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins.
Collapse
|
11
|
Expression analysis of Entamoeba invadens profilins in encystation and excystation. Parasitol Res 2011; 110:2095-104. [DOI: 10.1007/s00436-011-2735-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
12
|
Different structure and mRNA expression of Entamoeba invadens chitinases in the encystation and excystation. Parasitol Res 2011; 109:417-23. [PMID: 21286750 DOI: 10.1007/s00436-011-2270-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Entamoeba histolytica forms chitin-walled cysts during encystation process, where formation of the cyst wall needs not only chitin synthase but also chitinase. During excystation, quadruplet amoebae emerge from the chitin-walled cysts by dissolving the wall, so that chitinase may be necessary for excystation process as well. There is, however, no report on chitinase expression during excystation. In this study, we used Entamoeba invadens, a reptilian amoeba, as a model for encystation and excystation of E. histolytica, and studied chitinase mRNA expression in those processes. Although expression of three E. invadens chitinases designated EiChit1, EiChit2, and EiChit3 during encystation has been reported, we identified another enzyme named as EiChit4 in the E. invadens genome database. Therefore, we investigated the primary structure and mRNA expression of these four chitinases of Ei in the excystation as well as the encystation by real-time reverse transcription polymerase chain reaction (RT-PCR). Like EiChit1, EiChit4 had an 8 × Cys chitin-binding domain (CBD) and a hydrophilic spacer between the CBD and catalytic domain, and was also closer to EiChit1 than EiChit2 and EiChit3 in the phylogenetic tree. During encystation, the expression of all four chitinases increased in the early phase; the increase in EiChit1 and EiChit4 was much higher than in EiChit2 and EiChit3. Then, the expression of all four chitinases sharply decreased in the later phase. In cysts, EiChit1 was most abundantly expressed and EiChit4 was at a lower level, while the expressions of EiChit2 and EiChit3 were virtually absent. Following the induction of excystation, mRNA levels of EiChit1 and EiChit4 in cysts 5 h after induction were significantly lower than those in cysts before induction, while those of EiChit2 and EiChit3 were remarkably higher than before induction. The mRNAs of only EiChit2 and EiChit3 remarkably increased when the excystation was induced in the presence of cytochalasin D. These data demonstrate different structures and expressions of four chitinases in the differentiation of E. invadens.
Collapse
|
13
|
Samuelson J, Robbins P. A simple fibril and lectin model for cyst walls of Entamoeba and perhaps Giardia. Trends Parasitol 2011; 27:17-22. [PMID: 20934911 PMCID: PMC3014499 DOI: 10.1016/j.pt.2010.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
Cyst walls of Entamoeba and Giardia protect them from environmental insults, stomach acids, and intestinal proteases. Each cyst wall contains a sugar homopolymer: chitin in Entamoeba and a unique N-acetylgalactosamine (GalNAc) homopolymer in Giardia. Entamoeba cyst wall proteins include Jacob lectins (carbohydrate-binding proteins) that crosslink chitin, chitinases that degrade chitin, and Jessie lectins that make walls impermeable. Giardia cyst wall proteins are also lectins that bind fibrils of the GalNAc homopolymer. Although many of the details remain to be determined for the cyst wall of Giardia, current data suggest a relatively simple fibril and lectin model for the Entamoeba cyst wall.
Collapse
Affiliation(s)
- John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
14
|
Singh N, Bhattacharya S, Paul J. Entamoeba invadens: dynamics of DNA synthesis during differentiation from trophozoite to cyst. Exp Parasitol 2010; 127:329-33. [PMID: 20727884 DOI: 10.1016/j.exppara.2010.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/26/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
The DNA dynamics which mediate conversion of uni-nucleate trophozoite into quadrinucleate cyst in Entamoeba histolytica is not well understood. Here, we have addressed this question in Entamoeba invadens (a model system for encystation) through a detailed time course study of the differentiation process. We combined flow cytometric analysis with the change in rate of thymidine incorporation and the number of nuclei per cell. Our data shows that during encystment the cell population passes through three phases: (1) Early phase (0-8h); of rapid DNA synthesis which may correspond to completion of ongoing DNA replication. Bi-nucleated cells increase with concomitant drop in uni-nucleated cells. (2) Commitment phase (8-24h); in which DNA synthesis rate slows down. Possibly new rounds of replication are initiated which proceed slowly, followed by mitosis at 20 h. After this the number of bi- and uni-nucleated cells gradually decline and the tri- and tetra-nucleated cells begin to increase. (3) Consolidation phase (24-72 h); in which the rate of DNA synthesis shows a small increase till 32 h and then begins to decline. The G2/M peak reappears at 48 h, showing that more rounds of DNA replication may be getting completed, followed by nuclear division. By 72 h the encystment is virtually complete. The bi-nucleated stage could be an intermediate both in the conversion of trophozoite to cyst and back. Our study provides a comprehensive view of DNA dynamics during encystation and excystation of E. invadens.
Collapse
Affiliation(s)
- Nishant Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
15
|
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 2010; 6:e1001059. [PMID: 20808847 PMCID: PMC2924369 DOI: 10.1371/journal.ppat.1001059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Andrea Carpentieri
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Biophysics and Physiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ghosh SK, Van Dellen KL, Chatterjee A, Dey T, Haque R, Robbins PW, Samuelson J. The Jacob2 lectin of the Entamoeba histolytica cyst wall binds chitin and is polymorphic. PLoS Negl Trop Dis 2010; 4:e750. [PMID: 20652032 PMCID: PMC2907411 DOI: 10.1371/journal.pntd.0000750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/02/2010] [Indexed: 11/30/2022] Open
Abstract
Background The infectious and diagnostic form of Entamoeba histolytica (Eh), cause of amebic dysentery and liver abscess, is the quadranucleate cyst. The cyst wall of Entamoeba invadens (Ei), a model for Eh, is composed of chitin fibrils and three sets of chitin-binding lectins that cross-link chitin fibrils (multivalent Jacob lectins), self-aggregate (Jessie lectins), and remodel chitin (chitinase). The goal here was to determine how well the Ei model applies to Entamoeba cysts from humans. Methods/Results An Eh Jacob lectin (EhJacob2) has three predicted chitin-binding domains surrounding a large, Ser-rich spacer. Recombinant EhJacob2 made in transfected Eh trophozoites binds to particulate chitin. Sequences of PCR products using primers flanking the highly polymorphic spacer of EhJacob2 may be used to distinguish Entamoeba isolates. Antibodies to the EhJacob2, EhJessie3, and chitinase each recognize cyst walls of clinical isolates of Entamoeba. While numerous sera from patients with amebic intestinal infections and liver abscess recognize recombinant EhJacob1 and EhJessie3 lectins, few of these sera recognize recombinant EhJacob2. Conclusions/Significance The EhJacob2 lectin binds chitin and is polymorphic, and Jacob2, Jessie3, and chitinase are present in cyst walls of clinical isolates of Entamoeba. These results suggest there are substantial similarities between cysts of the human pathogen (Eh) and the in vitro model (Ei), even though there are quantitative and qualitative differences in their chitin-binding lectins. For many years, we and others have used cysts of Entamoeba invadens (Ei), a reptilian parasite, to model the infectious and diagnostic cysts of the human pathogen Entamoeba histolytica (Eh). The Ei cyst wall is composed of chitin fibrils, as well as Jacob and Jessie lectins that have unique chitin-binding domains. Our recent results suggest a “wattle and daub” model of the Ei cyst wall, where the wattle or sticks (chitin fibrils bound by multivalent Jacob lectins) is constructed prior to the addition of the mortar or daub (self-aggregating Jessie3 lectins). Here we “humanize” the Ei model of the cyst wall with four findings. First, a recombinant Eh Jacob2 lectin, which has three predicted chitin-binding domains surrounding a large spacer domain, binds chitin beads. Second, polymorphisms in the spacer domain of EhJacob2 discriminate clinical isolates of Entamoeba. Third, chitinase, Jacob2 lectin, and Jessie3 lectin are present in cyst walls of clinical isolates of Entamoeba. Finally, numerous sera from patients infected with Entamoeba recognize recombinant Eh Jacob1 and Jessie3 lectins.
Collapse
Affiliation(s)
- Sudip K. Ghosh
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Katrina L. Van Dellen
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Anirban Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Tuli Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 2010; 6:e1000835. [PMID: 20386711 PMCID: PMC2851657 DOI: 10.1371/journal.ppat.1000835] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/25/2010] [Indexed: 12/02/2022] Open
Abstract
Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM) consisting of three paralogous cyst wall proteins (CWP1–3) via organelles termed encystation-specific vesicles (ESVs). Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this “minimal Golgi” hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires minimal Golgi sorting functions. The protozoan Giardia lamblia is the leading cause for parasite-induced diarrhea with significant morbidity in humans and animals world-wide, and is transmitted by water-resistant cysts. Giardia has undergone substantial reductive evolution to a simpler organization than the last common eukaryotic ancestor, which makes it an interesting model to investigate basic cellular mechanisms. Its secretory system lacks a Golgi, but trophozoites induced to differentiate to cysts generate organelles termed encystation-specific vesicles (ESVs). Previous work shows that ESVs are most likely minimal pulsed Golgi-like compartments for exporting pre-sorted cyst wall material. We tested whether the sorting function associated with classical trans Golgi networks was also conserved in these organelles. By tracking immature and processed forms of the three cyst wall proteins during differentiation we discovered a novel sorting function which results in partitioning of ESV cargo and sequential secretion of the cyst wall material. Using live cell imaging we identified reversible formation of condensed cores as a mechanism for cargo partitioning. These observations suggest that the requirement for sequential secretion of extracellular matrix components protecting Giardia during transmission has prevented the complete secondary loss of the machinery to generate Golgi cisterna-like maturation compartments; indeed, the preserved functions have been placed under stage-specific control.
Collapse
Affiliation(s)
- Christian Konrad
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Cornelia Spycher
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Dey T, Basu R, Ghosh SK. Entamoeba invadens: Cloning and molecular characterization of chitinases. Exp Parasitol 2009; 123:244-9. [DOI: 10.1016/j.exppara.2009.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/02/2009] [Accepted: 07/24/2009] [Indexed: 11/29/2022]
|
19
|
Evidence for a "wattle and daub" model of the cyst wall of entamoeba. PLoS Pathog 2009; 5:e1000498. [PMID: 19578434 PMCID: PMC2698119 DOI: 10.1371/journal.ppat.1000498] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 06/03/2009] [Indexed: 11/19/2022] Open
Abstract
The cyst wall of Entamoeba invadens (Ei), a model for the human pathogen Entamoeba histolytica, is composed of fibrils of chitin and three chitin-binding lectins called Jacob, Jessie3, and chitinase. Here we show chitin, which was detected with wheat germ agglutinin, is made in secretory vesicles prior to its deposition on the surface of encysting Ei. Jacob lectins, which have tandemly arrayed chitin-binding domains (CBDs), and chitinase, which has an N-terminal CBD, were each made early during encystation. These results are consistent with their hypothesized roles in cross-linking chitin fibrils (Jacob lectins) and remodeling the cyst wall (chitinase). Jessie3 lectins likely form the mortar or daub of the cyst wall, because 1) Jessie lectins were made late during encystation; 2) the addition to Jessie lectins to the cyst wall correlated with a marked decrease in the permeability of cysts to nucleic acid stains (DAPI) and actin-binding heptapeptide (phalloidin); and 3) recombinant Jessie lectins, expressed as a maltose-binding proteins in the periplasm of Escherichia coli, caused transformed bacteria to agglutinate in suspension and form a hard pellet that did not dissociate after centrifugation. Jessie3 appeared as linear forms and rosettes by negative staining of secreted recombinant proteins. These findings provide evidence for a “wattle and daub” model of the Entamoeba cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins). Parasitic protists, which are spread by the fecal-oral route, have cyst walls that resist environmental insults (e.g. desiccation, stomach acids, bile, etc.). Entamoeba histolytica, the cause of amebic dysentery and liver abscess, is the only protist characterized to date that has chitin in its cyst wall. We have previously characterized Entamoeba chitin synthases, chitinases, and multivalent chitin-binding lectins called Jacob. Here we present evidence that the Entamoeba Jessie3 lectin contributes to the mortar or daub, which makes the cyst wall impenetrable to small molecules. First, the Jessie3 lectin was made after chitin and Jacob lectins had already been deposited onto the surface of encysting Entamoeba. Second, cysts became impenetrable to small molecules at the same time that Jessie3 was deposited into the wall. Third, recombinant Jessie3 lectins self-aggregated and caused transfected bacteria to agglutinate. These results suggest a “wattle and daub” model of the Ei cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins).
Collapse
|
20
|
Takano JI, Tachibana H, Kato M, Narita T, Yanagi T, Yasutomi Y, Fujimoto K. DNA characterization of simian Entamoeba histolytica-like strains to differentiate them from Entamoeba histolytica. Parasitol Res 2009; 105:929-37. [DOI: 10.1007/s00436-009-1480-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/08/2009] [Indexed: 11/25/2022]
|
21
|
Ali IKM, Clark CG, Petri WA. Molecular epidemiology of amebiasis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2008; 8:698-707. [PMID: 18571478 PMCID: PMC2577599 DOI: 10.1016/j.meegid.2008.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/01/2008] [Indexed: 12/13/2022]
Abstract
Entamoeba histolytica, the causative agent of human amebiasis, remains a significant cause of morbidity and mortality in developing countries and is responsible for up to 100,000 deaths worldwide each year. Entamoeba dispar, morphologically indistinguishable from E. histolytica, is more common in humans in many parts of the world. Similarly Entamoeba moshkovskii, which was long considered to be a free-living ameba, is also morphologically identical to E. histolytica and E. dispar, and is highly prevalent in some E. histolytica endemic countries. However, the only species to cause disease in humans is E. histolytica. Most old epidemiological data on E. histolytica are unusable as the techniques employed do not differentiate between the above three Entamoeba species. Molecular tools are now available not only to diagnose these species accurately but also to study intra-species genetic diversity. Recent studies suggest that only a minority of all E. histolytica infections progress to the development of clinical symptoms in the host and there exist population level differences between the E. histolytica strains isolated from the asymptomatic and symptomatic individuals. Nevertheless the underlying factors responsible for variable clinical outcome of infection by E. histolytica remain largely unknown. We anticipate that the recently completed E. histolytica genome sequence and new molecular techniques will rapidly advance our understanding of the epidemiology and pathogenicity of amebiasis.
Collapse
Affiliation(s)
- Ibne Karim M Ali
- Division of Infectious Diseases and International Health, University of Virginia Health System, MR4 Building Room 2115, Lane Road, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
22
|
Ebert F, Bachmann A, Nakada-Tsukui K, Hennings I, Drescher B, Nozaki T, Tannich E, Bruchhaus I. An Entamoeba cysteine peptidase specifically expressed during encystation. Parasitol Int 2008; 57:521-4. [PMID: 18723116 DOI: 10.1016/j.parint.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/11/2008] [Accepted: 07/19/2008] [Indexed: 11/26/2022]
Abstract
Protozoan parasites of the genus Entamoeba possess a considerable number of cysteine peptidases (CPs), the function of most of these molecules for amoeba biology needs to be established. In order to determine whether CPs may play a role during Entamoeba stage conversion from trophozoites into cysts and vice versa, expression of cp genes was analysed in the reptilian parasite Entamoeba invadens, a model organism for studying Entamoeba cyst development. By homology search, 28 papain-like cp genes were identified in public E. invadens genome databases. For eight of these genes the expression profiles during stage conversion was determined. By Northern blot analysis, transcripts for eicp-a9, -b7, -b8 and -c2, respectively, were detected neither in trophozoites or cysts nor at any of the point of times analysed during stage conversion. On the other hand, eicp-a5 is constitutively expressed during all developmental stages, whereas eicp-a3 and eicp-a11, respectively, are trophozoite-specific. Only eicp-b9 was found to be cyst-specific as it is expressed exclusively 18 to 28 h after cyst induction. Cyst-specific expression was confirmed by immunofluorescence microscopy of the corresponding protein EiCP-B9. In immature cysts, the molecule is located in structures that accumulate near the cyst wall, but which are uniformly distributed in mature cysts. The precise function of EiCP-B9 during Entamoeba encystation remains to be determined. However, colocalisation studies with an Entamoeba marker for autophagosomes suggest that EiCP-B9 is not associated with Entamoeba autophagy.
Collapse
Affiliation(s)
- Frank Ebert
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fotedar R, Stark D, Beebe N, Marriott D, Ellis J, Harkness J. Laboratory diagnostic techniques for Entamoeba species. Clin Microbiol Rev 2007; 20:511-32, table of contents. [PMID: 17630338 PMCID: PMC1932757 DOI: 10.1128/cmr.00004-07] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease.
Collapse
Affiliation(s)
- R Fotedar
- St. Vincent's Hospital, Department of Microbiology, Sydney, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Takano JI, Narita T, Tachibana H, Terao K, Fujimoto K. Comparison of Entamoeba histolytica DNA isolated from a cynomolgus monkey with human isolates. Parasitol Res 2007; 101:539-46. [PMID: 17356893 DOI: 10.1007/s00436-007-0510-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Three protein-coding loci in DNA of an Entamoeba histolytica strain (EHMfas1) isolated from cynomolgus monkey (Macaca fascicularis) were sequenced; these loci corresponded to the genes for chitinase, the serine-rich E. histolytica protein (SREHP), and the 16 S-like small subunit ribosomal RNA (16S-like SSUrRNA). The nucleotide and deduced amino-acid sequences of chitinase and SREHP were compared with sequences from human isolates. EHMfas1 had several specific mutations in units in the polymorphic regions of the chitinase and SREHP loci, with some repetition of these mutated units. The sequence of the 16S-like SSUrRNA gene (16S-like SSUrDNA) was compared with other Entamoeba species. In phylogenetic analysis, EHMfas1 was not categorized in the E. histolytica cluster but between E. histolytica and E. dispar. To our knowledge, this is the first molecular characterization of E. histolytica isolated from cynomolgus monkey, and our results indicate that EHMfas1 may be a subspecies of E. histolytica that infects cynomolgus monkey.
Collapse
Affiliation(s)
- Jun-Ichiro Takano
- The Corporation for Production and Research of Laboratory Primates, 1 Hachimandai, Tsukuba-shi, Ibaraki 305-0843, Japan.
| | | | | | | | | |
Collapse
|
26
|
Bussink AP, van Eijk M, Renkema GH, Aerts JM, Boot RG. The biology of the Gaucher cell: the cradle of human chitinases. ACTA ACUST UNITED AC 2007; 252:71-128. [PMID: 16984816 DOI: 10.1016/s0074-7696(06)52001-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disorder and is caused by inherited deficiencies of glucocerebrosidase, the enzyme responsible for the lysosomal breakdown of the lipid glucosylceramide. GD is characterized by the accumulation of pathological, lipid laden macrophages, so-called Gaucher cells. Following the development of enzyme replacement therapy for GD, the search for suitable surrogate disease markers resulted in the identification of a thousand-fold increased chitinase activity in plasma from symptomatic Gaucher patients and that decreases upon successful therapeutic intervention. Biochemical investigations identified a single enzyme, named chitotriosidase, to be responsible for this activity. Chitotriosidase was found to be an excellent marker for lipid laden macrophages in Gaucher patients and is now widely used to assist clinical management of patients. In the wake of the identification of chitotriosidase, the presence of other members of the chitinase family in mammals was discovered. Amongst these is AMCase, an enzyme recently implicated in the pathogenesis of asthma. Chitinases are omnipresent throughout nature and are also produced by vertebrates in which they play important roles in defence against chitin-containing pathogens and in food processing.
Collapse
Affiliation(s)
- Anton P Bussink
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Paul J, Srivastava S, Bhattacharya S. Molecular methods for diagnosis of Entamoeba histolytica in a clinical setting: an overview. Exp Parasitol 2006; 116:35-43. [PMID: 17189632 PMCID: PMC4247990 DOI: 10.1016/j.exppara.2006.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 11/19/2022]
Abstract
The range of clinical outcomes following Entamoeba histolytica infection is likely to be influenced by the different strains of the parasite already existing in our population. There is a need for developing faster, reliable and reproducible methods for identifying the different strains of E. histolytica. This would have a major impact on the subsequent course of treatment given to patients. In the post-genomic era, different loci of the Entamoeba genome have been targeted for developing suitable probes and genetic markers. This review highlights the development made in this direction and the possibility of using these methods for routine testing of this parasite in clinical samples.
Collapse
Affiliation(s)
- Jaishree Paul
- Jawaharlal Nehru University, School of Life Sciences, Delhi 110067, India.
| | | | | |
Collapse
|
28
|
Van Dellen KL, Chatterjee A, Ratner DM, Magnelli PE, Cipollo JF, Steffen M, Robbins PW, Samuelson J. Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls. EUKARYOTIC CELL 2006; 5:836-48. [PMID: 16682461 PMCID: PMC1459681 DOI: 10.1128/ec.5.5.836-848.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica, which causes amebic dysentery and liver abscesses, is spread via chitin-walled cysts. The most abundant protein in the cyst wall of Entamoeba invadens, a model for amebic encystation, is a lectin called EiJacob1. EiJacob1 has five tandemly arrayed, six-Cys chitin-binding domains separated by low-complexity Ser- and Thr-rich spacers. E. histolytica also has numerous predicted Jessie lectins and chitinases, which contain a single, N-terminal eight-Cys chitin-binding domain. We hypothesized that E. invadens cyst walls are composed entirely of proteins with six-Cys or eight-Cys chitin-binding domains and that some of these proteins contain sugars. E. invadens genomic sequences predicted seven Jacob lectins, five Jessie lectins, and three chitinases. Reverse transcription-PCR analysis showed that mRNAs encoding Jacobs, Jessies, and chitinases are increased during E. invadens encystation, while mass spectrometry showed that the cyst wall is composed of an approximately 30:70 mix of Jacob lectins (cross-linking proteins) and Jessie and chitinase lectins (possible enzymes). Three Jacob lectins were cleaved prior to Lys at conserved sites (e.g., TPSVDK) in the Ser- and Thr-rich spacers between chitin-binding domains. A model peptide was cleaved at the same site by papain and E. invadens Cys proteases, suggesting that the latter cleave Jacob lectins in vivo. Some Jacob lectins had O-phosphodiester-linked carbohydrates, which were one to seven hexoses long and had deoxysugars at reducing ends. We concluded that the major protein components of the E. invadens cyst wall all contain chitin-binding domains (chitinases, Jessie lectins, and Jacob lectins) and that the Jacob lectins are differentially modified by site-specific Cys proteases and O-phosphodiester-linked glycans.
Collapse
Affiliation(s)
- Katrina L Van Dellen
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Clark CG. Methods for the investigation of diversity in Entamoeba histolytica. Arch Med Res 2006; 37:258-62. [PMID: 16380327 DOI: 10.1016/j.arcmed.2005.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 11/17/2022]
Abstract
The ability to distinguish variants of a species has many potential applications. In Entamoeba histolytica the first method to detect variation was based on isoenzyme analysis. However, this approach has been superseded by DNA-based analysis. In this review I discuss the basis of the variation detected in E. histolytica by the various molecular methods that have been published to date. Information on diversity in other species is mentioned where such information exists.
Collapse
Affiliation(s)
- C Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
30
|
Van Dellen KL, Bulik DA, Specht CA, Robbins PW, Samuelson JC. Heterologous expression of an Entamoeba histolytica chitin synthase in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:203-6. [PMID: 16400183 PMCID: PMC1360259 DOI: 10.1128/ec.5.1.203-206.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chitin in the cyst wall of Entamoeba histolytica is made by two chitin synthases (Chs), one of which is unique (EhCHS-1) and one of which resembles those of insects and nematodes (EhCHS-2). EhCHS-1 is deposited chitin in the lateral wall of transformed Saccharomyces cerevisiae Chs mutants, independent of accessory proteins (Chs4p to Chs7p) required by yeast Chs3p.
Collapse
Affiliation(s)
- Katrina L Van Dellen
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany St., Evans 426, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
31
|
Beck DL, Boettner DR, Dragulev B, Ready K, Nozaki T, Petri WA. Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. EUKARYOTIC CELL 2005; 4:722-32. [PMID: 15821132 PMCID: PMC1087818 DOI: 10.1128/ec.4.4.722-732.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified in the Entamoeba histolytica genome a family of over 80 putative transmembrane kinases (TMKs). The TMK extracellular domains had significant similarity to the intermediate subunit (Igl) of the parasite Gal/GalNAc lectin. The closest homolog to the E. histolytica TMK kinase domain was a cytoplasmic dual-specificity kinase, SplA, from Dictyostelium discoideum. Sequence analysis of the TMK family demonstrated similarities to both serine/threonine and tyrosine kinases. TMK genes from each of six phylogenetic groups were expressed as mRNA in trophozoites, as assessed by spotted oligoarray and real-time PCR assays, suggesting nonredundant functions of the TMK groups for sensing and responding to extracellular stimuli. Additionally, we observed changes in the expression profile of the TMKs in continuous culture. Antisera produced against the conserved kinase domain identified proteins of the expected molecular masses of the expressed TMKs. Confocal microscopy with anti-TMK kinase antibodies revealed a focal distribution of the TMKs on the cytoplasmic face of the trophozoite plasma membrane. We conclude that E. histolytica expresses members of each subgroup of TMKs. The presence of multiple receptor kinases in the plasma membrane offers for the first time a potential explanation of the ability of the parasite to respond to the changing environment of the host.
Collapse
Affiliation(s)
- David L Beck
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908-1340, USA
| | | | | | | | | | | |
Collapse
|
32
|
Srivastava S, Bhattacharya S, Paul J. Species- and strain-specific probes derived from repetitive DNA for distinguishing Entamoeba histolytica and Entamoeba dispar. Exp Parasitol 2005; 110:303-8. [PMID: 15955328 PMCID: PMC4247991 DOI: 10.1016/j.exppara.2005.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 02/25/2005] [Accepted: 02/26/2005] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica and Entamoeba dispar are two morphologically indistinguishable species that are found in the human gut. Of the two, E. histolytica is considered to be pathogenic while E. dispar is nonpathogenic. To generate molecular probes to detect and distinguish between the two species, we utilized repeat sequences present in Entamoeba genome. We have developed probes and primers from rDNA episomes, and unidentified Entamoeba EST1 repeat for this purpose, and used them for dot blot hybridization and PCR amplification. To investigate the possible existence of invasive and noninvasive strains of E. histolytica, the ability to differentiate individual isolates is necessary. For this purpose, we have utilized a modification of the AFLP procedure called 'Transposon display,' which generates and displays large number of genomic bands associated with a transposon. We have used the abundant retrotransposon, EhSINE1, for this purpose,and demonstrated its potential as a marker to study strain variation in E. histolytica. This technique could suitably be employed in carrying out significant molecular epidemiological studies and large-scale typing of this parasite.
Collapse
Affiliation(s)
- Shweta Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Corresponding author. Fax: +91 11 26165886. (J. Paul)
| |
Collapse
|
33
|
Ramos F, García G, Valadez A, Morán P, González E, Gómez A, Melendro EI, Valenzuela O, Ximénez C. E. dispar strain: analysis of polymorphism as a tool for study of geographic distribution. Mol Biochem Parasitol 2005; 141:175-7. [PMID: 15850700 DOI: 10.1016/j.molbiopara.2005.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/02/2005] [Accepted: 02/02/2005] [Indexed: 11/17/2022]
Abstract
The intra-species polymorphism of E. histolytica and E. dispar species in endemic area is an important tool for geographic distribution and spread mechanism studies. Since E. dispar and E. histolytica shears ecological niche, cell cycle, and transmission mechanism for human host, we studied the intra-specie variation and distribution of E. dispar strains obtained from cyst passers, in two neighbor rural communities in Morelos Mexico. We analyzed the polymorphic region of the quitinase protein gene in isolates of E. dispar. In 45 isolates from one community we identified 12 different CHI patterns while in 15 isolates from the other community we identified 5 different patterns. However both communities share 4 patterns. This finding suggests the presence of strains with different geographic mobility.
Collapse
Affiliation(s)
- Fernando Ramos
- Depto. de Medicina Experimental, Facultad de Medicina, UNAM, México DF 06726, México
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shah PH, MacFarlane RC, Bhattacharya D, Matese JC, Demeter J, Stroup SE, Singh U. Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. EUKARYOTIC CELL 2005; 4:504-15. [PMID: 15755913 PMCID: PMC1087797 DOI: 10.1128/ec.4.3.504-515.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Accepted: 12/21/2004] [Indexed: 11/20/2022]
Abstract
Variable phenotypes have been identified for Entamoeba species. Entamoeba histolytica is invasive and causes colitis and liver abscesses but only in approximately 10% of infected individuals; 90% remain asymptomatically colonized. Entamoeba dispar, a closely related species, is avirulent. To determine the extent of genetic diversity among Entamoeba isolates and potential genotype-phenotype correlations, we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. histolytica and E. dispar. On the basis of the identification of divergent genetic loci, all strains had unique genetic fingerprints. Comparison of divergent genetic regions allowed us to distinguish between E. histolytica and E. dispar, identify novel genetic regions usable for strain and species typing, and identify a number of genes restricted to virulent strains. Among the four E. histolytica strains, a strain with attenuated virulence was the most divergent and phylogenetically distinct strain, raising the intriguing possibility that genetic subtypes of E. histolytica may be partially responsible for the observed variability in clinical outcomes. This microarray-based genotyping assay can readily be applied to the study of E. histolytica clinical isolates to determine genetic diversity and potential genotypic-phenotypic associations.
Collapse
Affiliation(s)
- Preetam H Shah
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Campos-Góngora E, Ebert F, Willhoeft U, Said-Fernández S, Tannich E. Characterization of Chitin Synthases from Entamoeba. Protist 2004; 155:323-30. [PMID: 15552059 DOI: 10.1078/1434461041844204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major component of the Entamoeba cyst wall is chitin, a homopolymer of beta-(1,4)-linked N-acetyl-D-glucosamine. Polymerization of chitin requires the presence of active chitin synthases (CHS), a group of enzymes belonging to the family of beta-glycosyl transferases. CHS have been described for fungi, insects, and nematodes; however, information is lacking about the structure and expression of this class of enzymes in protozoons such as Entamoeba. In this study, the primary structures of two putative E. histolytica CHS (EhCHS-1 and EhCHS-2) were determined by gene cloning and homologous proteins were identified in databases from E. dispar and the reptilian parasite E. invadens. The latter constitutes the widely used model organism for the study of Entamoeba cyst development. The two ameba enzymes revealed between 23% and 33% sequence similarity to CHS from other organisms with full conservation of all residues critically important for CHS activity. Interestingly, EhCHS-1 and EhCHS-2 differed substantially in their predicted molecular weights (73 kD vs. 114 kD) as well as in their isoelectric points (5.04 vs. 8.05), and homology was restricted to a central stretch of about 400 amino acid residues containing the catalytic domain. Outside the catalytic domain, EhCHS-1 was predicted to have seven transmembrane helices (TMH) of which the majority is located within the C-terminal part, resembling the situation found in yeast; whereas, EhCHS-2 is structurally related to nematode or insect chitin synthases, as it contained 17 predicted TMHs of which the majority is located within the N-terminal part of the molecule. Northern blot analysis revealed that genes corresponding to CHS-1 and CHS-2 are not expressed in Entamoeba trophozoites, but substantial amounts of CHS-1 and CHS-2 RNA were present 4 to 8 hours after induction of cyst formation by glucose deprivation of E. invadens. The time-courses of expression differed slightly between the two ameba CHS genes, as in contrast to CHS-1 RNA, expression of CHS-2 RNA was more transient and no plateau was observed between 8 and 16 hours of encystation. However, both CHS RNAs were no longer detectable after 48 hours when most of the cells had been transformed into mature cysts.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Abstract
Given that resistance to antiprotozoal drugs exists and is likely to increase and given that currently no reliable treatments exist for some of these infections, efforts to find new targets for chemotherapy must be continued. In the case of cyst-forming pathogenic protozoa, one such target might be encystment pathways and cyst-wall assembly. Information is increasing on protozoan encystment and, as it does, we can begin to answer the question of whether targeting it for chemotherapy is a viable drug strategy. Currently, there are significant efforts to understand encystment in Giardia and Entamoeba, and potential targets are being discovered as work on their encystment mechanisms progress. We know with certainty now that Giardia and Entamoeba cyst walls contain unique proteins and polysaccharides which differ from those of their hosts and thus make them potentially interesting targets for a variety of chemotherapeutic attacks. Although we lack detailed information about the other protozoan cyst formers, enough evidence exists for Giardia and Entamoeba that it seems prudent to screen them with some of the antifungal drugs, especially those that target mannoproteins, chitin synthesis, and beta (1, 3) glucan synthesis to ascertain if they target elements in these protozoan pathways that are similar to those found in fungi.
Collapse
Affiliation(s)
- Edward L Jarroll
- Department of Biology, Northeastern University, 106 Egan Bldg., 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
37
|
Wang Z, Samuelson J, Clark CG, Eichinger D, Paul J, Van Dellen K, Hall N, Anderson I, Loftus B. Gene discovery in the Entamoeba invadens genome. Mol Biochem Parasitol 2003; 129:23-31. [PMID: 12798503 DOI: 10.1016/s0166-6851(03)00073-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entamoeba invadens, a parasite of reptiles, is a model for the study of encystation by the human enteric pathogen Entamoeba histolytica, because E. invadens form cysts in axenic culture. With approximately 0.5-fold sequence coverage of the genome, we were able to get insights into E. invadens gene and genome features. Overall, the E. invadens genome displays many of the features that are emerging from ongoing genome sequencing efforts in E. histolytica. At the nucleotide level the E. invadens genome has on average 60% sequence identity with that of E. histolytica. The presence of introns in E. invadens was predicted with similar consensus (GTTTGT em leader A/TAG) sequences to those identified in E. histolytica and Entamoeba dispar. Sequences highly repeated in the genome of E. histolytica (rRNAs, tRNAs, CXXC-rich proteins, and Leu-rich repeat proteins) were found to be highly repeated in the E. invadens genome. Numerous proteins homologous to those implicated in amoebic virulence, (Gal/GalNAc lectins, amoebapores, and cysteine proteinases) and drug resistance (p-glycoproteins) were identified. Homologs of proteins involved in cell cycle, vesicular trafficking and signal transduction were identified, which may be involved in en/excystation and cell growth of E. invadens. Finally, multiple copies of a number of E. invadens genes coding for predicted enzymes involved in core metabolism and the targets of anti-amoebic drugs were identified.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Samuelson J. WhatEntamoeba histolytica andGiardia lamblia tell us about the evolution of eukaryotic diversity. J Biosci 2002. [DOI: 10.1007/bf02704848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Van Dellen K, Ghosh SK, Robbins PW, Loftus B, Samuelson J. Entamoeba histolytica lectins contain unique 6-Cys or 8-Cys chitin-binding domains. Infect Immun 2002; 70:3259-63. [PMID: 12011021 PMCID: PMC127964 DOI: 10.1128/iai.70.6.3259-3263.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 10/01/2001] [Accepted: 02/22/2002] [Indexed: 11/20/2022] Open
Abstract
The Jacob lectin, the most abundant glycoprotein in the cyst wall of Entamoeba invadens, contains five unique 6-Cys chitin-binding domains (CBDs). We identified Entamoeba histolytica and Entamoeba dispar genes encoding Jacob homologues, each of which contains two predicted 6-Cys CBDs. A unique 8-Cys CBD was found at the N termini of the E. histolytica chitinase and three other predicted lectins, called Jessie 1 to Jessie 3. The CBDs of four E. histolytica lectins (Jacob, chitinase, and Jessies 2 and 3) were expressed in secretory vesicles of transfected amebae and shown to bind to particulate chitin.
Collapse
Affiliation(s)
- Katrina Van Dellen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston University School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Zaki M, Clark CG. Isolation and characterization of polymorphic DNA from Entamoeba histolytica. J Clin Microbiol 2001; 39:897-905. [PMID: 11230401 PMCID: PMC87847 DOI: 10.1128/jcm.39.3.897-905.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important gap in our understanding of the epidemiology of amebiasis is what determines the outcome of Entamoeba histolytica infections. To investigate the possible existence of invasive and noninvasive strains as one factor, the ability to differentiate individual isolates of E. histolytica is necessary. Two new loci containing internal repeats, locus 1-2 and locus 5-6, have been isolated. Each contains a single repeat block with two types of related direct repeats arranged in tandem. Southern blot analysis suggests that both loci are multicopy and may themselves be arranged in tandem arrays. Three other previously reported, internally repetitive loci containing at least two repeat blocks each with one or more related repeat units were also investigated. PCR was used to study polymorphism at each of these loci, which was detected to various degrees in each case. Variation was seen in the total number of bands obtained per isolate and their sizes. Nucleotide sequence comparison of loci 1-2 and 5-6 in five axenic isolates revealed differences in the number of repeat units, which correlated with the observed PCR product size variation, and in repeat sequence. Use of multiple loci collectively allowed differentiation of a majority of the 13 isolates studied, and we believe that these loci have the potential to be used as polymorphic molecular markers for investigating the epidemiology of E. histolytica and the potential existence of genetically distinct invasive and noninvasive strains.
Collapse
Affiliation(s)
- M Zaki
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
42
|
Ganguly A, Lohia A. The cell cycle of Entamoeba invadens during vegetative growth and differentiation. Mol Biochem Parasitol 2001; 112:277-85. [PMID: 11223134 DOI: 10.1016/s0166-6851(00)00376-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell division cycle of Entamoeba invadens was studied during vegetative growth of trophozoites and during their differentiation into cysts. During vegetative growth of trophozoites, it was observed that DNA synthesis typically continued after one genome content had been duplicated. During encystation, DNA synthesis was arrested after 4n genome content had been synthesised. Using multi-parameter flow cytometry, the light scattering properties of cysts and trophozoites were studied. The cytoplasmic granularity, reflected by the side scatter of light, was proportional to DNA content of trophozoites, whereas cysts with similar DNA contents showed heterogeneity in their cytoplasmic granularity. Dynamic changes in the intracellular calcium pools were observed during differentiation of trophozoites to cysts. Comparison of E. invadens and Entamoeba histolytica cell cycles suggest that both organisms may have similar regulatory processes during cell division and differentiation. Since E. histolytica cannot be induced to encyst in axenic culture, analysis of the E. invadens cell cycle during encystation may be useful for identifying homologous processes in E.histolytica.
Collapse
Affiliation(s)
- A Ganguly
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | |
Collapse
|
43
|
Abstract
In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.
Collapse
Affiliation(s)
- D Eichinger
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York 10010, USA.
| |
Collapse
|
44
|
Ghosh S, Frisardi M, Ramirez-Avila L, Descoteaux S, Sturm-Ramirez K, Newton-Sanchez OA, Santos-Preciado JI, Ganguly C, Lohia A, Reed S, Samuelson J. Molecular epidemiology of Entamoeba spp.: evidence of a bottleneck (Demographic sweep) and transcontinental spread of diploid parasites. J Clin Microbiol 2000; 38:3815-21. [PMID: 11015408 PMCID: PMC87481 DOI: 10.1128/jcm.38.10.3815-3821.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica causes amebic colitis and liver abscess in developing countries such as Mexico and India. Entamoeba dispar is morphologically identical but is not associated with disease. Here we determined the ploidy of E. histolytica and developed PCR-based methods for distinguishing field isolates of E. histolytica or E. dispar. Fluorescence in situ hybridization showed that E. histolytica trophozoites are diploid for five "single-copy" probes tested. Intergenic sequences between superoxide dismutase and actin 3 genes of clinical isolates of E. histolytica from the New and Old Worlds were identical, as were those of E. dispar. These results suggest a bottleneck or demographic sweep in entamoebae which infect humans. In contrast, E. histolytica and E. dispar genes encoding repeat antigens on the surface of trophozoites (Ser-rich protein) or encysting parasites (chitinase) were highly polymorphic. chitinase alleles suggested that the early axenized strains of E. histolytica, HM-1 from Mexico City, Mexico, and NIH-200 from Calcutta, India, are still present and that similar E. dispar parasites can be identified in both the New and Old Worlds. Ser-rich protein alleles, which suggested the presence of the HM-1 strain in Mexico City, included some E. histolytica genes that predicted Ser-rich proteins with very few repeats. These results, which suggest diversifying selection at chitinase and Ser-rich protein loci, demonstrate the usefulness of these alleles for distinguishing clinical isolates of E. histolytica and E. dispar.
Collapse
Affiliation(s)
- S Ghosh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schottelius J, Hünger F, Schüler T, Gonçalves da Costa SC. Chitinolytic activity in viable spores of Encephalitozoon species. Mem Inst Oswaldo Cruz 2000; 95:701-5. [PMID: 10998219 DOI: 10.1590/s0074-02762000000500015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80 degrees C for 10 min or at 55 degrees C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.
Collapse
Affiliation(s)
- J Schottelius
- Section of Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | |
Collapse
|
46
|
Field J, Van Dellen K, Ghosh SK, Samuelson J. Responses of Entamoeba invadens to heat shock and encystation are related. J Eukaryot Microbiol 2000; 47:511-4. [PMID: 11001149 DOI: 10.1111/j.1550-7408.2000.tb00083.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An Entamoeba invadens gene encoding a homologue of BiP/GRP78, a 70-kDa heat shock protein or chaperonin was cloned. The predicted E. invadens BiP contained an ATP-binding site, a substrate-recognition domain, and a carboxy-terminal KDEL-peptide. Messenger RNAs of E. invadens for BiP, for a 70-kDa heat shock cognate, for a cyst wall glycoprotein (Jacob), and for chitinase were all induced by heat shock and by encystation medium. The presence of Jacob in heat-shocked amebae was confirmed by confocal microscopy and suggests that heat shock and encystation responses in E. invadens are related.
Collapse
Affiliation(s)
- J Field
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
47
|
Shahabuddin M, Vinetz JM. Chitinases of human parasites and their implications as antiparasitic targets. EXS 2000; 87:223-34. [PMID: 10906963 DOI: 10.1007/978-3-0348-8757-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pathogens causing a number of human and animal diseases use chitin and chitinases in their life cycles. Most of these diseases are caused by protozoan or metazoan pathogenic parasites. Some of these parasites contain chitin coats that protect them from the harsh conditions in the animal body or the environment. Some pathogens use chitinase to invade or exploit the chitin-containing structures of their host to establish successful infection or to be transmitted from one vertebrate to another via insect vectors. Recent studies indicate that each of these organisms has evolved to use chitin and chitinases differently and in a developmental stage-specific manner. Genes of many of these pathogenic parasites have been isolated, and the predicted amino acid sequences show a great deal of diversity. In this chapter we will discuss the roles chitin and chitinases play in several animal diseases, the strategies used to clone the chitinase genes from various parasites and the usefulness of chitinases as preventive or therapeutic agents.
Collapse
Affiliation(s)
- M Shahabuddin
- Medical Entomology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
48
|
Frisardi M, Ghosh SK, Field J, Van Dellen K, Rogers R, Robbins P, Samuelson J. The most abundant glycoprotein of amebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains. Infect Immun 2000; 68:4217-24. [PMID: 10858239 PMCID: PMC101730 DOI: 10.1128/iai.68.7.4217-4224.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of approximately 100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains.
Collapse
Affiliation(s)
- M Frisardi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ghosh SK, Rosenthal B, Rogers R, Samuelson J. Vacuolar localization of an Entamoeba histolytica homologue of the plasma membrane ATPase (PMCA). Mol Biochem Parasitol 2000; 108:125-30. [PMID: 10802325 DOI: 10.1016/s0166-6851(00)00196-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S K Ghosh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Estimation of genome size of Entamoeba histolytica by different methods has failed to give comparable values due to the inherent complexities of the organism, such as the uncertain level of ploidy, presence of multinucleated cells and a poorly demarcated cell division cycle. The genome of E. histolytica has a low G+C content (22.4%), and is composed of both linear chromosomes and a number of circular plasmid-like molecules. The rRNA genes are located exclusively on some of the circular DNAs. Karyotype analysis by pulsed field gel electrophoresis suggests the presence of 14 conserved linkage groups and an extensive size variation between homologous chromosomes from different isolates. Several repeat families have been identified, some of which have been shown to be present in all the electrophoretically separated chromosomes. The typical nucleosomal structure has not been demonstrated, though most of the histone genes have been identified. Most Entamoeba genes lack introns, have short 3' and 5' untranslated regions, and are tightly packed. Promoter analysis revealed the presence of three conserved motifs and several upstream regulatory elements. Unlike typical eukaryotes, the transcription of protein coding genes is alpha-amanitin resistant. Expressed Sequence Tag analysis has identified a group of highly abundant polyadenylated RNAs which are unlikely to be translated. The Expressed Sequence Tag approach has also helped identify several important genes which encode proteins that may be involved in different biochemical pathways, signal transduction mechanisms and organellar functions.
Collapse
Affiliation(s)
- A Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| | | | | | | |
Collapse
|