1
|
Carlier Y, Dumonteil E, Herrera C, Waleckx E, Tibayrenc M, Buekens P, Truyens C, Muraille E. Coinfection by multiple Trypanosoma cruzi clones: a new perspective on host-parasite relationship with consequences for pathogenesis and management of Chagas disease. Microbiol Mol Biol Rev 2025:e0024224. [PMID: 40116484 DOI: 10.1128/mmbr.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
SUMMARYChagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi (Tc), infecting 6-7 million people. It is transmitted by insect vectors, orally, through infected tissues, or congenitally. Tc infection can progress toward chronic cardiac and/or digestive severe and fatal CD in 20%-40% of patients. Tc exhibits an important genetic and phenotypic intraspecies diversity and a preponderant clonal population structure. The impact of multiclonal coinfections has been little studied in CD patients. Relationships between the currently used discrete typing unit (DTU)-based classification of Tc lineages and the occurrence of the different clinical forms of CD, its congenital transmission, as well as the efficacy of trypanocidal molecules (benznidazole and nifurtimox) could not be established. In this review, we revisit the different aspects of Tc diversity and analyze the impact of infections with multiple clones and their variants on the dynamic and pathogenesis of CD and its maternal-fetal transmission. We propose to call "cruziome" all the Tc clones and their variants infecting a given host and provide strong evidence that (i) multiclonal Tc infections are likely the rule rather than the exception; (ii) each "cruziome" is associated with a unique combination of virulence factors, tissular tropisms, and host immune responses; (iii) accordingly, some particularly harmful "cruziomes" likely trigger the occurrence and progression of CD and might also favor the congenital transmission of parasites. We propose that our concept of "cruziome" should be taken into consideration because of its practical consequences in epidemiological studies, laboratory diagnosis, clinical management, and treatment of CD.
Collapse
Affiliation(s)
- Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Michel Tibayrenc
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Pierre Buekens
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d'Immunologie et de Microbiologie (NARILIS), Université de Namur, Namur, Belgium
| |
Collapse
|
2
|
Diaz-Suarez A, Kisand V, Kahar S, Gross R, Vasemägi A, Noreikiene K. Parasite spillover rather than niche expansion explains infection of host brain by diplostomid eye flukes. Proc Biol Sci 2025; 292:20242648. [PMID: 39904393 PMCID: PMC11793966 DOI: 10.1098/rspb.2024.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Parasites often occupy specific sites within their host, which has important implications for host performance and parasite transmission. Nonetheless, parasitic infections can occur beyond their typical location within a host, significantly altering host-parasite interactions. Yet, the causes behind the atypical tissue tropism are poorly understood. Here, we focus on a ubiquitous group of diplostomid parasites that form diverse communities in fish eyes. We used targeted DNA metabarcoding (cytochrome c oxydase subunit 1, COX1, 250 bp) to evaluate potential mechanisms underlying eye parasite atypical tissue tropism to the brain of two widespread fish species (Eurasian perch and common roach). We found that the most common eye-infecting species (Tylodelphys clavata, Diplostomum baeri) are present in the brains of perch but not in roach. The bipartite network comprising 5 species and 24 mitochondrial haplotypes revealed no brain-specific haplotypes, indicating an apparent lack of genetic divergence between brain- and eye-infecting parasites. Instead, the prevalence, intensity and diversity of eye infections were positively correlated with brain infections. Thus, our results suggest that the most parsimonious mechanism underlying brain infection is density-dependent spillover rather than parasite divergence-driven niche expansion. We anticipate that 'off-target' infections are likely to be severely underestimated in nature with important ecological, evolutionary and medical implications.
Collapse
Affiliation(s)
- Alfonso Diaz-Suarez
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, Tartu51006, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu50090, Estonia
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu51006, Estonia
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, Tartu51006, Estonia
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, Tartu51006, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, Tartu51006, Estonia
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stångholmsvägen 2, Drottningholm17893, Sweden
| | - Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, Tartu51006, Estonia
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
4
|
Rossi IV, de Souza DAS, Ramirez MI. The End Justifies the Means: Chagas Disease from a Perspective of the Host- Trypanosoma cruzi Interaction. Life (Basel) 2024; 14:488. [PMID: 38672758 PMCID: PMC11050810 DOI: 10.3390/life14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The neglected Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi. Despite CD dispersion throughout the world, it prevails in tropical areas affecting mainly poor communities, causing devastating health, social and economic consequences. Clinically, CD is marked by a mildly symptomatic acute phase, and a chronic phase characterized by cardiac and/or digestive complications. Current treatment for CD relies on medications with strong side effects and reduced effectiveness. The complex interaction between the parasite and the host outlines the etiology and progression of CD. The unique characteristics and high adaptability of T. cruzi, its mechanisms of persistence, and evasion of the immune system seem to influence the course of the disease. Despite the efforts to uncover the pathology of CD, there are many gaps in understanding how it is established and reaches chronicity. Also, the lack of effective treatments and protective vaccines constitute challenges for public health. Here, we explain the background in which CD is established, from the peculiarities of T. cruzi molecular biology to the development of the host's immune response leading to the pathophysiology of CD. We also discuss the state of the art of treatments for CD and current challenges in basic and applied science.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Graduate Program in Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| | - Denise Andréa Silva de Souza
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| | - Marcel Ivan Ramirez
- Graduate Program in Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| |
Collapse
|
5
|
Martín-Escolano R, Rosales MJ, Marín C. Biological characteristics of the Trypanosoma cruzi Arequipa strain make it a good model for Chagas disease drug discovery. Acta Trop 2022; 236:106679. [PMID: 36096184 DOI: 10.1016/j.actatropica.2022.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), is a genuine parasite with tremendous genetic diversity and a complex life cycle. Scientists have studied this disease for more than 100 years, and CD drug discovery has been a mainstay due to the absence of an effective treatment. Technical advances in several areas have contributed to a better understanding of the complex biology and life cycle of this parasite, with the aim of designing the ideal profile of both drug and therapeutic options to treat CD. Here, we present the T. cruzi Arequipa strain (MHOM/Pe/2011/Arequipa) as an interesting model for CD drug discovery. We characterized acute-phase parasitaemia and chronic-phase tropism in BALB/c mice and determined the in vitro and in vivo benznidazole susceptibility profile of the different morphological forms of this strain. The tropism of this strain makes it an interesting model for the screening of new compounds with a potential anti-Chagas profile for the treatment of this disease.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | - María José Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain.
| |
Collapse
|
6
|
Oliveira ACS, Rezende L, Gorshkov V, Melo-Braga MN, Verano-Braga T, Fernandes-Braga W, Guadalupe JLDM, de Menezes GB, Kjeldsen F, de Andrade HM, Andrade LDO. Biological and Molecular Effects of Trypanosoma cruzi Residence in a LAMP-Deficient Intracellular Environment. Front Cell Infect Microbiol 2022; 11:788482. [PMID: 35071040 PMCID: PMC8770540 DOI: 10.3389/fcimb.2021.788482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi's gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes' ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2-/-) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2-/-). On the other hand, TcY-L1/2-/- showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2-/-. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites' ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2-/-, and TcY-L2-/- biological behavior.
Collapse
Affiliation(s)
- Anny Carolline Silva Oliveira
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luisa Rezende
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vladimir Gorshkov
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella Nunes Melo-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Hypertension Lab/Functional Proteomics Group, Department of Physiology and Biophysics, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Luís de Melo Guadalupe
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frank Kjeldsen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hélida Monteiro de Andrade
- Laboratory of Leishmanioses, Department of Parasitology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
7
|
Martinez SJ, Nardella GN, Rodríguez ME, Rivero CV, Agüero F, Romano PS. Biological features of TcM: A new Trypanosoma cruzi isolate from Argentina classified into TcV lineage. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100152. [PMID: 35909611 PMCID: PMC9325899 DOI: 10.1016/j.crmicr.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TcM is a new T. cruzi isolate that belongs to DTU TcV. TcV is a T. cruzi linage prevalent in human infections of Argentina. TcM is less virulent that TcY strain. TcM displays slow-growing rate and muscle tissue tropism. TcM is more susceptible to benznidazole than TcY.
Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future
Collapse
Affiliation(s)
- Santiago José Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | | | - Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
- Facultad de Ciencias Médicas. Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
- Corresponding author at: Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| |
Collapse
|
8
|
Macedo AM, Pena SDJ. Peeking into the mysterious world of Trypanosoma cruzi and Chagas disease. Mem Inst Oswaldo Cruz 2022; 117:e210193chgsa. [PMID: 35544858 PMCID: PMC9088419 DOI: 10.1590/0074-02760210193chgsa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
|
9
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Natural infection with Trypanosoma cruzi in bats captured in Campeche and Yucatán, México. ACTA ACUST UNITED AC 2021; 41:131-140. [PMID: 34111346 PMCID: PMC8320781 DOI: 10.7705/biomedica.5450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Bats have been reported as hosts of the Trypanosoma cruzi protozoan, the etiologic agent of American trypanosomiasis, an endemic zoonotic disease in México. OBJECTIVE To describe T. cruzi infection in bats from the states of Campeche and Yucatán, México. MATERIALS AND METHODS Captures were made from March to November, 2017, at three sites in Yucatán and one in Campeche. Up to four mist nets on two consecutive nights were used for the capture. The bats' species were identified and euthanasia was performed to collect kidney and heart samples for total DNA extraction. Trypanosoma cruzi infection was detected by conventional PCR with the amplification of a fragment belonging to the T. cruzi DNA nuclear. RESULTS Eighty-six bats belonging to five families (Vespertilionidae, Noctilionidae, Mormoopidae, Phyllostomidae, and Molossidae) and 13 species (Rhogeessa aeneus, Noctilio leporinus, Pteronotus davyi, P. parnellii, Artibeus jamaicensis, A. lituratus, A. phaeotis, Glossophaga soricina, Carollia sowelli, Chiroderma villosum, Uroderma bilobatum, Sturnira parvidens, and Molossus rufus) were captured. Infection frequency by PCR was 30,2% (26/86) detected only in the renal tissue. The infected species were P. parnellii, G. soricina, A. lituratus, A. jamaicensis, S. parvidens, C. villosum, and R. aeneus. CONCLUSIONS Our results confirmed the participation of several bat species as hosts in the T. cruzi transmission cycle in the region. Further studies are necessary to establish the importance of these animals in the zoonotic transmission of T. cruzi.
Collapse
|
11
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
12
|
Añez N, Crisante G. The tissue specific tropism in Trypanosoma cruzi. Is it true? Acta Trop 2021; 213:105736. [PMID: 33159898 DOI: 10.1016/j.actatropica.2020.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Systematic microscopical observations on tissues from mice, inoculated with different Trypanosoma cruzi isolates, were carried out in order to assess whether the parasite expresses tissue-specific tropism, or if it can invade tissues pervasively within the mammal host. A total of ninety mice were included in the study. Sixty, subcutaneously-inoculated with 15 × 104T. cruzi-blood trypomastigotes were dissected and examined daily for detecting and counting parasites during 12 days of acute infection. Additionally, two long-term experiments using mice inoculated with 5 × 103 metacyclic-forms were performed. A group of 10 mice inoculated intraperitoneally and another group of 20 mice inoculated intradermally. Results demonstrated that T. cruzi does not exhibit a tissue-specific tropism, revealing characteristics of a paninfective species able to invade tissues of ectodermal, mesodermal, and endodermal embryonic origin, irrespective of the parasite's lineage, infective form, route of entry, or size of the inoculum causing the host's infection. Details on T. cruzi-tissue invasion, tissue-parasite load during the course time, and the hypothetical potential pseudocyst/amastigote whole-body burden in the murine model is analyzed. The importance of the findings and its interpretation related to human Chagas disease and the tissue-parasite persistence is also discussed.
Collapse
|
13
|
de Castro TBR, Canesso MCC, Boroni M, Chame DF, Souza DDL, de Toledo NE, Tahara EB, Pena SD, Machado CR, Chiari E, Macedo A, Franco GR. Differential Modulation of Mouse Heart Gene Expression by Infection With Two Trypanosoma cruzi Strains: A Transcriptome Analysis. Front Genet 2020; 11:1031. [PMID: 33088283 PMCID: PMC7495023 DOI: 10.3389/fgene.2020.01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
The protozoan Trypanosoma cruzi (T. cruzi) is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and T. cruzi are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system. Our group previously showed that distinct strains of T. cruzi (JG and Col1.7G2) acquired differential tissue distribution in the chronic stage in dually infected BALB/c mice. To investigate changes in the host triggered by the two distinct T. cruzi strains, we assessed the gene expression profiles of BALB/c mouse hearts infected with either JG, Col1.7G2 or an equivalent mixture of both parasites during the initial phase of infection. This study demonstrates the clear differences in modulation of host gene expression by both parasites. Col1.7G2 strongly activated Th1-polarized immune signature genes, whereas JG caused only minor activation of the host immune response. Moreover, JG strongly reduced the expression of genes encoding ribosomal proteins and mitochondrial proteins related to the electron transport chain. Interestingly, the evaluation of gene expression in mice inoculated with a mixture of the parasites produced expression profiles with both up- and downregulated genes, indicating the coexistence of both parasite strains in the heart during the acute phase. This study suggests that different strains of T. cruzi may be distinguished by their efficiency in activating the immune system, modulating host energy metabolism and reactive oxygen species production and decreasing protein synthesis during early infection, which may be crucial for parasite persistence in specific organs.
Collapse
Affiliation(s)
| | | | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Nayara Evelin de Toledo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Eric Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Sergio Danilo Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Andrea Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Ayala EV, Rodrigues da Cunha G, Azevedo MA, Calderon M, Jimenez J, Venuto AP, Gazzinelli R, Lavalle RJY, Riva AGV, Hincapie R, Finn MG, Marques AF. C57BL/6 α-1,3-Galactosyltransferase Knockout Mouse as an Animal Model for Experimental Chagas Disease. ACS Infect Dis 2020; 6:1807-1815. [PMID: 32374586 DOI: 10.1021/acsinfecdis.0c00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading animal model of experimental Chagas disease, the mouse, plays a significant role in studies for vaccine development, diagnosis, and human therapies. Humans, along with Old World primates, alone among mammals, cannot make the terminal carbohydrate linkage of the α-Gal trisaccharide. It has been established that the anti-α-Gal immune response is likely to be a critical factor for protection against Trypanosoma cruzi (T. cruzi) infection in humans. However, the mice customarily employed for the study of T. cruzi infection naturally express the α-Gal epitope and therefore do not produce anti-α-Gal antibodies. Here, we used the C57BL/6 α-1,3-galactosyltransferase knockout (α-GalT-KO) mouse, which does not express the α-Gal epitope as a model for experimental Chagas disease. We found the anti-α-Gal IgG antibody response to an increase in α-GalT-KO mice infected with Arequipa and Colombiana strains of T. cruzi, leading to fewer parasite nests, lower parasitemia, and an increase of INF-γ, TNF-α, and IL-12 cytokines in the heart of α-GalT-KO mice compared with α-GalT-WT mice on days 60 and 120 postinfection. We therefore agree that the C57BL/6 α-GalT-KO mouse represents a useful model for initial testing of therapeutic and immunological approaches against different strains of T. cruzi.
Collapse
Affiliation(s)
- Edward Valencia Ayala
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
| | - Gisele Rodrigues da Cunha
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maira Araujo Azevedo
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maritza Calderon
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Juan Jimenez
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Ana Paula Venuto
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Ricardo Gazzinelli
- Instituto de Pesquisa Rene Rachou, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
- Plataforma de Medicina Translacional, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Raúl Jesus Ynocente Lavalle
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Angela Giovana Vidal Riva
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Robert Hincapie
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Alexandre F. Marques
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| |
Collapse
|
15
|
Rojo G, Pèlissier F, Sandoval-Rodriguez A, Bacigalupo A, García V, Pinto R, Ortiz S, Botto-Mahan C, Cattan PE, Solari A. Organs infected with Trypanosoma cruzi and DTU identification in the naturally infected rodent Octodon degus. Exp Parasitol 2020; 215:107931. [PMID: 32464222 DOI: 10.1016/j.exppara.2020.107931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
Abstract
Chagas disease is a public health problem in America. Its parasite, Trypanosoma cruzi, presents different discrete typing units (DTUs), colonizes organs of mammalian hosts in chronic infections, and presents tropism for particular organs in experimental infections. We evaluated T. cruzi tropism towards organs on the naturally infected rodent Octodon degus, identifying the parasites' DTUs, by means of conventional PCR and hybridization. Almost all the analyzed organs presented T. cruzi. More than 42% of the tested oesophagus, skin, skeletal muscle, brain and intestine showed T. cruzi DNA. Other nine types of organs were infected in over 15%. These results suggest that there is some tropism by T. cruzi in chronically infected O. degus. DTU TcV was present in 92.5% of infected organs with identified DTUs; this DTU is frequently reported in human infections in the Southern Cone of South America. Few organs showed mixed DTU infections. This is one of the few reports on the outcome of chronic natural T. cruzi-infection in wild mammal hosts exposed to naturally infected vectors.
Collapse
Affiliation(s)
- Gemma Rojo
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, Rancagua, Chile; Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Francisca Pèlissier
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Alejandra Sandoval-Rodriguez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Antonella Bacigalupo
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Vanessa García
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Raquel Pinto
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Sylvia Ortiz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pedro E Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Repolês BM, Machado CR, Florentino PTV. DNA lesions and repair in trypanosomatids infection. Genet Mol Biol 2020; 43:e20190163. [PMID: 32236391 PMCID: PMC7197992 DOI: 10.1590/1678-4685-gmb-2019-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Pathological processes such as bacterial, viral and parasitic infections can generate a plethora of responses such as, but not restricted to, oxidative stress that can be harmful to the host and the pathogen. This stress occurs when there is an imbalance between reactive oxygen species produced and antioxidant factors produced in response to the infection. This imbalance can lead to DNA lesions in both infected cells as well as in the pathogen. The effects of the host response on the parasite lead to several kinds of DNA damage, causing alterations in the parasite's metabolism; the reaction and sensitivity of the parasite to these responses are related to the DNA metabolism and life cycle of each parasite. The present review will discuss the survival strategies developed by host cells and Trypanosoma cruzi, focusing on the DNA repair mechanisms of these organisms throughout infection including the relationship between DNA damage, stress response features, and the unique characteristics of these diseases.
Collapse
Affiliation(s)
- Bruno M Repolês
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | | |
Collapse
|
17
|
Sereno D, Akhoundi M, Sayehmri K, Mirzaei A, Holzmuller P, Lejon V, Waleckx E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E1684. [PMID: 32121441 PMCID: PMC7084391 DOI: 10.3390/ijms21051684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR MIVEGEC IRD, CNRS, 34032 Montpellier, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, 93000 Bobigny, France;
| | - Kourosh Sayehmri
- Psychosocial Injuries Research Center, Department of Biostatistics, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
| | - Asad Mirzaei
- Parasitology Department, Paramedical School, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Philippe Holzmuller
- CIRAD, UMR ASTRE “Animal, Santé, Territoires, Risques et Ecosystèmes”, F-34398 Montpellier, France;
- ASTRE, CIRAD, INRAE, Université de Montpellier (I-MUSE), 34000 Montpellier, France
| | - Veerle Lejon
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
| | - Etienne Waleckx
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Centro de Investigaciones Regionales «Dr Hideyo Noguchi», Universidad autònoma de yucatán, Merida, Yucatán 97000, Mexico
| |
Collapse
|
18
|
Abstract
The aim of this review was to identify anti-inflammatory and antioxidant therapeutic agents and their effects on patients with chagasic myocarditis. A systematic review of the MEDLINE, EMBASE, WEB OF SCIENCE, SCOPUS, LILACS and CENTRAL databases (Cochrane Library) was carried out without language restrictions. The descriptors used were: 'Chagas cardiomyopathy', 'treatment', 'Chagas disease', 'anti-inflammatory agents', 'Trypanosoma cruzi' and 'antioxidants'. A total of 4,138 articles was identified, six of which were selected for data extraction. Of these, four were related to antioxidant therapy with vitamins C and E supplementation, and two using anti-inflammatory therapy. The studies were carried out in Brazil and were published between 2002 and 2017. Antioxidant therapy with vitamin C and E supplementation increases the activity of antioxidant enzymes and reduces the oxidative markers. There is no conclusive data to support the use of vitamin supplementation and anti-inflammatory therapy in the treatment of chagasic cardiomyopathy. However, the studies indicate the possibility of vitamin supplementation as a new approach to the treatment of Chagas disease. Antioxidant therapy was proven to be a viable alternative for attenuating the oxidative damage caused by chronic chagasic cardiopathy, leading to a better prognosis for patients.
Collapse
|
19
|
Echeverría LE, González CI, Hernandez JCM, Díaz ML, Eduardo Nieto J, López-Romero LA, Rivera JD, Suárez EU, Ochoa SAG, Rojas LZ, Morillo CA. Efficacy of the Benznidazole+Posaconazole combination therapy in parasitemia reduction: An experimental murine model of acute Chagas. Rev Soc Bras Med Trop 2020; 53:e20190477. [PMID: 32049205 PMCID: PMC7083359 DOI: 10.1590/0037-8682-0477-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: Benznidazole (BZL) and Nifurtimox (NFX) are the pharmacological treatment
for acute phase Chagas Disease (CD); however, therapy resistance and
residual mortality development remain important unresolved issues.
Posaconazole (POS) has shown a trypanocidal effect in vivo and in vitro.
Thus, this study aimed at comparing the T. Cruzi parasitic
load-reducing effect of the combination of BZL+POS against that of
monotherapy with either, during acute phase CD, in an experimental murine
model. METHODS Nineteen Wistar rats were randomly allocated to four groups
and inoculated with the trypomastigotes of T. cruzi
strain´s JChVcl1. The rats were administered anti-parasites from day 20-29
post-infection. The Pizzi and Brener method was used for parasitemia
measurement. Longitudinal data analysis for the continuous outcome of
repeated measures was performed using parasitemia as the outcome measured at
days 20, 22, 24, 27, and 29 post-infection. RESULTS All four groups had similar parasitic loads (p=0.143) prior to therapy
initiation. Among the three treatment groups, the BZL+POS (n=5) group showed
the highest mean parasitic load reduction (p=0.000) compared with the
control group. Likewise, the BZL+POS group rats showed an earlier
therapeutic effect and were the only ones without parasites in their
myocardial samples. CONCLUSIONS: Treatment of acute phase CD with BZL+POS was more efficacious at parasitemia
and myocardial injury reduction, compared with monotherapy with either.
Collapse
Affiliation(s)
- Luis Eduardo Echeverría
- Grupo de Estudios Epidemiológicos y Salud Pública-FCV, Fundación Cardiovascular de Colombia, Floridablanca, Colombia.,Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Clara Isabel González
- Basic Sciences Department, Faculty of Medicine. Universidad Industrial de Santander. Grupo de Inmunología y Epidemiología Molecular GIEM, Santander, Bucaramanga, Colombia
| | - Julio Cesar Mantilla Hernandez
- Basic Sciences Department, Faculty of Medicine. Universidad Industrial de Santander. Grupo de Inmunología y Epidemiología Molecular GIEM, Santander, Bucaramanga, Colombia
| | - Martha Lucia Díaz
- Basic Sciences Department, Faculty of Medicine. Universidad Industrial de Santander. Grupo de Inmunología y Epidemiología Molecular GIEM, Santander, Bucaramanga, Colombia
| | - Javier Eduardo Nieto
- Veterinary Department. Universidad Cooperativa de Colombia, Bucaramanga, Santander, Colombia
| | - Luis Alberto López-Romero
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Institute, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia
| | - Julián David Rivera
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Edwin Uriel Suárez
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Sergio Alejandro Gómez Ochoa
- Grupo de Estudios Epidemiológicos y Salud Pública-FCV, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lyda Z Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Institute, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia
| | - Carlos A Morillo
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Department of Medicine, Cardiology Division, McMaster University, PHRI-HHSC, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Santos RERDS, Naves LL, Fajardo EF, Ramirez LE, Lages-Silva E, Pedrosa AL, Ferreira KAM. Trypanosoma rangeli 28Sβ Ribosomal Gene Allows Intra and Interspecific Molecular Differentiation. Vector Borne Zoonotic Dis 2019; 20:117-124. [PMID: 31638479 DOI: 10.1089/vbz.2019.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma rangeli is an avirulent flagellate protozoan that could mislead correct diagnosis of Trypanosoma cruzi infection, the causative agent of Chagas' disease, given their high similarity. Besides, T. rangeli presents two genetic groups, whose differentiation is achieved mainly by molecular approaches. In this context, ribosomal DNA (rDNA) is a useful target for intra and interspecific molecular differentiation. Analyzing the rDNA of T. rangeli and comparison with other trypanosomatid species, two highly divergent regions (Trβ1 and Trβ2) within the 28Sβ gene were found. Those regions were amplified and sequenced in KP1(+) and KP1(-) strains of T. rangeli, revealing group-specific polymorphisms useful for intraspecific distinction through restriction fragment length polymorphism technique. Also, amplification of Trβ1 allowed differentiation between T. rangeli and T. cruzi. Trβ2 predicted restriction length profile, allowed differentiation between T. rangeli, T. cruzi, Trypanosoma brucei, and Leishmania braziliensis, increasing the use of Trβ1 and Trβ2 beyond a molecular approach for T. rangeli genotyping, but also as a useful target for trypanosomatid classification.
Collapse
Affiliation(s)
- Renato Elias Rodrigues de Souza Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, Brasil.,Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Lucila Langoni Naves
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Emanuella Francisco Fajardo
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Luis Eduardo Ramirez
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Eliane Lages-Silva
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | | |
Collapse
|
21
|
Histopathological study in cardiac tissue of rodents infected with Trypanosoma cruzi, captured in suburbs of Mérida, México. ACTA ACUST UNITED AC 2019; 39:32-43. [PMID: 31529832 DOI: 10.7705/biomedica.v39i3.4192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Indexed: 01/11/2023]
Abstract
Introduction: Trypanosoma cruzi is the causal agent of the American trypanosomiasis, an endemic disease in México. The commensal rodents Mus musculus and Rattus rattus are reservoirs of this parasite, which invades cardiac fibers and develops parasite nests causing various lesions. Histopathological studies in naturally infected rodents are scarce.
Objective: To describe the types and frequencies of microscopic lesions in cardiac tissue of M. musculus and R. rattus infected with T. cruzi captured in Mérida, México.
Materials and methods: The rodents were captured in suburban environments of Mérida. Cardiac tissue was extracted and processed by the paraffin inclusion technique and hematoxylin and eosin stained. The observation was made with a conventional microscope and all the lesions, as well as their degree, were identified.
Results: Eight tissue samples of M. musculus and seven of R. rattus were studied. Parasite nests were found in 7/15, specifically 3/8 in M. musculus and 4/7 in R. rattus. The inflammatory infiltrate was the most frequent lesion. Other lesions were: Degeneration of cardiac fibers (8/15), congestion of blood vessels (6/15), and necrosis (5/15).
Discussion: The lesions we observed have been described in experimental animal models and in humans with American trypanosomiasis. The inflammatory infiltrate has been identified as the most significant lesion in humans and reservoirs in the chronic stage of the disease.
Conclusion: The lesions we described are associated with T. cruzi infection, which confirms that the rodents studied are reservoirs of this parasite.
Collapse
|
22
|
Franco CH, Alcântara LM, Chatelain E, Freitas-Junior L, Moraes CB. Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Trop Med Infect Dis 2019; 4:E82. [PMID: 31108888 PMCID: PMC6630705 DOI: 10.3390/tropicalmed4020082] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Cell-based screening has become the major compound interrogation strategy in Chagas disease drug discovery. Several different cell lines have been deployed as host cells in screening assays. However, host cell characteristics and host-parasite interactions may play an important role when assessing anti-T. cruzi compound activity, ultimately impacting on hit discovery. To verify this hypothesis, four distinct mammalian cell lines (U2OS, THP-1, Vero and L6) were used as T. cruzi host cells in High Content Screening assays. Rates of infection varied greatly between different host cells. Susceptibility to benznidazole also varied, depending on the host cell and parasite strain. A library of 1,280 compounds was screened against the four different cell lines infected with T. cruzi, resulting in the selection of a total of 82 distinct compounds as hits. From these, only two hits were common to all four cell lines assays (2.4%) and 51 were exclusively selected from a single assay (62.2%). Infected U2OS cells were the most sensitive assay, as 55 compounds in total were identified as hits; infected THP-1 yielded the lowest hit rates, with only 16 hit compounds. Of the selected hits, compound FPL64176 presented selective anti-T. cruzi activity and could serve as a starting point for the discovery of new anti-chagasic drugs.
Collapse
Affiliation(s)
- Caio Haddad Franco
- Brazilian Biosciences National Laboratory, National Centre for Research in Energy and Materials, Campinas, SP 13083-970, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Laura Maria Alcântara
- Brazilian Biosciences National Laboratory, National Centre for Research in Energy and Materials, Campinas, SP 13083-970, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland.
| | - Lucio Freitas-Junior
- Brazilian Biosciences National Laboratory, National Centre for Research in Energy and Materials, Campinas, SP 13083-970, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Carolina Borsoi Moraes
- Brazilian Biosciences National Laboratory, National Centre for Research in Energy and Materials, Campinas, SP 13083-970, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
23
|
Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, Correa-Oliveira R, Stevens DA, Wu JC. Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model to Study Trypanosoma cruzi Infection. Stem Cell Reports 2019; 12:1232-1241. [PMID: 31105048 PMCID: PMC6565757 DOI: 10.1016/j.stemcr.2019.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/07/2023] Open
Abstract
Chagas disease (ChD) is one of the most neglected tropical diseases, with cardiomyopathy being the main cause of death in Trypanosoma cruzi-infected patients. As the parasite actively replicates in cardiomyocytes (CMs), the heart remains a key target organ in the pathogenesis of ChD. Here we modeled ChD using human induced pluripotent stem cell-derived CMs (iPSC-CMs) to understand the complex interplay between the parasite and host cells. We showed that iPSC-CMs can get infected with the T. cruzi Y strain and that all parasite cycle stages can be identified in our model system. Importantly, characterization of T. cruzi-infected iPSC-CMs showed significant changes in their gene expression profile, cell contractility, and distribution of key cardiac markers. Moreover, these infected iPSC-CMs exhibited a pro-inflammatory profile as indicated by significantly elevated cytokine levels and cell-trafficking regulators. We believe our iPSC-CM model is a valuable platform to explore new treatment strategies for ChD. iPSC-CMs can be infected with trypomastigote blood form of the T. cruzi Y strain T. cruzi induces significant changes in iPSC-CM gene expression and contractility T. cruzi alters the distribution of α-actinin, troponin T, and connexin 43 iPSC-CMs show a pro-inflammatory profile following T. cruzi infection
Collapse
Affiliation(s)
- Adriana Bozzi
- Stanford Cardiovascular Institute, 265 Campus Drive, Rm G1120B, Stanford, CA 94305, USA; Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil
| | - Nazish Sayed
- Stanford Cardiovascular Institute, 265 Campus Drive, Rm G1120B, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, 265 Campus Drive, Rm G1120B, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; California Institute for Medical Research, San Jose, CA 95128, USA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute, 265 Campus Drive, Rm G1120B, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Karl V Clemons
- Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; California Institute for Medical Research, San Jose, CA 95128, USA
| | | | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; California Institute for Medical Research, San Jose, CA 95128, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive, Rm G1120B, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Infection by Trypanosoma cruzi in the central nervous system in non-human mammals: a systematic review. Parasitology 2019; 146:983-1005. [PMID: 30873928 DOI: 10.1017/s0031182019000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Currently, the types and distribution of the lesions induced in the central nervous system (CNS) by Trypanosoma cruzi remain unclear as the available evidence is based on fragmented data. Therefore, we developed a systematic review to analyse the main characteristics of the CNS lesions in non-human hosts infected. From a structured search on the PubMed/Medline and Scopus platforms, 32 studies were retrieved, subjected to data extraction and methodological bias analysis. Our results show that the most frequent alterations in the CNS are the presence of different forms of T. cruzi and intense lymphocytes infiltrates. The encephalon is the main target of T. cruzi, and inflammatory changes in the CNS are more frequent and severe in the acute phase of infection. The parasite's genotype and phenotype are associated with the tropism and severity of the CNS lesions. The methodological limitations found in the studies were divergences in inoculation pathways, under-reporting of animal age and weight, sample calculation strategies and histopathological characterization. Since the changes were dependent on the pathogenicity and virulence of the T. cruzi strains, the genotype and phenotype characterization of the parasite are extremely relevant to predict changes in the CNS and the neurological manifestations associated with Chagas' disease.
Collapse
|
25
|
Santi-Rocca J, Gironès N, Fresno M. Multi-Parametric Evaluation of Trypanosoma cruzi Infection Outcome in Animal Models. Methods Mol Biol 2019; 1955:187-202. [PMID: 30868528 DOI: 10.1007/978-1-4939-9148-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomarkers of infection with consistent discriminating power for diagnosis and/or prognosis are keystones for efficient therapeutic management of diseases. The protozoan Trypanosoma cruzi, the etiologic agent of Chagas disease (CD), exhibits high clinical and genetic diversity, making it difficult to define biomarkers. In animal models of infection, as well as in patients, many different outcomes have been described. Thus, pathophysiogenesis parameters were highly variable in patients and even in inbred animals, which impeded reliable one-dimensional diagnosis/prognosis. To help solve those problems, an in-depth analysis of the similarities and differences in the CD caused by different parasite strains or different patient conditions is needed. Multidimensional statistics may overcome the high variability for each individual parameter in patients and even in inbred animals, revealing some pathophysiological patterns that accurately allow diagnosis of clinical and physiopathological characteristics. Here, we describe this type of method and its application to T. cruzi infection.
Collapse
Affiliation(s)
- Julien Santi-Rocca
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
26
|
Alves CL, Repolês BM, da Silva MS, Mendes IC, Marin PA, Aguiar PHN, Santos SDS, Franco GR, Macedo AM, Pena SDJ, Andrade LDO, Guarneri AA, Tahara EB, Elias MC, Machado CR. The recombinase Rad51 plays a key role in events of genetic exchange in Trypanosoma cruzi. Sci Rep 2018; 8:13335. [PMID: 30190603 PMCID: PMC6127316 DOI: 10.1038/s41598-018-31541-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Detection of genetic exchange has been a limiting factor to deepen the knowledge on the mechanisms by which Trypanosoma cruzi is able to generate progeny and genetic diversity. Here we show that incorporation of halogenated thymidine analogues, followed by immunostaining, is a reliable method not only to detect T. cruzi fused-cell hybrids, but also to quantify their percentage in populations of this parasite. Through this approach, we were able to detect and quantify fused-cell hybrids of T. cruzi clones CL Brener and Y. Given the increased detection of fused-cell hybrids in naturally-occurring hybrid CL Brener strain, which displays increased levels of RAD51 and BRCA2 transcripts, we further investigated the role of Rad51 - a recombinase involved in homologous recombination - in the process of genetic exchange. We also verified that the detection of fused-cell hybrids in T. cruzi overexpressing RAD51 is increased when compared to wild-type cells, suggesting a key role for Rad51 either in the formation or in the stabilization of fused-cell hybrids in this organism.
Collapse
Affiliation(s)
- Ceres Luciana Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Centro de Toxinas, Resposta Imune e Sinalização Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Isabela Cecília Mendes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Andrea Marin
- Laboratório Especial de Ciclo Celular, Centro de Toxinas, Resposta Imune e Sinalização Celular, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Selma da Silva Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Centro de Toxinas, Resposta Imune e Sinalização Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
27
|
Pereira NDS, Queiroga TBD, Nunes DF, Andrade CDM, Nascimento MSL, Do-Valle-Matta MA, da Câmara ACJ, Galvão LMDC, Guedes PMM, Chiari E. Innate immune receptors over expression correlate with chronic chagasic cardiomyopathy and digestive damage in patients. PLoS Negl Trop Dis 2018; 12:e0006589. [PMID: 30044791 PMCID: PMC6078325 DOI: 10.1371/journal.pntd.0006589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/06/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is observed in 30% to 50% of the individuals infected by Trypanosoma cruzi and heart failure is the important cause of death among patients in the chronic phase of Chagas disease. Although some studies have elucidated the role of adaptive immune responses involving T and B lymphocytes in cardiac pathogenesis, the role of innate immunity receptors such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in CCC pathophysiology has not yet been determined. In this study, we evaluated the association among innate immune receptors (TLR1-9 and nucleotide-binding domain-like receptor protein 3/NLRP3), its adapter molecules (Myd88, TRIF, ASC and caspase-1) and cytokines (IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α, and IFN-β) with clinical manifestation, digestive and cardiac function in patients with different clinical forms of chronic Chagas disease. The TLR8 mRNA expression levels were enhanced in the peripheral blood mononuclear cells (PBMC) from digestive and cardiodigestive patients compared to indeterminate and cardiac patients. Furthermore, mRNA expression of IFN-β (cytokine produced after TLR8 activation) was higher in digestive and cardiodigestive patients when compared to indeterminate. Moreover, there was a positive correlation between TLR8 and IFN-β mRNA expression with sigmoid and rectum size. Cardiac and cardiodigestive patients presented higher TLR2, IL-12 and TNF-α mRNA expression than indeterminate and digestive patients. Moreover, cardiac patients also expressed higher levels of NLRP3, ASC and IL-1β mRNAs than indeterminate patients. In addition, we showed a negative correlation among TLR2, IL-1β, IL-12 and TNF-α levels with left ventricular ejection fraction, and positive correlation between NLRP3 with cardiothoracic index, and TLR2, IL-1β and IL-12 with left ventricular mass index. Together, our data suggest that high expression of innate immune receptors in cardiac and digestive patients may induce an enhancement of cytokine expression and participate of cardiac and digestive dysfunction.
Collapse
Affiliation(s)
- Nathalie de Sena Pereira
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
- School of Health, Potiguar University, Natal, RN, Brazil
| | | | - Daniela Ferreira Nunes
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Cléber de Mesquita Andrade
- Department of Biomedical Sciences, University of Rio Grande do Norte State, Rio Grande do Norte, Mossoró, Brazil
| | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
| | - Egler Chiari
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Torres-Silva CF, Repolês BM, Ornelas HO, Macedo AM, Franco GR, Junho Pena SD, Tahara EB, Machado CR. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol 2018; 41:466-474. [PMID: 30088612 PMCID: PMC6082238 DOI: 10.1590/1678-4685-gmb-2017-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, a public health challenge due to its morbidity and mortality rates, which affects around 6-7 million people worldwide. Symptoms, response to chemotherapy, and the course of Chagas disease are greatly influenced by T. cruzi's intra-specific variability. Thus, DNA mutations in this parasite possibly play a key role in the wide range of clinical manifestations and in drug sensitivity. Indeed, the environmental conditions of oxidative stress faced by T. cruzi during its life cycle can generate genetic mutations. However, the lack of an established experimental design to assess mutation rates in T. cruzi precludes the study of conditions and mechanisms that potentially produce genomic variability in this parasite. We developed an assay that employs a reporter gene that, once mutated in specific positions, convert G418-sensitive into G418-insenstitive T. cruzi. We were able to determine the frequency of DNA mutations in T. cruzi exposed and non-exposed to oxidative insults assessing the number of colony-forming units in solid selective media after plating a defined number of cells. We verified that T. cruzi's spontaneous mutation frequency was comparable to those found in other eukaryotes, and that exposure to hydrogen peroxide promoted a two-fold increase in T. cruzi's mutation frequency. We hypothesize that genetic mutations in T. cruzi can arise from oxidative insults faced by this parasite during its life cycle.
Collapse
Affiliation(s)
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hugo Oliveira Ornelas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
29
|
Strauss M, Velázquez López DA, Moya DM, Bazán PC, Báez AL, Rivarola HW, Paglini-Oliva PA, Lo Presti MS. Differential tissue distribution of Trypanosoma cruzi during acute experimental infection: Further evidence using natural isolates. Mol Biochem Parasitol 2018; 222:29-33. [PMID: 29709547 DOI: 10.1016/j.molbiopara.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
In the present work, we evaluated the effect of mixed Trypanosoma cruzi infections, studying the biological distribution of the different parasites in blood, heart and skeletal muscle during the acute phase. Albino Swiss mice were infected with different parasite strain/isolates or with a combination of them. The parasites in the different tissues were typified through specific PCR, population variability was analyzed through RFLP studies and parasitological and histopathological parameters were evaluated. We found a predominance of TcII and TcVI in all tissues samples respect to TcV and different parasite populations were found in circulation and in the tissues from the same host. These results verify the distribution of parasites in host tissues from early stages of infection and show biological interactions among different genotypes and populations of T. cruzi.
Collapse
Affiliation(s)
- Mariana Strauss
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - Daniela A Velázquez López
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - Diego M Moya
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - P Carolina Bazán
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - Alejandra L Báez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - H Walter Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - Patricia A Paglini-Oliva
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina
| | - M Silvina Lo Presti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC - CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Córdoba, Argentina.
| |
Collapse
|
30
|
Dias PP, Capila RF, do Couto NF, Estrada D, Gadelha FR, Radi R, Piacenza L, Andrade LO. Cardiomyocyte oxidants production may signal to T. cruzi intracellular development. PLoS Negl Trop Dis 2017; 11:e0005852. [PMID: 28832582 PMCID: PMC5584977 DOI: 10.1371/journal.pntd.0005852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/05/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a variable clinical course, varying from asymptomatic to serious debilitating pathologies with cardiac, digestive or cardio-digestive impairment. Previous studies using two clonal T. cruzi populations, Col1.7G2 (T. cruzi I) and JG (T. cruzi II) demonstrated that there was a differential tissue distribution of these parasites during infection in BALB/c mice, with predominance of JG in the heart. To date little is known about the mechanisms that determine this tissue selection. Upon infection, host cells respond producing several factors, such as reactive oxygen species (ROS), cytokines, among others. Herein and in agreement with previous data from the literature we show that JG presents a higher intracellular multiplication rate when compared to Col1.7G2. We also showed that upon infection cardiomyocytes in culture may increase the production of oxidative species and its levels are higher in cultures infected with JG, which expresses lower levels of antioxidant enzymes. Interestingly, inhibition of oxidative stress severely interferes with the intracellular multiplication rate of JG. Additionally, upon H2O2-treatment increase in intracellular Ca2+ and oxidants were observed only in JG epimastigotes. Data presented herein suggests that JG and Col1.7G2 may sense extracellular oxidants in a distinct manner, which would then interfere differently with their intracellular development in cardiomyocytes.
Collapse
Affiliation(s)
- Patrícia Pereira Dias
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | - Damían Estrada
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Ramos Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade de Campinas, São Paulo, Brazil
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana O. Andrade
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
31
|
A multi-parametric analysis of Trypanosoma cruzi infection: common pathophysiologic patterns beyond extreme heterogeneity of host responses. Sci Rep 2017; 7:8893. [PMID: 28827716 PMCID: PMC5566495 DOI: 10.1038/s41598-017-08086-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
The extreme genetic diversity of the protozoan Trypanosoma cruzi has been proposed to be associated with the clinical outcomes of the disease it provokes: Chagas disease (CD). To address this question, we analysed the similarities and differences in the CD pathophysiogenesis caused by different parasite strains. Using syngeneic mice infected acutely or chronically with 6 distant parasite strains, we integrated simultaneously 66 parameters: parasite tropism (7 parameters), organ and immune responses (local and systemic; 57 parameters), and clinical presentations of CD (2 parameters). While the parasite genetic background consistently impacts most of these parameters, they remain highly variable, as observed in patients, impeding reliable one-dimensional association with phases, strains, and damage. However, multi-dimensional statistics overcame this extreme intra-group variability for each individual parameter and revealed some pathophysiological patterns that accurately allow defining (i) the infection phase, (ii) the infecting parasite strains, and (iii) organ damage type and intensity. Our results demonstrated a greater variability of clinical outcomes and host responses to T. cruzi infection than previously thought, while our multi-parametric analysis defined common pathophysiological patterns linked to clinical outcome of CD, conserved among the genetically diverse infecting strains.
Collapse
|
32
|
Silva-dos-Santos D, Barreto-de-Albuquerque J, Guerra B, Moreira OC, Berbert LR, Ramos MT, Mascarenhas BAS, Britto C, Morrot A, Serra Villa-Verde DM, Garzoni LR, Savino W, Cotta-de-Almeida V, de Meis J. Unraveling Chagas disease transmission through the oral route: Gateways to Trypanosoma cruzi infection and target tissues. PLoS Negl Trop Dis 2017; 11:e0005507. [PMID: 28379959 PMCID: PMC5397068 DOI: 10.1371/journal.pntd.0005507] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 04/19/2017] [Accepted: 03/20/2017] [Indexed: 02/02/2023] Open
Abstract
Oral transmission of Trypanosoma cruzi, the causative agent of Chagas disease, is the most important route of infection in Brazilian Amazon and Venezuela. Other South American countries have also reported outbreaks associated with food consumption. A recent study showed the importance of parasite contact with oral cavity to induce a highly severe acute disease in mice. However, it remains uncertain the primary site of parasite entry and multiplication due to an oral infection. Here, we evaluated the presence of T. cruzi Dm28c luciferase (Dm28c-luc) parasites in orally infected mice, by bioluminescence and quantitative real-time PCR. In vivo bioluminescent images indicated the nasomaxillary region as the site of parasite invasion in the host, becoming consistently infected throughout the acute phase. At later moments, 7 and 21 days post-infection (dpi), luminescent signal is denser in the thorax, abdomen and genital region, because of parasite dissemination in different tissues. Ex vivo analysis demonstrated that the nasomaxillary region, heart, mandibular lymph nodes, liver, spleen, brain, epididymal fat associated to male sex organs, salivary glands, cheek muscle, mesenteric fat and lymph nodes, stomach, esophagus, small and large intestine are target tissues at latter moments of infection. In the same line, amastigote nests of Dm28c GFP T. cruzi were detected in the nasal cavity of 6 dpi mice. Parasite quantification by real-time qPCR at 7 and 21 dpi showed predominant T. cruzi detection and expansion in mouse nasal cavity. Moreover, T. cruzi DNA was also observed in the mandibular lymph nodes, pituitary gland, heart, liver, small intestine and spleen at 7 dpi, and further, disseminated to other tissues, such as the brain, stomach, esophagus and large intestine at 21 dpi. Our results clearly demonstrated that oral cavity and adjacent compartments is the main target region in oral T. cruzi infection leading to parasite multiplication at the nasal cavity. Oral transmission of Trypanosoma cruzi associated with food/beverage consumption is presently an important route of infection in Brazil and Venezuela. Colombia, Bolivia, Argentina and Ecuador have also reported to have acute cases of Chagas disease transmission through the oral route. Significant studies about this form of T. cruzi infection are largely lacking. In addition to the classic cardiac involvement, orally-infected patient progress to a highly symptomatic disease and increased mortality rate (8–35%), surpassing the calculated mortality produced by the disease resulting from the biting of infected insect vectors (5–10%). Here, we explored by in vivo bioluminescent images, qPCR and fluorescence microscopy the primary site of parasite entry and multiplication in oral infection (OI). Our results clearly demonstrated that the oral cavity is the main T. cruzi target region in OI, leading to parasite multiplication at the nasal cavity and parasite dissemination to the brain and peripheral tissues. Interestingly, facial edema, paraesthesia of the tongue, gingivitis and dry cough were already described in affected patients. These findings might be associated to our present data, which describe for the first time the nasomaxillary region as the main target tissue following oral T. cruzi infection.
Collapse
Affiliation(s)
- Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Bárbara Guerra
- National Center of Structural Biology and Bio-imaging—CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio C. Moreira
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Ricardo Berbert
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Tavares Ramos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Constança Britto
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Déa M. Serra Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
33
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
34
|
Abstract
SUMMARYChagas disease is a complex zoonosis that affects around 8 million people worldwide. This pathology is caused byTrypanosoma cruzi, a kinetoplastid parasite that shows tremendous genetic diversity evinced in six distinct Discrete Typing Units (TcI-TcVI) including a recent genotype named as TcBat and associated with anthropogenic bats. TcI presents a broad geographical distribution and has been associated with chronic cardiomyopathy. Recent phylogenetic studies suggest the existence of two genotypes (Domestic (TcIDom) and sylvatic TcI) within TcI. The understanding of the course of the infection in different mouse models by these two genotypes is not yet known. Therefore, we infected 126 animals (ICR-CD1, National Institute of Health (NIH) and Balb/c) with two TcIDomstrains and one sylvatic strain for a follow-up period of 60 days. We quantified the parasitaemia, immune response and histopathology observing that the maximum day of parasitaemia was achieved at day 21 post-infection. Domestic strains showed higher parasitaemia than the sylvatic strain in the three mouse models; however in the survival curves Balb/c mice were less susceptible to infection compared with NIH and ICR-CD1. Our results suggest that the genetic background plays a fundamental role in the natural history of the infection and the sympatric TcI genotypes have relevant implications in disease pathogenesis.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW American trypanosomiasis, or Chagas disease, is a lifelong and persistent infection caused by the protozoan Trypanosoma cruzi and is the most significant cause of morbidity and mortality in South and Central America. Owing to immigration and additional risks from blood transfusion and organ transplantation, the number of reported cases of Chagas disease has increased recently in Europe and the USA. The disease is caused by a moderate to intense lasting inflammatory response that triggers local expression of inflammatory mediators and activates and recruits leukocytes to various tissues to eliminate the parasites. RECENT FINDINGS This long-term inflammatory process triggers biochemical, physiological and morphological alterations and clinical changes in the digestive, nervous and cardiac (e.g. myocarditis, arrhythmias, congestive heart failure, autonomic dysfunctions and microcirculatory disturbances) systems. Indeed, the pathogenesis of Chagas disease is intricate and multifactorial, and the roles of the parasite and the immune response in initiating and maintaining the disease are still controversial. SUMMARY In this review, we discuss the current knowledge of 'strategies' employed by the parasite to persist in the host and host defence mechanisms against Trypanosoma cruzi infection, which can result in equilibrium (absence of the disease) or disease development, mainly in the cardiac systems.
Collapse
|
36
|
Nogueira-Paiva NC, Vieira PMDA, Oliveri LMR, Fonseca KDS, Pound-Lana G, de Oliveira MT, de Lana M, Veloso VM, Reis AB, Tafuri WL, Carneiro CM. Host-Parasite Interactions in Chagas Disease: Genetically Unidentical Isolates of a Single Trypanosoma cruzi Strain Identified In Vitro via LSSP-PCR. PLoS One 2015; 10:e0137788. [PMID: 26359864 PMCID: PMC4567304 DOI: 10.1371/journal.pone.0137788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
The present study aims at establishing whether the diversity in pathogenesis within a genetically diverse host population infected with a single polyclonal strain of Trypanosoma cruzi is due to selection of specific subpopulations within the strain. For this purpose we infected Swiss mice, a genetically diverse population, with the polyclonal strain of Trypanosoma cruzi Berenice-78 and characterized via LSSP-PCR the kinetoplast DNA of subpopulations isolated from blood samples collected from the animals at various times after inoculation (3, 6 and 12 months after inoculation). We examined the biological behavior of the isolates in acellular medium and in vitro profiles of infectivity in Vero cell medium. We compared the characteristics of the isolates with the inoculating strain and with another strain, Berenice 62, isolated from the same patient 16 years earlier. We found that one of the isolates had intermediate behavior in comparison with Berenice-78 and Berenice-62 and a significantly different genetic profile by LSSP-PCR in comparison with the inoculating strain. We hereby demonstrate that genetically distinct Trypanosoma cruzi isolates may be obtained upon experimental murine infection with a single polyclonal Trypanosoma cruzi strain.
Collapse
Affiliation(s)
- Nívia Carolina Nogueira-Paiva
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Larissa Maris Rezende Oliveri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Gwenaelle Pound-Lana
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Maykon Tavares de Oliveira
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Marta de Lana
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Vanja Maria Veloso
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
- * E-mail:
| |
Collapse
|
37
|
Martin DL, Lowe KR, McNeill T, Thiele EA, Roellig DM, Zajdowicz J, Hunter SA, Brubaker SA. Potential sexual transmission of Trypanosoma cruzi in mice. Acta Trop 2015; 149:15-8. [PMID: 25982870 PMCID: PMC12010767 DOI: 10.1016/j.actatropica.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi, the etiologic agent of human Chagas disease, results in life-long infection. Infective trypomastigotes circulate in the bloodstream and have the capacity to infect any cell type, including reproductive tissue. This study sought to assess the potential for sexual transmission of T. cruzi in an experimental mouse model. The conditions used in this study, in which acutely infected males and immunosuppressing the females, created a worst-case scenario allowing for the greatest chance of measuring transmission through intercourse. Male BALB/c mice were infected and mated with uninfected females, and the females were subsequently examined for T. cruzi tissue parasitism. A single transmission event of 61 total matings was observed, indicating a low but non-zero risk potential for male-to-female sexual transmission of T. cruzi.
Collapse
Affiliation(s)
- Diana L Martin
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Tyana McNeill
- South Carolina State University, Orangeburg, SC, USA
| | | | - Dawn M Roellig
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | |
Collapse
|
38
|
Magalhães LMD, Viana A, Chiari E, Galvão LMC, Gollob KJ, Dutra WO. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi. PLoS Negl Trop Dis 2015; 9:e0003816. [PMID: 26147698 PMCID: PMC4492932 DOI: 10.1371/journal.pntd.0003816] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. Methodology/Principal Findings We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Conclusion/Significance Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression. Chagas disease remains a major public health problem in Latin America with over 13 million people infected. It is believed that the host immune response and genetic diversity of the parasite play an important role in the progression of Chagas disease, which presents a variety of clinical forms ranging from indeterminate to cardiac and digestive forms. Since parasite genetic diversity may influence the development of Chagas disease, our study aims to understand the immune response of human peripheral blood cells upon infection with two T. cruzi strains with different genetic backgrounds (Col cl1.7 – Tc I, and Y strain – TcII). Our study showed differences in the expression of cytokines and activation molecules between cells infected with strains from Tc I (Col cl1.7) and Tc II (Y strain). These data show the importance of parasite strain in the development of the host response early in infection, which may influence the clinical progression of Chagas disease.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia M. C. Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Kenneth J. Gollob
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina, Instituto de Ensino e Pesquisa, Hospital Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
39
|
Peterson JK, Graham AL, Dobson AP, Chávez OT. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Am J Trop Med Hyg 2015; 93:564-72. [PMID: 26078316 DOI: 10.4269/ajtmh.15-0218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022] Open
Abstract
The effect of a parasite on the life history of its vector is important for understanding and predicting disease transmission. Chagas disease agent Trypanosoma cruzi is a generalist parasite that is diverse across scales from its genetic diversity to the 100s of mammal and vector species it infects. Its vertebrate hosts show quite variable responses to infection, however, to date there are no studies looking at how T. cruzi variability might result in variable outcomes in its invertebrate host. Therefore, we investigated the effect of different T. cruzi I strains on Rhodnius prolixus survival and development. We found significant variation between insects infected with different strains, with some strains having no effect, as compared with uninfected insects, and others with significantly lower survival and development. We also found that different variables had varying importance between strains, with the effect of time postinfection and the blood:weight ratio of the infective meal significantly affecting the survival of insects infected with some strains, but not others. Our results suggest that T. cruzi can be pathogenic not only to its vertebrate hosts but also to its invertebrate hosts.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana Chávez
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
40
|
Seco-Hidalgo V, Osuna A, Pablos LMD. To bet or not to bet: deciphering cell to cell variation in protozoan infections. Trends Parasitol 2015; 31:350-6. [PMID: 26070403 DOI: 10.1016/j.pt.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/11/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Some of the most crucial phenotypic aspects of parasites, such as an antigen-coated surface, parasite sexual differentiation, virulence, and drug resistance, rely on adaptive plasticity and/or stochastic events. At a population level, cell to cell variability represents an avenue for rapid response to drastic changes in the environment. Single cell approaches can be used to unravel the different strategies used by parasites to survive in the context of regulated transcriptional control (apicomplexa) or in its absence (kinetoplastids).
Collapse
Affiliation(s)
- Víctor Seco-Hidalgo
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Antonio Osuna
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Luis Miguel De Pablos
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain; Centre for Immunology and Infection (CII), Biology Department, University of York, York, UK.
| |
Collapse
|
41
|
Ayo CM, Reis PG, Dalalio MMDO, Visentainer JEL, Oliveira CDF, de Araújo SM, de Oliveira Marques DS, Sell AM. Killer Cell Immunoglobulin-like Receptors and Their HLA Ligands are Related with the Immunopathology of Chagas Disease. PLoS Negl Trop Dis 2015; 9:e0003753. [PMID: 25978047 PMCID: PMC4433128 DOI: 10.1371/journal.pntd.0003753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/11/2015] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the influence of killer cell immunoglobulin-like receptor (KIR) genes and their human leucocyte antigen (HLA) ligands in the susceptibility of chronic Chagas disease. This case-control study enrolled 131 serologically-diagnosed Chagas disease patients (59 men and 72 women, mean age of 60.4 ± 9.8 years) treated at the University Hospital of Londrina and the Chagas Disease Laboratory of the State University of Maringa. A control group was formed of 165 healthy individuals - spouses of patients or blood donors from the Regional Blood Bank in Maringa (84 men and 81 women, with a mean age of 59.0 ± 11.4 years). Genotyping of HLA and KIR was performed by PCR-SSOP. KIR2DS2-C1 in the absence of KIR2DL2 (KIR2DS2+/2DL2-/C1+) was more frequent in Chagas patients (P = 0.020; Pc = 0.040; OR = 2.14) and, in particular, those who manifested chronic chagasic cardiopathy—CCC (P = 0.0002; Pc = 0.0004; OR = 6.64; 95% CI = 2.30–18.60) when compared to the control group, and when CCC group was compared to the patients without heart involvement (P = 0.010; Pc = 0.020; OR = 3.97). The combination pair KIR2DS2+/2DL2-/KIR2DL3+/C1+ was also positively associated with chronic chagasic cardiopathy. KIR2DL2 and KIR2DS2 were related to immunopathogenesis in Chagas disease. The combination of KIR2DS2 activating receptor with C1 ligand, in the absence of KIR2DL2, may be related to a risk factor in the chronic Chagas disease and chronic chagasic cardiopathy. Chagas disease is an infection caused by the haemoflagellate protozoan Trypanosoma cruzi. It is one of the most important public health problems in Latin America, and was first described by Carlos Justiniano Ribeiro das Chagas, a Brazilian physician and scientist, in 1909. It is mostly vector-borne transmitted to humans by contact with faeces of triatomine bugs. The World Health Organization estimates that about 6 to 7 million people are currently infected with T. cruzi worldwide. The disease is characterised by acute and chronic phases. The immune response during disease development is crucial for protection because immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. In this work we analysed the role of receptors of immune cells known as Natural Killer cells (killer cell immunoglobulin-like receptor—KIR) and their ligands (Human leukocyte antigens—HLA) in chagasic patients compared to healthy individuals. The uncontrolled activation of NK cells can lead to tissue damage, which, in turn, leads to the development of serious chronic illness. We found that KIR-HLA complex may be related to a risk factor in the chronic Chagas disease and chronic chagasic cardiopathy.
Collapse
Affiliation(s)
- Christiane Maria Ayo
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | - Pâmela Guimarães Reis
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | | | | | - Camila de Freitas Oliveira
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | | | | | - Ana Maria Sell
- Basic Health Sciences, Maringa State University, Maringa, Parana, Brazil
- * E-mail: ,
| |
Collapse
|
42
|
Gruendling AP, Massago M, Teston APM, Monteiro WM, Kaneshima EN, Araújo SM, Gomes ML, Barbosa MDGV, Toledo MJO. Impact of benznidazole on infection course in mice experimentally infected with Trypanosoma cruzi I, II, and IV. Am J Trop Med Hyg 2015; 92:1178-89. [PMID: 25940197 DOI: 10.4269/ajtmh.13-0690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 11/01/2014] [Indexed: 11/07/2022] Open
Abstract
American trypanosomiasis is an emerging zoonosis in the Brazilian Amazon. Studies on benznidazole (BZ) chemotherapy with Trypanosoma cruzi from this region have great relevance, given the different discrete typing units (DTUs) that infect humans in the Amazon and other regions of Brazil. We performed a parasitological, histopathological, and molecular analysis of mice inoculated with strains of T. cruzi I, II, and IV that were BZ-treated during the acute phase of infection. Groups of Swiss mice were inoculated; 13 received oral BZ, whereas the other 13 comprised the untreated controls. Unlike parasitemia, the infectivity and mortality did not vary among the DTUs. Trypanosoma cruzi DNA was detected in all tissues analyzed and the proportion of organs parasitized varied with the parasite DTU. The BZ treatment reduced the most parasitological parameters, tissue parasitism and the inflammatory processes at all infection stages and for all DTUs. However, the number of significant reductions varied according to the DTU and infection phase.
Collapse
Affiliation(s)
- Ana Paula Gruendling
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Miyoko Massago
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Ana Paula M Teston
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Wuelton M Monteiro
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Edilson N Kaneshima
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Silvana M Araújo
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Mônica L Gomes
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Maria das Graças V Barbosa
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| | - Max Jean O Toledo
- Post-Graduate Program in Health Sciences (Programa de Pós-graduação em Ciências da Saúde), Maringá State University (Universidade Estadual de Maringá, UEM), Maringá, Paraná, Brazil; Department of Basic Health Sciences, Health Sciences Center, (Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde), UEM, Maringá, Paraná, Brazil; Post-Graduate Program in Tropical Medicine (Programa de Pós-Graduação em Medicina Tropical), Dr. Heitor Vieira Dourado Foundation for Tropical Medicine (Fundação de Medicina Tropical Dr. Heitor Vieira Dourado)/Amazonas State University (Universidade do Estado do Amazonas), Manaus, Amazonas, Brazil
| |
Collapse
|
43
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
44
|
Ragone PG, Pérez Brandán C, Monje Rumi M, Tomasini N, Lauthier JJ, Cimino RO, Uncos A, Ramos F, Alberti D´Amato AM, Basombrío MA, Diosque P. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region. PLoS One 2015; 10:e0119866. [PMID: 25789617 PMCID: PMC4366099 DOI: 10.1371/journal.pone.0119866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI). These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI) were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.
Collapse
Affiliation(s)
- Paula G. Ragone
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- * E-mail:
| | - Cecilia Pérez Brandán
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Mercedes Monje Rumi
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Juan J. Lauthier
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Rubén O. Cimino
- Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Alejandro Uncos
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Federico Ramos
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Anahí M. Alberti D´Amato
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Miguel A. Basombrío
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| |
Collapse
|
45
|
Knight JM, Zingales B, Bottazzi ME, Hotez P, Zhan B. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1. Parasite Immunol 2015; 36:708-12. [PMID: 25040249 DOI: 10.1111/pim.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022]
Abstract
Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1.
Collapse
Affiliation(s)
- J M Knight
- Southwest Electronic Energy Medical Research Institute, Stafford, TX, USA; Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | | | | | | | |
Collapse
|
46
|
Cruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, Ramírez JD. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. INFECTION GENETICS AND EVOLUTION 2015; 29:110-7. [DOI: 10.1016/j.meegid.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|
47
|
Hissa B, Andrade LDO. Trypasonoma cruzi uses a specific subset of host cell lysosomes for cell invasion. Parasitol Int 2014; 64:135-8. [PMID: 25463313 DOI: 10.1016/j.parint.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/02/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi is an intracellular parasite that depends on host cell lysosome recruitment and fusion for cell infection. Recently, we have shown that host cells present two differentially regulated lysosome pools. Treatment with methyl-beta cyclodextrin, a drug able to sequester cholesterol from plasma membrane, triggers the exocytosis of peripheral lysosomes, while treatment with Latrunculin-A, an actin depolymerizing drug, recruits a more internal pool. In this work we aimed to study which pool is used by the T. cruzi during invasion. We have shown that invasion is impaired when cells are previously treated with methyl-beta cyclodextrin, but not with Latrunculin-A, indicating that T. cruzi uses the cortical pool for invasion.
Collapse
Affiliation(s)
- Barbara Hissa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BH, 31270-901, Brazil.
| | - Luciana de Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BH, 31270-901, Brazil.
| |
Collapse
|
48
|
Rodriguez HO, Guerrero NA, Fortes A, Santi-Rocca J, Gironès N, Fresno M. Trypanosoma cruzi strains cause different myocarditis patterns in infected mice. Acta Trop 2014; 139:57-66. [PMID: 25017312 DOI: 10.1016/j.actatropica.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/03/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
AIMS Chagas disease pathology is dependent on the infecting Trypanosoma cruzi strain. However, the relationship between the extent and type of myocarditis caused by different T. cruzi strains in the acute and chronic phases of infection has not been studied in detail. To address this, we infected mice with three genetically distant T. cruzi strains as well as infected in vitro different cell types. METHODS AND RESULTS Parasitemia was detected in mice infected with the Y and VFRA strains, but not with the Sc43 strain; however, only the Y strain was lethal. When infected with VFRA, mice showed higher inflammation and parasitism in the heart than with Sc43 strain. Y and VFRA caused homogeneous pancarditis with inflammatory infiltrates along the epicardium, whereas Sc43 caused inflammation preferentially in the auricles in association with intracellular parasite localization. We observed intramyocardic perivasculitis in mice infected with the VFRA and Y strains, but not with Sc43, during the acute phase, which suggests that endothelial cells may be involved in heart colonization by these more virulent strains. In in vitro infection assays, the Y strain had the highest parasite-cell ratio in epithelial, macrophage and endothelial cell lines, but Y and VFRA strains were higher than Sc43 in cardiomyocytes. CONCLUSIONS This study supports parasite variability as a cause for the diverse cardiac outcomes observed in Chagas disease, and suggests that endothelial cells could be involved in heart infection during the acute phase.
Collapse
|
49
|
Meza SKL, Kaneshima EN, Silva SDO, Gabriel M, de Araújo SM, Gomes ML, Monteiro WM, Barbosa MDGV, Toledo MJDO. Comparative pathogenicity in Swiss mice of Trypanosoma cruzi IV from northern Brazil and Trypanosoma cruzi II from southern Brazil. Exp Parasitol 2014; 146:34-42. [PMID: 25296157 DOI: 10.1016/j.exppara.2014.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
Abstract
The geographical heterogeneity of Chagas disease (ChD) is mainly caused by genetic variability of the etiological agent Trypanosoma cruzi. Our hypothesis was that the pathogenicity for mice may vary with the genetic lineage (or Discrete Typing Unit - DTU) of the parasite. To test this hypothesis, parasitological and histopathological evaluations were performed in mice inoculated with strains belonging to the DTU T. cruzi IV (TcIV) from the State of Amazonas (northern Brazil), or the DTU T. cruzi II (TcII) from the State of Paraná (southern Brazil). Groups of 10 Swiss mice were inoculated with eight strains of TcIV obtained from acute cases (7) from two outbreaks of orally acquired ChD, and from the triatomine Rhodnius robustus (1) from Amazonas; and three strains of TcII obtained from chronic patients in Paraná. We evaluated the pre-patent period, patent period, maximum peak of parasitemia, day of maximum peak of parasitemia, area under the parasitemia curve, inflammatory process, and tissue parasitism in the acute phase. TcIV was less virulent than TcII, and showed significantly (p < 0.005) lower parasitemia levels. Although the levels of tissue parasitism did not differ statistically, mice infected with TcIV displayed significantly (p < 0.001) fewer inflammatory processes than mice infected with TcII. This supported the working hypothesis, since TcIV from Amazonas was less pathogenic than TcII from Paraná; and agreed with the lower severity of human cases of ChD in the Amazon region.
Collapse
Affiliation(s)
- Sheila Karina Lüders Meza
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Center for Medical and Pharmaceutical Sciences, State University of Western Paraná, Paraná, Brazil
| | | | | | | | - Silvana Marques de Araújo
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil
| | - Mônica Lúcia Gomes
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil
| | | | - Maria das Graças Vale Barbosa
- Post-Graduate Program in Tropical Medicine, State University of Amazonas, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Amazonas, Brazil
| | - Max Jean de Ornelas Toledo
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil.
| |
Collapse
|
50
|
Immunopathological aspects of experimental Trypanosoma cruzi reinfections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648715. [PMID: 25050370 PMCID: PMC4094717 DOI: 10.1155/2014/648715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/12/2014] [Accepted: 05/25/2014] [Indexed: 01/28/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi infection. Besides the host-related factors, such as immune response and genetic background, the parasite, strain, and occurrences of reinfection episodes, may influence disease outcome. Our results demonstrate that both the primary infection and the reinfection with the Colombiana strain are connected with lower survival rate of the mice. After reinfection, parasitaemia is approximately ten times lower than in primary infected animals. Only Colombiana, Colombiana/Colombiana, and Y/Colombiana groups presented amastigote nests in cardiac tissue. Moreover, the mice infected and/or reinfected with the Colombiana strain had more T. cruzi nests, more intense inflammatory infiltrate, and higher in situ expression of TNF-α and IFN-γ than Y strain. Antigen-stimulated spleen cells from infected and/or reinfected animals produced higher levels of TNF-α, IFN-γ, and IL-10. Our results reinforce the idea that Chagas disease outcome is influenced by the strain of the infective parasite, being differentially modulated during reinfection episodes. It highlights the need of control strategies involving parasite strain characterization in endemic areas for Chagas disease.
Collapse
|