1
|
Ueda A, Akagi T, Yokota T. GA-Binding Protein Alpha Is Involved in the Survival of Mouse Embryonic Stem Cells. Stem Cells 2017; 35:2229-2238. [PMID: 28762569 DOI: 10.1002/stem.2673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 06/18/2017] [Accepted: 07/15/2017] [Indexed: 01/14/2023]
Abstract
Ets-related transcription factor GA-binding protein alpha (GABPα), which is encoded by Gabpa, is expressed in a variety of cell types and is involved in cellular functions such as cell cycle regulation, apoptosis, and differentiation. Here, we generated Gabpa conditional knockout embryonic stem cells (ESCs) and characterized its cellular phenotypes. Disruption of Gabpa revealed that the proliferation of Gabpa-null ESCs was drastically repressed and cells started to die within 2 days. The repressed proliferation of Gabpa-null ESCs was recovered by artificially forced expression of GABPα. Expression analysis showed that p53 mRNA levels were comparable; however, p53 target genes, including Cdkn1a/p21, Mdm2, and Gadd45a, were upregulated and cell cycle-related genes, including Cyclin D1/D2 and Cyclin E1/E2, were downregulated in Gabpa-null ESCs. Interestingly, p53 and cleaved Caspase3 expressions were enhanced in the cells and reduced proliferation as well as cell death of Gabpa-null ESCs were rescued by either transfection of p53 RNAi or treatment of the p53 inhibitor pifithrin-α. These results suggest that GABPα inhibits the accumulation of p53 and is involved in the proliferation and survival of ESCs. Stem Cells 2017;35:2229-2238.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
2
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
3
|
Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL, Davis S, Zhu YJ, Pineda M, Meltzer PS, Kovar H. Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 2013; 23:1797-809. [PMID: 23940108 PMCID: PMC3814880 DOI: 10.1101/gr.151340.112] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F–ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
Collapse
Affiliation(s)
- Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Iida R, Ueki M, Yasuda T. Identification of Rhit as a novel transcriptional repressor of human Mpv17-like protein with a mitigating effect on mitochondrial dysfunction, and its transcriptional regulation by FOXD3 and GABP. Free Radic Biol Med 2012; 52:1413-22. [PMID: 22306510 DOI: 10.1016/j.freeradbiomed.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. To elucidate the molecular basis of M-LP expression, we recently searched for regulatory elements of M-LP and identified a novel mouse KRAB-containing protein, Rhit (regulator of heat-induced transcription), as a repressor of the transcriptional regulation of M-LP. In this study, we identified zinc-finger protein 205 as a candidate human Rhit (RhitH) and subsequently confirmed its participation in transcriptional regulation of human M-LP (M-LPH). To clarify the functions of RhitH and M-LPH, we searched for cis-regulatory elements in the promoter region of RhitH and identified two transcription factors: forkhead box D3, as a negative regulatory element, and GA-binding protein, one of the key regulators of the mitochondrial electron transport system, as a positive regulatory element. Additionally, it was demonstrated that knockdown of RhitH or overexpression of M-LPH reduces the generation of intracellular H(2)O(2) and loss of mitochondrial membrane potential caused by an inhibitor of the respiratory chain, antimycin A. These results suggest that M-LPH functions to protect cells from oxidative stress and/or initiation of the mitochondrial apoptotic cascade under stressed conditions.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
5
|
Baek YY, Cho DH, Choe J, Lee H, Jeoung D, Ha KS, Won MH, Kwon YG, Kim YM. Extracellular taurine induces angiogenesis by activating ERK-, Akt-, and FAK-dependent signal pathways. Eur J Pharmacol 2011; 674:188-99. [PMID: 22130357 DOI: 10.1016/j.ejphar.2011.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 11/27/2022]
Abstract
Taurine, a non essential sulfur-containing amino acid, plays a critical role in cardiovascular functions. We here examined the effect of taurine on angiogenesis and its underlying signal pathway. Taurine treatment increased angiogenesis in vitro and in vivo, which was followed by activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, MEK/ERK, and Src/FAK signaling pathways. Further, taurine promoted endothelial cell cycle progression to the S and G2/M phases by up-regulating the positive cell cycle proteins, particularly cyclins D1 and B, as well as down-regulating the negative cell cycle proteins, p53 and p21(WAF1/CIP1), resulting in Rb phosphorylation. This angiogenic event was inhibited by inhibitors of PI3K and MEK. In addition, a PI3K inhibitor blocked the activation of Akt and ERK, while Akt knockdown did not affect taurine-induced ERK activation, indicating that PI3K is an upstream mediator of both MEK and Akt. Taurine-induced endothelial cell migration was suppressed by Src inhibitor, but not by other inhibitors, suggesting that the increase in cell migration is regulated by Src-dependent pathway. Moreover, inhibition of cellular taurine uptake by β-alanine and taurine transporter knockdown promoted taurine-induced cell proliferation, ERK and Akt activation, and in vivo angiogenesis, suggesting that extracellular taurine induces angiogenesis. However, taurine did not induce vascular inflammation and permeability in vitro and in vivo. These data demonstrate that extracellular taurine promotes angiogenesis by Akt- and ERK-dependent cell cycle progression and Src/FAK-mediated cell migration without inducing vascular inflammation, indicating that it is potential use for the treatment of vascular dysfunction-associated human diseases.
Collapse
Affiliation(s)
- Yi-Yong Baek
- Vascular System Research Center, School of Medicine, Kangwon National University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eichinger CS, Mizuno T, Mizuno K, Miyake Y, Yanagi KI, Imamoto N, Hanaoka F. Aberrant DNA polymerase alpha is excluded from the nucleus by defective import and degradation in the nucleus. J Biol Chem 2009; 284:30604-14. [PMID: 19726690 DOI: 10.1074/jbc.m109.024760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha is essential for the onset of eukaryotic DNA replication. Its correct folding and assembly within the nuclear replication pre-initiation complex is crucial for normal cell cycle progression and genome maintenance. Due to a single point mutation in the largest DNA polymerase alpha subunit, p180, the temperature-sensitive mouse cell line tsFT20 exhibits heat-labile DNA polymerase alpha activity and S phase arrest at restrictive temperature. In this study, we show that an aberrant form of endogenous p180 in tsFT20 cells (p180(tsFT20)) is strictly localized in the cytoplasm while its wild-type counterpart enters the nucleus. Time-lapse fluorescence microscopy with enhanced green fluorescent protein-tagged or photoactivatable green fluorescent protein-tagged p180(tsFT20) variants and inhibitor analysis revealed that the exclusion of aberrant p180(tsFT20) from the nucleus is due to two distinct mechanisms: first, the inability of newly synthesized (cytoplasmic) p180(tsFT20) to enter the nucleus and second, proteasome-dependent degradation of nuclear-localized protein. The nuclear import defect seems to result from an impaired association of aberrant de novo synthesized p180(tsFT20) with the second subunit of DNA polymerase alpha, p68. In accordance, we show that RNA interference of p68 results in a decrease of the overall p180 protein level and in a specific increase of cytoplasmic localized p180 in NIH3T3 cells. Taken together, our data suggest two mechanisms that prevent the nuclear expression of aberrant DNA polymerase alpha.
Collapse
Affiliation(s)
- Christian S Eichinger
- Cellular Physiology Laboratory, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Shi MD, Lin HH, Lee YC, Chao JK, Lin RA, Chen JH. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact 2008; 174:201-10. [PMID: 18619950 DOI: 10.1016/j.cbi.2008.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 06/04/2008] [Accepted: 06/08/2008] [Indexed: 01/25/2023]
Abstract
In recent years, attention has been focused on the anti-cancer properties of pure components, an important role in the prevention of disease. Andrographolide (Andro), the major constituent of Andrographis paniculata (Burm. F.) Nees plant, is implicated towards its pharmacological activity. To investigate the mechanism basis for the anti-tumor properties of Andro, Andro was used to examine its effect on cell-cycle progression in human colorectal carcinoma Lovo cells. The data from cell growth experiment showed that Andro exhibited the anti-proliferation effect on Lovo cells in a time- and dose-dependent manner. This event was accompanied the arrest of the cells at the G1-S phase by Andro at the tested concentrations of 0-30 microM. Cellular uptake of Andro and Andro was confirmed by capillary electrophoresis analysis and the intracellular accumulation of Andro (0.61+/-0.07 microM/mg protein) was observed when treatment of Lovo cells with Andro for 12h. In addition, an accumulation of the cells in G1 phase (15% increase for 10 microM of Andro) was observed as well as by the association with a marked decrease in the protein expression of Cyclin A, Cyclin D1, Cdk2 and Cdk4. Andro also inducted the content of Cdk inhibitor p21 and p16, and the phosphorylation of p53. Further immunoprecipitation studies found that, in response to the treatment, the formation of Cyclin D1/Cdk4 and Cyclin A/Cdk2 complexes had declined, preventing the phosphorylation of Rb and the subsequent dissociation of Rb/E2F complex. These results suggested Andro can inhibit Lovo cell growth by G1-S phase arrest, and was exerted by inducing the expression of p53, p21 and p16 that, in turn, repressed the activity of Cyclin D1/Cdk4 and/or Cyclin A/Cdk2, as well as Rb phosphorylation.
Collapse
Affiliation(s)
- Ming-Der Shi
- Department of Medical Technology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan; Pathology and Laboratory Medicine, Yongkang Veterans Hospital, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol 2008; 28:3127-38. [PMID: 18347061 DOI: 10.1128/mcb.02089-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor p110 CUX1 was shown to stimulate cell proliferation by accelerating entry into S phase. As p110 CUX1 can function as a transcriptional repressor or activator depending on promoter context, we investigated its mechanism of transcriptional activation using the DNA polymerase alpha gene promoter as a model system. Linker-scanning analysis revealed that a low-affinity E2F binding site is required for transcriptional activation. Moreover, coexpression with a dominant-negative mutant of DP-1 suggested that endogenous E2F factors are indeed needed for p110-mediated activation. Tandem affinity purification, coimmunoprecipitation, chromatin immunoprecipitation, and reporter assays indicated that p110 CUX1 can engage in weak protein-protein interactions with E2F1 and E2F2, stimulate their recruitment to the DNA polymerase alpha gene promoter, and cooperate with these factors in transcriptional activation. On the other hand, in vitro assays suggested that the interaction between CUX1 and E2F1 either is not direct or is regulated by posttranslational modifications. Genome-wide location analysis revealed that targets common to p110 CUX1 and E2F1 included many genes involved in cell cycle, DNA replication, and DNA repair. Comparison of the degree of enrichment for various E2F factors suggested that binding of p110 CUX1 to a promoter will favor the specific recruitment of E2F1, and to a lesser extent E2F2, over E2F3 and E2F4. Reporter assays on a subset of common targets confirmed that p110 CUX1 and E2F1 cooperate in their transcriptional activation. Overall, our results show that p110 CUX1 and E2F1 cooperate in the regulation of many cell cycle genes.
Collapse
|
9
|
Abstract
We describe a self-amplifying feedback loop that autoinduces Skp2 during G1 phase progression. This loop, which contains Skp2 itself, p27kip1 (p27), cyclin E–cyclin dependent kinase 2, and the retinoblastoma protein, is closed through a newly identified, conserved E2F site in the Skp2 promoter. Interference with the loop, by knockin of a Skp2-resistant p27 mutant (p27T187A), delays passage through the restriction point but does not interfere with S phase entry under continuous serum stimulation. Skp2 knock down inhibits S phase entry in nontransformed mouse embryonic fibroblasts but not in human papilloma virus–E7 expressing fibroblasts. We propose that the essential role for Skp2-dependent degradation of p27 is in the formation of an autoinduction loop that selectively controls the transition to mitogen-independence, and that Skp2-dependent proteolysis may be dispensable when pocket proteins are constitutively inactivated.
Collapse
Affiliation(s)
- Yuval Yung
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
10
|
Crook MF, Olive M, Xue HH, Langenickel TH, Boehm M, Leonard WJ, Nabel EG. GA-binding protein regulates KIS gene expression, cell migration, and cell cycle progression. FASEB J 2007; 22:225-35. [PMID: 17726090 DOI: 10.1096/fj.07-8573com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cyclin-dependent kinase inhibitor p27(Kip1) arrests cell cycle progression through G1/S phases and is regulated by phosphorylation of serine/threonine residues. Recently, we identified the serine/threonine kinase, KIS, which phosphorylates p27(Kip1) on serine 10 leading to nuclear export of p27(Kip1) and protein degradation. However, the molecular mechanisms of transcriptional activation of the human KIS gene and its biological activity are not known. We mapped the transcription initiation site approximately 116 bp 5' to the translation start site, and sequences extending to -141 were sufficient for maximal promoter activity. Mutation in either of two Ets-binding sites in this region resulted in an approximately 75-80% decrease in promoter activity. These sites form at least 3 specific complexes, which contained GA-binding protein (GABP). Knocking down GABPalpha by siRNA in vascular smooth muscle cells (VSMCs) diminished KIS gene expression and reduced cell migration. Correspondingly, in serum stimulated GABPalpha-deficient mouse embryonic fibroblasts (MEFs), KIS gene expression was also significantly reduced, which was associated with an increase in p27(Kip1) protein levels and a decreased percentage of cells in S-phase. Consistent with these findings, following vascular injury in vivo, GABPalpha-heterozygous mice demonstrated reduced KIS gene expression within arterial lesions and these lesions were significantly smaller compared to GABP+/+ mice. In summary, serum-responsive GABP binding to Ets-binding sites activates the KIS promoter, leading to KIS gene expression, cell migration, and cell cycle progression.
Collapse
Affiliation(s)
- Martin F Crook
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yang ZF, Mott S, Rosmarin AG. The Ets transcription factor GABP is required for cell-cycle progression. Nat Cell Biol 2007; 9:339-46. [PMID: 17277770 DOI: 10.1038/ncb1548] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 01/10/2007] [Indexed: 11/09/2022]
Abstract
The transition from cellular quiescence (G0) into S phase is regulated by the mitogenic-activation of D-type cyclins and cyclin-dependent kinases (Cdks), the sequestration of the Cdk inhibitors (CDKIs), p21 and p27, and the hyperphosphorylation of Rb with release of E2F transcription factors. However, fibroblasts that lack all D-type cyclins can still undergo serum-induced proliferation and key E2F targets are expressed at stable levels despite cyclical Rb-E2F activity. Here, we show that serum induces expression of the Ets transcription factor, Gabpalpha, and that its ectopic expression induces quiescent cells to re-enter the cell cycle. Genetic disruption of Gabpalpha prevents entry into S phase, and selectively reduces expression of genes that are required for DNA synthesis and degradation of CDKIs, yet does not alter expression of D-type cyclins, Cdks, Rb or E2Fs. Thus, GABP is necessary and sufficient for re-entry into the cell cycle and it regulates a pathway that is distinct from that of D-type cyclins and CDKs.
Collapse
Affiliation(s)
- Zhong-Fa Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
12
|
Chang HR, Lian JD, Lo CW, Chang YC, Yang MY, Wang CJ. Induction of urothelial proliferation in rats by aristolochic acid through cell cycle progression via activation of cyclin D1/cdk4 and cyclin E/cdk2. Food Chem Toxicol 2006; 44:28-35. [PMID: 16024155 DOI: 10.1016/j.fct.2005.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/28/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Aristolochic acid (AA) has been implicated in urothelial carcinoma in humans. However, the mechanism by which AA induces this cancer has not been completely established. To evaluate the effects of AA on the urinary bladder of rats, a histopathological study of three-month intragastric feeding with mixture of AA (41% AA I, 56% AA II) was carried out. A total of 18 experimental rats were divided into three feeding regimens, with six rats in each group (group I, normal basal diet; groups II and III received intragastric 5 mg and 10 mg isolated AA mixture/kg/day for 5 days/week for 12 weeks). Dosage-dependent urothelial proliferation, but not carcinoma, was found in the urothelium of the bladder of the rats administered with AA mixture. Immunoprecipitation showed elevations of cyclin D(1)/cdk4 (increased induction by 1.57- and 1.95-fold in the groups II and III) and/or cyclin E/cdk2 complex (increased induction by 1.46- and 1.62-fold in the groups II and III), which promote the increasing phosphorylation of Rb (increased induction by 1.75- and 2.07-fold in the groups II and III) and result in decrease of the Rb/E2F complex (decreased expression by 0.65- and 0.24-fold in the groups II and III). Our results provide evidence to suggest that exposure to AA results in urothelial proliferation in rats through cell cycle progression via activation of cyclin D(1)/cdk4 and cyclin E/cdk2.
Collapse
Affiliation(s)
- Horng-Rong Chang
- Division of Nephrology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Tsuchimochi K, Yagishita N, Yamasaki S, Amano T, Kato Y, Kawahara KI, Aratani S, Fujita H, Ji F, Sugiura A, Izumi T, Sugamiya A, Maruyama I, Fukamizu A, Komiya S, Nishioka K, Nakajima T. Identification of a crucial site for synoviolin expression. Mol Cell Biol 2005; 25:7344-56. [PMID: 16055742 PMCID: PMC1190266 DOI: 10.1128/mcb.25.16.7344-7356.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synoviolin is an E3 ubiquitin ligase localized in the endoplasmic reticulum (ER) and serving as ER-associated degradation system. Analysis of transgenic mice suggested that synoviolin gene dosage is implicated in the pathogenesis of arthropathy. Complete deficiency of synoviolin is fatal embryonically. Thus, alternation of Synoviolin could cause breakdown of ER homeostasis and consequently lead to disturbance of cellular homeostasis. Hence, the expression level of Synoviolin appears to be important for its biological role in cellular homeostasis under physiological and pathological conditions. To examine the control of protein level, we performed promoter analysis to determine transcriptional regulation. Here we characterize the role of synoviolin transcription in cellular homeostasis. The Ets binding site (EBS), termed EBS-1, from position -76 to -69 of the proximal promoter, is responsible for synoviolin expression in vivo and in vitro. Interestingly, transfer of EBS-1 decoy into NIH 3T3 cells conferred not only the repression of synoviolin gene expression but also a decrease in cell number. Fluorescence-activated cell sorter analysis using annexin V staining confirmed the induction of apoptosis by EBS-1 decoy and demonstrated recovery of apoptosis by overexpression of Synoviolin. Our results suggest that transcriptional regulation of synoviolin via EBS-1 plays an important role in cellular homeostasis. Our study provides novel insight into the transcriptional regulation for cellular homeostasis.
Collapse
Affiliation(s)
- Kaneyuki Tsuchimochi
- Department of Genomic Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rorie CJ, Thomas VD, Chen P, Pierce HH, O'Bryan JP, Weissman BE. The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res 2004; 64:1266-77. [PMID: 14973077 DOI: 10.1158/0008-5472.can-03-3274] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma (NB) and the Ewing sarcoma (ES)/peripheral primitive neuroectodermal tumor (PNET) family are pediatric cancers derived from neural crest cells. Although NBs display features of the sympathetic nervous system, ES/PNETs express markers consistent with parasympathetic differentiation. To examine the control of these differentiation markers, we generated NB x ES/PNET somatic cell hybrids. NB-specific markers were suppressed in the hybrids, whereas ES/PNET-specific markers were unaffected. These results suggested that the Ews/Fli-1 fusion gene, resulting from a translocation unique to ES/PNETs, might account for the loss of NB-specific markers. To test this hypothesis, we generated two different NB cell lines that stably expressed the Ews/Fli-1 gene. We observed that heterologous expression of the Ews/Fli-1 protein led to the suppression of NB-specific markers and de novo expression of ES/PNET markers. To determine the extent of changes in differentiation, we used the Affymetrix GeneChip Array system to observe global transcriptional changes of genes. This analysis revealed that the gene expression pattern of the Ews/Fli-1-expressing NB cells resembled that observed in pooled ES/PNET cell lines and differed significantly from the NB parental cells. Therefore, we propose that Ews/Fli-1 contributes to the etiology of ES/PNET by subverting the differentiation program of its neural crest precursor cell to a less differentiated and more proliferative state.
Collapse
Affiliation(s)
- Checo J Rorie
- Curriculum in Toxicology, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lee SS, Kwon SH, Sung JS, Han MY, Park YM. Cloning and characterization of the rat Hsf2 promoter: a critical role of proximal E-box element and USF protein in Hsf2 regulation in different compartments of the brain. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:52-63. [PMID: 12527426 DOI: 10.1016/s0167-4781(02)00574-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex patterns of tissue-, cell type- and developmental stage-specific expression of heat shock factor 2 (Hsf2) raise a question of how this can be achieved for this ubiquitous transcription factor. To explore molecular mechanisms responsible for the regulated expression of Hsf2, a 2638-bp 5'-flanking region of the rat Hsf2 gene was cloned and characterized. Since the brain represents one of the most complicated organs composed of several regions with different cell types, differential regulation of Hsf2 in various brain regions was investigated in detail. Results show that the major transcription initiation site of the Hsf2 gene is located at cytosine-155 relative to the translation initiation site. The E-box element located immediate upstream of the transcription initiation site was demonstrated to be critical for Hsf2 promoter activity, and the upstream stimulatory factor (USF) protein was identified as the major E-box binding protein. That the only two base exchange of the E-box core sequences from CACGTG to CACGGT severely impaired Hsf2 promoter activity and completely eliminated USF binding clearly demonstrated that the specific binding of USF to E-box is critical for Hsf2 promoter activity. Here we demonstrated that the Hsf2 expression levels varied significantly in different brain regions. We also demonstrated that Hsf2 expression levels in various brain regions relatively correlated with the E-box binding activity of USF. Based on these results, we suggest that E-box binding activity of USF protein may act as one of the major regulators of Hsf2 expression in situ although a possible involvement of other transcription factors cannot be ruled out. The presence of several transcription factor binding sites of biological importance in the Hsf2 promoter suggests that identifying the interplay of USF and these factors should help further elucidate the molecular mechanisms of tissue-, cell type- and developmental stage-specific expression of Hsf2.
Collapse
Affiliation(s)
- Sang-Seop Lee
- Department of Biology, University of Incheon, Dohwa-Dong, South Korea
| | | | | | | | | |
Collapse
|
16
|
Kobayashi M, Taniura H, Yoshikawa K. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J Biol Chem 2002; 277:42128-35. [PMID: 12198120 DOI: 10.1074/jbc.m205024200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.
Collapse
Affiliation(s)
- Masakatsu Kobayashi
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Japan
| | | | | |
Collapse
|
17
|
Sharkov NV, Ramsay G, Katzen AL. The DNA replication-related element-binding factor (DREF) is a transcriptional regulator of the Drosophila myb gene. Gene 2002; 297:209-19. [PMID: 12384302 DOI: 10.1016/s0378-1119(02)00890-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate proto-oncogene c-Myb, and its other family members (A-Myb and B-Myb), all of which encode transcription factors. Dm myb is expressed in all proliferating cells throughout development, and previous studies demonstrate that Dm myb promotes both S-phase and M-phase in proliferating cells, while preserving diploidy by suppressing endoreduplication. We have initiated a characterization of the mechanisms that regulate Dm myb expression, and we report here that the transcriptional activator DREF (the DNA replication-related element binding factor) activates Dm myb transcription via two binding sites located in the 5' flanking region; that the Dm myb promoter lacks a prototypical TATA box sequence and instead appears to use an initiator/downstream promoter element (Inr/DPE) type promoter; and that Dm myb expression is regulated at the translational as well as transcriptional level.
Collapse
Affiliation(s)
- Nikolai V Sharkov
- Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 South Ashland Avenue, Room 2368, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|
18
|
Yamada M, Sato N, Taniyama C, Ohtani K, Arai KI, Masai H. A 63-base pair DNA segment containing an Sp1 site but not a canonical E2F site can confer growth-dependent and E2F-mediated transcriptional stimulation of the human ASK gene encoding the regulatory subunit for human Cdc7-related kinase. J Biol Chem 2002; 277:27668-81. [PMID: 12015319 DOI: 10.1074/jbc.m202884200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc7-Dbf4 kinase complexes, conserved widely in eukaryotes, play essential roles in initiation and progression of the S phase. Cdc7 kinase activity fluctuates during cell cycle, and this is mainly the result of oscillation of expression of the Dbf4 subunit. Therefore, it is crucial to understand the mechanisms of regulation of Dbf4 expression. We have isolated and characterized the promoter region of the human ASK gene encoding Dbf4-related regulatory subunit for human Cdc7 kinase. We have identified a 63-base pair ASK promoter segment, which is sufficient for mediating growth stimulation. This minimal promoter segment (MP), containing an Sp1 site but no canonical E2F site, can be activated by ectopic E2F expression as well. Within the 63-base pair region, the Sp1 site as well as other elements are essential for stimulation by growth signals and by E2F, whereas an AT-rich sequence proximal to the coding region may serve as an element required for suppression in quiescence. Gel shift assays in the presence of an antibody demonstrate the presence of E2F1 in the protein-DNA complexes generated on the MP segment. However, the complex formation on MP was not competed by a DHFR promoter fragment, known to bind to E2F, nor by a consensus E2F binding oligonucleotide. Gel shift assays with point mutant MP fragments indicate that a non-canonical E2F site in the middle of this segment is critical for generation of the E2F complex. Our results suggest that E2F regulates the ASK promoter through an atypical mode of recognition of the target site.
Collapse
Affiliation(s)
- Masayuki Yamada
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Noya F, Chien WM, Wu X, Banerjee NS, Kappes JC, Broker TR, Chow LT. The promoter of the human proliferating cell nuclear antigen gene is not sufficient for cell cycle-dependent regulation in organotypic cultures of keratinocytes. J Biol Chem 2002; 277:17271-80. [PMID: 11877408 DOI: 10.1074/jbc.m112441200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) is essential for DNA replication of mammalian cells and their small DNA tumor viruses. The mechanism of the cell cycle-dependent regulation of the human PCNA promoter is not clear despite extensive investigations. In this report, we employed organotypic cultures of primary human keratinocytes, which closely resemble native skin comprising both proliferating and postmitotic, differentiated cells, to examine the cell cycle-dependent regulation of the human PCNA gene (hPCNA) in the absence or presence of the human papillomavirus type 18 (HPV-18) E7 protein. HPV-18 E7 promotes S phase re-entry in post-mitotic differentiated keratinocytes by abrogating the transcription repression of E2F transcription factors by the retinoblastoma susceptibility protein, pRb. We demonstrated that E7 reactivated the transcription of the endogenous hPCNA in differentiated keratinocytes. In contrast, with or without E7, the expression of a transduced hPCNA promoter-driven reporter did not correlate with that of the endogenous hPCNA gene in either proliferating or differentiated cells. Moreover, in Chinese hamster ovary and L-cells, HPV E7 and the adenovirus E1A protein repressed the transduced hPCNA promoter, but both activated an extended promoter construct spanning the first intron. Mutations of two E2F sites in the intron reduced the basal activity and abolished the response to E7 or E1A. Promoter repression or activation required the CR2 domain of E7 and, to a lesser extent, CR1 as well. However, in organotypic cultures, this extended promoter construct failed to recapitulate the cell cycle-dependent regulation of the endogenous hPCNA gene. Only when a full-length Myc-tagged hPCNA spanning the 5' promoter and all exons and introns was used was the native pattern of expression largely restored, indicative of the complexity of its regulation.
Collapse
Affiliation(s)
- Francisco Noya
- Department of Biochemistry, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hauck L, Kaba RG, Lipp M, Dietz R, von Harsdorf R. Regulation of E2F1-dependent gene transcription and apoptosis by the ETS-related transcription factor GABPgamma1. Mol Cell Biol 2002; 22:2147-58. [PMID: 11884602 PMCID: PMC133701 DOI: 10.1128/mcb.22.7.2147-2158.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2F family of transcription factors comprises six related members which are involved in the control of the coordinated progression through the G(1)/S-phase transition of cell cycle or in cell fate decision. Their activity is regulated by pocket proteins, including pRb, p107, and p130. Here we show that E2F1 directly interacts with the ETS-related transcription factor GABPgamma1 in vitro and in vivo. The binding domain interacting with GABPgamma1 was mapped to the C-terminal amino acids 310 to 437 of E2F1, which include its transactivation and pRb binding domain. Among the E2F family of transcription factors, the interaction with GABPgamma1 is restricted to E2F1. DNA-binding E2F1 complexes containing GABPgamma1 are characterized by enhanced E2F1-dependent transcriptional activity. Moreover, GABPgamma1 suppresses E2F1-dependent apoptosis by mechanisms other than the inhibition of the transactivation capacity of E2F1. In summary, our results provide evidence for a novel pRb-independent mechanism regulating E2F1-dependent transcription and apoptosis.
Collapse
Affiliation(s)
- Ludger Hauck
- Department of Cardiology, Campus Virchow Clinic, Charité, Humboldt University, Germany
| | | | | | | | | |
Collapse
|
21
|
Rudge TL, Johnson LF. Synergistic activation of the TATA-less mouse thymidylate synthase promoter by the Ets transcription factor GABP and Sp1. Exp Cell Res 2002; 274:45-55. [PMID: 11855856 DOI: 10.1006/excr.2001.5451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse thymidylate synthase (TS) promoter lacks a TATA box and an initiator element and directs transcriptional initiation at multiple sites over a 90-nucleotide region. The minimum sequence required for wild-type promoter activity has been mapped to a 30-nucleotide essential promoter region that partially overlaps the 5' end of the transcriptional initiation window. The essential promoter region contains two potential binding sites for members of the Ets family of transcription factors as well as a binding site for Sp1. Promoter mutation analyses revealed that all three of these sites are important for promoter activity. Transient cotransfection assays showed that GABP, a heterodimeric Ets factor, is able to stimulate expression of reporter genes driven by the wild-type mouse TS promoter whereas several other Ets factors have no effect. Electrophoretic mobility shift assays revealed that recombinant GABP binds to both Ets elements in the essential promoter region. Stimulation of promoter activity by GABP is diminished when either Ets element is inactivated and is prevented when both Ets elements are inactivated. Transient cotransfection assays revealed that Sp1 and GABP stimulate TS promoter activity in a highly synergistic manner.
Collapse
Affiliation(s)
- Thomas L Rudge
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
22
|
Kaytor EN, Zhu JL, Pao CI, Phillips LS. Insulin-responsive nuclear proteins facilitate Sp1 interactions with the insulin-like growth factor-I gene. J Biol Chem 2001; 276:36896-901. [PMID: 11457835 DOI: 10.1074/jbc.m104035200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diabetes-induced decrease in insulin-like growth factor-I transcription appears to be mediated by footprint region V in exon 1. Since region V contains both an Sp1 site and an AT-rich element that recognizes an insulin-responsive binding protein (IRBP), we tested the hypothesis that Sp1 interactions are facilitated by an IRBP. Binding of nuclear extracts to region V probes was reduced by mutational or chemical interference with the AT-rich element. Blocking the AT site also reduced interactions of Sp1 with region V in vitro and blunted transactivation of region V reporter constructs by Sp1 in vivo. Sp1 binding was enhanced by small quantities of hepatic nuclear extracts, but enhancement was reduced by the AT mutation and abolished by a 5-base pair insertion between the AT-rich and GC-rich sites, and transactivation by Sp1 in vivo was diminished by inserting bases between the AT-rich and GC-rich elements. However, treating cells with insulin increased the ability of nuclear extracts to enhance Sp1 binding. These findings indicate that the presence of the AT-rich element is essential for the actions of Sp1 in vitro and in vivo, and the combination of both spacing requirements and insulin responsiveness suggests that IRBP may interact directly with Sp1.
Collapse
Affiliation(s)
- E N Kaytor
- Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- H Gadgil
- Department of Biochemistry, University of Tennessee, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
24
|
Abstract
SUMMARY Replicative DNA polymerases are essential for the replication of the genomes of all living organisms. On the basis of sequence similarities they can be classified into three types. Type A polymerases are homologous to bacterial polymerases I, Type B comprises archaebacterial DNA polymerases and eukaryotic DNA polymerase alpha, and the bacterial polymerase III class make up type C. Structures have been solved for several type A and B polymerases, which share a similar architecture. The structure of type C is not yet known. The catalytic mechanism of all three types involves two metal-ion-binding acidic residues in the active site. Replicative polymerases are constitutively expressed, but their activity is regulated through the cell cycle and in response to different growth conditions.
Collapse
Affiliation(s)
- M Albà
- Wohl Virion Centre, Department of Immunology and Molecular Pathology, University College London, Cleveland Street, London, W1T 4JF, UK.
| |
Collapse
|
25
|
Nishikawa N, Izumi M, Yokoi M, Miyazawa H, Hanaoka F. E2F regulates growth-dependent transcription of genes encoding both catalytic and regulatory subunits of mouse primase. Genes Cells 2001; 6:57-70. [PMID: 11168597 DOI: 10.1046/j.1365-2443.2001.00395.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA polymerase alpha-primase is one of the principal enzymes involved in eukaryotic chromosomal DNA replication. Mouse DNA polymerase alpha-primase consists of four subunits with molecular masses of 180, 68, 54 and 46 kDa. Protein and mRNA expression levels of the four subunits are up-regulated in a coordinated manner in response to growth stimulation. We have previously analysed the transcription of the 180 kDa (p180) and 68 kDa (p68) subunits, which form the DNA polymerase catalytic complex, and found that growth-dependent regulation of transcription of the mouse p180 and p68 genes is mediated by a common factor, E2F, while the basal transcription of the genes is regulated by different transcription factors. We characterized the transcriptional regulation of the 54 kDa (p54) and 46 kDa (p46) subunits, which form the DNA primase catalytic complex. We isolated genomic clones spanning the 5'-flanking regions of the p54 and p46 genes and showed, using transient expression and gel mobility shift assays, that the basal transcription of p54 is controlled by Sp1 and GA-binding protein, as is the basal transcription of the p180 gene. The basal transcription of p46 is controlled by unknown factor(s) which were bound to the upstream sequence. The variant E2F sites close to the transcription initiation sites of the p54 and p46 genes had no basal promoter activity, but were essential for the growth-dependent transcription of both genes. The promoter regions of the four subunits of mouse DNA polymerase d-primase complex share several common features. The coordinated transcription of all four subunits in response to growth stimulation appears to be controlled by E2F.
Collapse
Affiliation(s)
- N Nishikawa
- Cellular Physiology Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|