1
|
Neel AI, Wang Y, Sun H, Liontis KE, McCormack MC, Mayer JC, Cervera Juanes RP, Davenport AT, Grant KA, Daunais JD, Chen R. Differential regulation of G protein-coupled receptor-associated proteins in the caudate and the putamen of cynomolgus macaques following chronic ethanol drinking. J Neurochem 2024; 168:2722-2735. [PMID: 38783749 PMCID: PMC11449652 DOI: 10.1111/jnc.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCβ) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gβ1γ, PKCα, PKCε, CaMKII, GSK3β, β-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.
Collapse
Affiliation(s)
- Anna I. Neel
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Yutong Wang
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Haiguo Sun
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Katherine E. Liontis
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Mary C. McCormack
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Jonathan C. Mayer
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Rita P. Cervera Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - April T. Davenport
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Kathleen A. Grant
- Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239
| | - James D. Daunais
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Rong Chen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| |
Collapse
|
2
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Li LD, Zhou Y, Shi SF. Identification and characterization of biomarkers associated with endoplasmic reticulum protein processing in cerebral ischemia-reperfusion injury. PeerJ 2024; 12:e16707. [PMID: 38188159 PMCID: PMC10768662 DOI: 10.7717/peerj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Cerebral ischemia (CI), ranking as the second leading global cause of death, is frequently treated by reestablishing blood flow and oxygenation. Paradoxically, this reperfusion can intensify tissue damage, leading to CI-reperfusion injury. This research sought to uncover biomarkers pertaining to protein processing in the endoplasmic reticulum (PER) during CI-reperfusion injury. Methods We utilized the Gene Expression Omnibus (GEO) dataset GSE163614 to discern differentially expressed genes (DEGs) and single out PER-related DEGs. The functions and pathways of these PER-related DEGs were identified via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Core genes were pinpointed through protein-protein interaction (PPI) networks. Subsequent to this, genes with diagnostic relevance were distinguished using external validation datasets. A single-sample gene-set enrichment analysis (ssGSEA) was undertaken to pinpoint genes with strong associations to hypoxia and apoptosis, suggesting their potential roles as primary inducers of apoptosis in hypoxic conditions during ischemia-reperfusion injuries. Results Our study demonstrated that PER-related genes, specifically ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4, were markedly down-regulated in models, exhibiting a robust association with hypoxia and apoptosis. Conclusion The data indicates that ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4 could be pivotal genes responsible for triggering apoptosis in hypoxic environments during CI-reperfusion injury.
Collapse
Affiliation(s)
- Liang-da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Shan-fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Daly C, Plouffe B. Gα q signalling from endosomes: A new conundrum. Br J Pharmacol 2023. [PMID: 37740273 DOI: 10.1111/bph.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Kim J, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Interactive effect of the empirical lifestyle index for insulin resistance with the common genetic susceptibility locus rs2423279 for colorectal cancer. Br J Nutr 2023; 129:1563-1573. [PMID: 35416135 DOI: 10.1017/s000711452200085x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study is to examine the empirical insulinemic potential consisting of dietary and lifestyle factors and the interactive effect with the common genetic susceptibility locus rs2423279 on the risk of colorectal cancer (CRC). This case-control study was conducted with 923 CRC patients and 1846 controls. The empirical measures for assessing the insulinemic potential, namely, the empirical dietary index for hyperinsulinemia (EDIH), for insulin resistance (EDIR), the empirical lifestyle index for hyperinsulinemia (ELIH), and for insulin resistance (ELIR), were calculated based on semiquantitative food frequency questionnaire and lifestyle questionnaire. A genetic variant of rs2423279 was genotyped. The CRC patients were more likely to score in the highest quartile for the ELIH (OR 2·90, Q4 v. Q1, 95 % CI (2·01, 4·19), Pfor trend < 0·001), EDIR (OR 3·32, Q4 v. Q1, 95 % CI (2·32, 4·74), P < 0·001) and ELIR (OR 2·79, Q4 v. Q1, 95 % CI (1·96, 3·97), P < 0·001) than the controls. The significant effect between the ELIR, which assesses dietary and lifestyle patterns related to insulin resistance, and C allele carriers of rs2423279 was stronger than that for homozygous T allele carriers (OR 2·50, 95 % CI (1·78, 3·51), Pfor interaction = 0·034). The empirical insulinemic potential for insulin resistance might have interactive effects with the rs2423279 polymorphism on the risk of CRC. The results of this study suggest the basis of the metabolic impact of the insulin response on colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Hee Jin Chang
- Division of Precision Medicine, Research Institute, Department of Pathology, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University, College of Medicine, Jongno-Gu, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Jongno-Gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| |
Collapse
|
6
|
Chang B, Byun J, Kim KK, Lee SE, Lee B, Kim KS, Ryu H, Shin HS, Cheong E. Deletion of Phospholipase C β1 in the Thalamic Reticular Nucleus Induces Absence Seizures. Exp Neurobiol 2022; 31:116-130. [PMID: 35674000 PMCID: PMC9194639 DOI: 10.5607/en22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Absence seizures are caused by abnormal synchronized oscillations in the thalamocortical (TC) circuit, which result in widespread spike-and-wave discharges (SWDs) on electroencephalography (EEG) as well as impairment of consciousness. Thalamic reticular nucleus (TRN) and TC neurons are known to interact dynamically to generate TC circuitry oscillations during SWDs. Clinical studies have suggested the association of Plcβ1 with early-onset epilepsy, including absence seizures. However, the brain regions and circuit mechanisms related to the generation of absence seizures with Plcβ1 deficiency are unknown. In this study, we found that loss of Plcβ1 in mice caused spontaneous complex-type seizures, including convulsive and absence seizures. Importantly, TRN-specific deletion of Plcβ1 led to the development of only spontaneous SWDs, and no other types of seizures were observed. Ex vivo slice patch recording demonstrated that the number of spikes, an intrinsic TRN neuronal property, was significantly reduced in both tonic and burst firing modes in the absence of Plcβ1. We conclude that the loss of Plcβ1 in the TRN leads to decreased excitability and impairs normal inhibitory neuronal function, thereby disrupting feedforward inhibition of the TC circuitry, which is sufficient to cause hypersynchrony of the TC system and eventually leads to spontaneous absence seizures. Our study not only provides a novel mechanism for the induction of SWDs in Plcβ1-deficient patients but also offers guidance for the development of diagnostic and therapeutic tools for absence epilepsy.
Collapse
Affiliation(s)
- Bomi Chang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Junweon Byun
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Ko Keun Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Seung Eun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Key-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
7
|
Larison B, Pinho GM, Haghani A, Zoller JA, Li CZ, Finno CJ, Farrell C, Kaelin CB, Barsh GS, Wooding B, Robeck TR, Maddox D, Pellegrini M, Horvath S. Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids. Commun Biol 2021; 4:1412. [PMID: 34921240 PMCID: PMC8683477 DOI: 10.1038/s42003-021-02935-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
Effective conservation and management of threatened wildlife populations require an accurate assessment of age structure to estimate demographic trends and population viability. Epigenetic aging models are promising developments because they estimate individual age with high accuracy, accurately predict age in related species, and do not require invasive sampling or intensive long-term studies. Using blood and biopsy samples from known age plains zebras (Equus quagga), we model epigenetic aging using two approaches: the epigenetic clock (EC) and the epigenetic pacemaker (EPM). The plains zebra EC has the potential for broad application within the genus Equus given that five of the seven extant wild species of the genus are threatened. We test the EC's ability to predict age in sister taxa, including two endangered species and the more distantly related domestic horse, demonstrating high accuracy in all cases. By comparing chronological and estimated age in plains zebras, we investigate age acceleration as a proxy of health status. An interaction between chronological age and inbreeding is associated with age acceleration estimated by the EPM, suggesting a cumulative effect of inbreeding on biological aging throughout life.
Collapse
Affiliation(s)
- Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Gabriela M Pinho
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Amin Haghani
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Joseph A Zoller
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Caesar Z Li
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Bernard Wooding
- Quagga Project, Elandsberg Farms, Hermon, 7308, South Africa
| | - Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, FL, USA
| | - Dewey Maddox
- White Oak Conservation, 581705 White Oak Road, Yulee, FL, 32097, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
8
|
Desprairies C, Valence S, Maurey H, Helal SI, Weckhuysen S, Soliman H, Mefford HC, Spentchian M, Héron D, Leguern E, Nava C, Bouilleret V, Moretti R, Mignot C. Three novel patients with epileptic encephalopathy due to biallelic mutations in the PLCB1 gene. Clin Genet 2020; 97:477-482. [PMID: 31883110 DOI: 10.1111/cge.13696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 11/27/2022]
Abstract
Biallelic mutations in the PLCB1 gene, encoding for a phospholipase C beta isoform strongly expressed in the brain, have been reported to cause infantile epileptic encephalopathy in only four children to date. We report here three additional patients to delineate the phenotypic and genotypic characteristics of the disease. Our three patients were one sporadic case with an intragenic homozygous deletion and two cousins with the homozygous p.(Arg222*) nonsense variant in PLCB1. These patients had severe to profound intellectual disability, epileptic spasms at age 3-5 months concomitant with developmental arrest or regression, other seizure types and drug-resistant epilepsy. With this report, we expand the clinical, radiologic and electroencephalographic knowledge about the extremely rare PLCB1-related encephalopathy. Since the first report in 2010, the overall number of reported patients with our additional patients is currently limited to seven. All seven patients had epileptic encephalopathy, mainly infantile spasms and 6/7 had profound intellectual disability, with one only being able to walk. Truncal hypotonia was the most frequent neurological sign, sometimes associated with pyramidal and/or extrapyramidal hypertonia of limbs. Microcephaly was inconstant. In conclusion, the phenotypical spectrum of PLCB1-related encephalopathy is relatively narrow, comprises infantile spasms and severe to profound intellectual disability, and does not seem to define a recognizable clinical entity.
Collapse
Affiliation(s)
| | | | | | - Suzette I Helal
- Department of Research of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt
| | - Sarah Weckhuysen
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Hala Soliman
- Molecular genetics Department, Human Genetics & Genome Research Division, National Research Centre, Cairo, Egypt
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | | | - Delphine Héron
- APHP, Département de Génétique, GH Pitié-Salpêtrière, Paris, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, GH Pitié-Salpêtrière, Paris, France.,Groupe de Recherche Clinique "Déficiences Intellectuelles et Autisme", Sorbonne Université, Paris, France
| | - Eric Leguern
- APHP, Département de Génétique, GH Pitié-Salpêtrière, Paris, France.,Inserm U 1127, Institut du Cerveau et de la Moelle, GH Pitié Salpêtrière, Paris, France
| | - Caroline Nava
- APHP, Département de Génétique, GH Pitié-Salpêtrière, Paris, France.,Inserm U 1127, Institut du Cerveau et de la Moelle, GH Pitié Salpêtrière, Paris, France
| | - Viviane Bouilleret
- APHP, Unité de neurophysiologie clinique et d'épileptologie, CHU de Bicêtre, Paris, France
| | - Raffaella Moretti
- APHP, Service de Neurophysiologie Clinique, Hôpital Trousseau, Paris, France
| | - Cyril Mignot
- APHP, Département de Génétique, GH Pitié-Salpêtrière, Paris, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, GH Pitié-Salpêtrière, Paris, France.,Inserm U 1127, Institut du Cerveau et de la Moelle, GH Pitié Salpêtrière, Paris, France
| |
Collapse
|
9
|
Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 2019; 18:3099-3118. [PMID: 31265301 DOI: 10.1021/acs.jproteome.9b00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Collapse
Affiliation(s)
- Meiling Wen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
10
|
Sarakul M, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D, Laodim T. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim Reprod Sci 2018; 197:324-334. [PMID: 30213568 DOI: 10.1016/j.anireprosci.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The objective of this research was to characterize biological pathways associated with semen volume (VOL), number of sperm (NS), and sperm motility (MOT) of dairy bulls in the Thai multibreed dairy population. Phenotypes for VOL (n = 13,535), NS (n = 12,773), and MOT (n = 12,660) came from 131 bulls of the Dairy Farming Promotion Organization of Thailand. Genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNP) from 72 animals. The SNP variances for VOL, NS, and MOT were estimated using a three-trait genomic-polygenic repeatability model. Fixed effects were contemporary group, ejaculate order, age of bull, ambient temperature, and heterosis. Random effects were animal additive genetic, permanent environmental, and residual. Individual SNP explaining at least 0.001% of the total genetic variance for each trait were selected to identify associated genes in the NCBI database (UMD Bos taurus 3.1 assembly) using the R package Map2NCBI. A set of 1,999 NCBI genes associated with all three semen traits was utilized for the pathway analysis conducted with the ClueGO plugin of Cytoscape using information from the Kyoto Encyclopedia of Genes and Genomes database. The pathway analysis revealed seven significant biological pathways involving 127 genes that explained 1.04% of the genetic variance for VOL, NS, and MOT. These genes were known to affect cell structure, motility, migration, proliferation, differentiation, survival, apoptosis, signal transduction, oxytocin release, calcium channel, neural development, and immune system functions related to sperm morphology and physiology during spermatogenesis.
Collapse
Affiliation(s)
- Mattaneeya Sarakul
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Danai Jattawa
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thawee Laodim
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
11
|
Cabana-Domínguez J, Roncero C, Pineda-Cirera L, Palma-Álvarez RF, Ros-Cucurull E, Grau-López L, Esojo A, Casas M, Arenas C, Ramos-Quiroga JA, Ribasés M, Fernàndez-Castillo N, Cormand B. Association of the PLCB1 gene with drug dependence. Sci Rep 2017; 7:10110. [PMID: 28860459 PMCID: PMC5579249 DOI: 10.1038/s41598-017-10207-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Carlos Roncero
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - R Felipe Palma-Álvarez
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Elena Ros-Cucurull
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lara Grau-López
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Abderaman Esojo
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Miquel Casas
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
12
|
Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation. Proc Natl Acad Sci U S A 2016; 113:7834-9. [PMID: 27342861 DOI: 10.1073/pnas.1603513113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation.
Collapse
|
13
|
Schoonjans AS, Meuwissen M, Reyniers E, Kooy F, Ceulemans B. PLCB1 epileptic encephalopathies; Review and expansion of the phenotypic spectrum. Eur J Paediatr Neurol 2016; 20:474-9. [PMID: 26818157 DOI: 10.1016/j.ejpn.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Biallelic loss-of-function mutations of phospholipase C-β1 (PLCB1) have been described in three children with an early onset epileptic encephalopathy (EE). In two of them a homozygous deletion of the promotor and first three coding exons was found. The third patient had an almost identical heterozygous deletion in combination with a heterozygous splice site variant. All patients had intractable epilepsy and a severe developmental delay. METHODS AND RESULTS We present the case of a boy with an infantile EE starting at the age of four months with a fever induced status epilepticus, modified hypsarrhythmia and developmental regression. The epilepsy was reasonably controlled with corticoids and valproate whereupon generalized tonic-clonic seizures appeared only each 3-4 months. However, only a slow developmental progress was seen hereafter, resulting in a severe intellectual disability with absent speech, motor delay and autistic features. We identified a novel homozygous partial deletion of PLCB1, affecting exons 7-9. CONCLUSIONS This report emphasizes the role of PLCB1 haploinsufficiency in severe EE. We demonstrate a phenotypic variability in patients with a PLCB1-associated EE. In addition, our findings underscore the importance of microarray analysis in all patients with an EE of unknown etiology.
Collapse
Affiliation(s)
- An-Sofie Schoonjans
- Department of Neurology-Pediatric Neurology, University and University Hospital Antwerp, Antwerp, Belgium.
| | - Marije Meuwissen
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Berten Ceulemans
- Department of Neurology-Pediatric Neurology, University and University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Grubb DR, Crook B, Ma Y, Luo J, Qian HW, Gao XM, Kiriazis H, Du XJ, Gregorevic P, Woodcock EA. The atypical 'b' splice variant of phospholipase Cβ1 promotes cardiac contractile dysfunction. J Mol Cell Cardiol 2015; 84:95-103. [PMID: 25918049 DOI: 10.1016/j.yjmcc.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
The activity of the early signaling enzyme, phospholipase Cβ1b (PLCβ1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCβ1b activity to cardiac pathology. PLCβ1b, the alternative splice variant, PLCβ1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCβ1b, rAAV6-FLAG-PLCβ1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCβ1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCβ1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCβ1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCβ1b, but not PLCβ1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCβ1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCβ1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.
Collapse
Affiliation(s)
- David R Grubb
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Bryony Crook
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Yi Ma
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Jieting Luo
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Hong Wei Qian
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Ming Gao
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Elizabeth A Woodcock
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|
15
|
Ngoh A, McTague A, Wentzensen IM, Meyer E, Applegate C, Kossoff EH, Batista DA, Wang T, Kurian MA. Severe infantile epileptic encephalopathy due to mutations in PLCB1: expansion of the genotypic and phenotypic disease spectrum. Dev Med Child Neurol 2014; 56:1124-8. [PMID: 24684524 PMCID: PMC4230412 DOI: 10.1111/dmcn.12450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
Homozygous deletions of chromosome 20p12.3, disrupting the promoter region and first three coding exons of the phospholipase C β1 gene (PLCB1), have previously been described in two reports of early infantile epileptic encephalopathy (EIEE). Both children were born to consanguineous parents, one presented with infantile spasms, the other with migrating partial seizures of infancy. We describe an infant presenting with severe intractable epilepsy (without a specific EIEE electroclinical syndrome diagnosis) and neurodevelopmental delay associated with compound heterozygous mutations in PLCB1. A case note review and molecular genetic investigations were performed for a child, approximately 10 months of age, admitted to Johns Hopkins University Hospital for developmental delay and new-onset seizures. The patient presented at 6 months of age with developmental delay, followed by the onset of intractable, focal, and generalized seizures associated with developmental regression from 10 months of age. Presently, at 2 years of age, the child has severe motor and cognitive delays. Diagnostic microarray revealed a heterozygous 476kb deletion of 20p12.3 (encompassing PLCB1), which was also detected in the mother. The genomic breakpoints for the heterozygous deletion were determined. In order to investigate the presence of a second PLCB1 mutation, direct Sanger sequencing of the coding region and flanking intronic regions was undertaken, revealing a novel heterozygous intron 1 splice site variant (c.99+1G>A) in both the index individual and the father. Advances in molecular genetic testing have greatly improved diagnostic rates in EIEE, and this report further confirms the important role of microarray investigation in this group of disorders. PLCB1-EIEE is now reported in a number of different EIEE phenotypes and our report provides further evidence for phenotypic pleiotropy encountered in early infantile epilepsy syndromes.
Collapse
Affiliation(s)
- Adeline Ngoh
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK
- Department of Neurology, Great Ormond Street HospitalLondon, UK
| | - Amy McTague
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK
- Department of Neurology, Great Ormond Street HospitalLondon, UK
| | - Ingrid M Wentzensen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Esther Meyer
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK
| | - Carolyn Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Eric H Kossoff
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Denise A Batista
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Kennedy Krieger InstituteBaltimore, MD, USA
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Manju A Kurian
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK
- Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
16
|
García del Caño G, Montaña M, Aretxabala X, González-Burguera I, López de Jesús M, Barrondo S, Sallés J. Nuclear phospholipase C-β1 and diacylglycerol LIPASE-α in brain cortical neurons. Adv Biol Regul 2014; 54:12-23. [PMID: 24076015 DOI: 10.1016/j.jbior.2013.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Phosphoinositide (PtdIns) signaling involves the generation of lipid second messengers in response to stimuli in a receptor-mediated manner at the plasma membrane. In neuronal cells of adult brain, the standard model proposes that activation of metabotropic receptors coupled to Phospholipase C-β1 (PLC-β1) is linked to endocannabinoid signaling through the production of diacylglycerol (DAG), which could be systematically metabolized by 1,2-diacylglycerol Lipases (DAGL) to produce an increase of 2-arachidonoyl-glycerol (2-AG), the most abundant endocannabinoid in the brain. However, the existence of a nuclear PtdIns metabolism independent from that occurring elsewhere in the cell is now widely accepted, suggesting that the nucleus constitutes both a functional and a distinct compartment for PtdIns metabolism. In this review, we shall highlight the main achievements in the field of neuronal nuclear inositol lipid metabolism with particular attention to progress made linked to the 2-AG biosynthesis. Our aim has been to identify potential sites of 2-AG synthesis other than the neuronal cytoplasmic compartment by determining the subcellular localization of PLC-β1 and DAGL-α, which is much more abundant than DAGL-β in brain. Our data show that PLC-β1 and DAGL-α are detected in discrete brain regions, with a marked predominance of pyramidal morphologies of positive cortical cells, consistent with their role in the biosynthesis and release of 2-AG by pyramidal neurons to control their synaptic inputs. However, as novelty, we showed here an integrated description of the localization of PLC-β1 and DAGL-α in the neuronal nuclear compartment. We discuss our comparative analysis of the expression patterns of PLC-β1 and DAGL-α, providing some insight into the potential autocrine role of 2-AG production in the neuronal nuclear compartment that probably subserve additional roles to the recognized activation of the CB1 cannabinoid receptor.
Collapse
Affiliation(s)
- Gontzal García del Caño
- Departamento de Neurociencias, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Mario Montaña
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Xabier Aretxabala
- Departamento de Neurociencias, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Imanol González-Burguera
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Maider López de Jesús
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Sergio Barrondo
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Joan Sallés
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain.
| |
Collapse
|
17
|
Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain. Neuroscience 2012; 222:239-68. [PMID: 22735577 DOI: 10.1016/j.neuroscience.2012.06.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 11/21/2022]
Abstract
The present study describes a complete and detailed neuroanatomical distribution map of the phospholipase C beta1 (PLCβ1) isoform along the adult rat neuraxis, and defines the phenotype of cells expressing PLCβ1, along with its subcellular localization in cortical neurons as assessed by double-immunofluorescence staining and confocal laser scanning. Immunohistochemical labeling revealed a considerable morphological heterogeneity among PLCβ1-positive cells in the cortex, even though there was a marked predominance of pyramidal morphologies. As an exception to the general non-matching distribution of GFAP and PLCβ1, a high degree of co-expression was observed in radial glia-like processes of the spinal cord white matter. In the somatosensory cortex, the proportion of GABAergic neurons co-stained with PLCβ1 was similar (around 2/3) in layers I, II-III, IV and VI, and considerably lower in layer V (around 2/5). Double immunofluorescence against PLCβ1 and nuclear speckle markers SC-35 and NeuN/Fox3 in isolated nuclei from the rat cortex showed a high overlap of both markers with PLCβ1 within the nuclear matrix. In contrast, there was no apparent co-localization with markers of the nuclear envelope and lamina. Finally, to assess whether the subcellular expression pattern of PLCβ1 involved specifically one of the two splice variants of PLCβ1, we carried out Western blot experiments in cortical subcellular fractions. Notably, PLCβ1a/1b ratios were statistically higher in the cytoplasm than in the nuclear and plasma membrane fractions. These results provide a deeper knowledge of the cellular distribution of the PLCβ1 isoform in different cell subtypes of the rat brain, and of its presence in the neuronal nuclear compartment.
Collapse
|
18
|
Udawela M, Scarr E, Hannan AJ, Thomas EA, Dean B. Phospholipase C beta 1 expression in the dorsolateral prefrontal cortex from patients with schizophrenia at different stages of illness. Aust N Z J Psychiatry 2011; 45:140-7. [PMID: 21091263 DOI: 10.3109/00048674.2010.533364] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Our recent microarray study detected decreases in the expression of phospholipase C beta 1 mRNA in the dorsolateral prefrontal cortex from subjects with schizophrenia at different stages of illness. Thus we aimed to validate and extend these findings. METHOD We measured levels of mRNA and protein for phospholipase C beta 1 variant a and b using real-time PCR and western blot analysis, respectively, in the dorsolateral prefrontal cortex from subjects with schizophrenia, who had a short (< 7 years) or long (> 22 years) duration of illness. RESULTS Compared to age/sex matched controls, levels of phospholipase C beta 1 variant a and b mRNAs were decreased (-33% and -50%, respectively) in short duration schizophrenia. By contrast, only variant a mRNA was decreased (-24%) in long duration schizophrenia. There was no significant difference in the protein levels of either phospholipase C beta 1 variant in schizophrenia, irrespective of duration of illness (variant a; P = 0.84, variant b; P = 0.73). CONCLUSION Our data confirm that phospholipase C beta 1 transcript levels are decreased in the dorsolateral prefrontal cortex from subjects with schizophrenia. However, the changes in levels of mRNA do not translate into a change at the level of protein. It is possible protein expression is regulated independently of mRNA and it remains to be determined whether there is a functional consequence of this change in mRNA relating to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Madhara Udawela
- Rebecca L. Cooper Research Laboratories, Mental Health Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
19
|
Adjobo-Hermans MJW, Goedhart J, Gadella TWJ. Regulation of PLCβ1a membrane anchoring by its substrate phosphatidylinositol (4,5)-bisphosphate. J Cell Sci 2008; 121:3770-7. [DOI: 10.1242/jcs.029785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Basic knowledge as to the subcellular location and dynamics of PLCβ isozymes is scant. Here, we report on the subcellular location of GFP-PLCβ1a and the use of total internal reflection fluorescence (TIRF) microscopy to examine the dynamics of GFP-PLCβ1a at the plasma membrane upon stimulation of Gq-coupled receptors. Using this technique, we observed PLCβ1a dissociation from the plasma membrane upon addition of agonist. An increase in intracellular calcium and a decrease in PtdIns(4,5)P2 both coincided with a translocation of PLCβ1a from the plasma membrane into the cytosol. In order to differentiate between calcium and PtdIns(4,5)P2, rapamycin-induced heterodimerization of FRB and FKBP12 fused to 5-phosphatase IV was used to instantaneously convert PtdIns(4,5)P2 into PtdIns(4)P. Addition of rapamycin caused PLCβ1a to dissociate from the plasma membrane, indicating that removal of PtdIns(4,5)P2 is sufficient to cause translocation of PLCβ1a from the plasma membrane. In conclusion, PLCβ1a localization is regulated by its own substrate.
Collapse
Affiliation(s)
- Merel J. W. Adjobo-Hermans
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| | - Theodorus W. J. Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 2007; 22:585-92. [PMID: 18079738 DOI: 10.1038/sj.leu.2405058] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constitutively activated pathways contribute to apoptosis resistance in chronic lymphocytic leukemia (CLL). Little is known about the metabolism of lipids and function of lipases in CLL cells. Performing gene expression profiling including B-cell receptor (BCR) stimulation of CLL cells in comparison to healthy donor CD5+ B cells, we found significant overexpression of lipases and phospholipases in CLL cells. In addition, we observed that the recently defined prognostic factor lipoprotein lipase (LPL) is induced by stimulation of BCR in CLL cells but not in CD5+ normal B cells. CLL cellular lysates exhibited significantly higher lipase activity compared to healthy donor controls. Incubation of primary CLL cells (n=26) with the lipase inhibitor orlistat resulted in induction of apoptosis, with a half-maximal dose (IC(50)) of 2.35 microM. In healthy B cells a significantly higher mean IC(50) of 148.5 microM of orlistat was observed, while no apoptosis was induced in healthy peripheral blood mononuclear cells (PBMCs; P<0.001). Orlistat-mediated cytotoxicity was decreased by BCR stimulation. Finally, the cytotoxic effects of orlistat on primary CLL cells were enhanced by the simultaneous incubation with fludarabine (P=0.003). In summary, alterations of lipid metabolism are involved in CLL pathogenesis and might represent a novel therapeutic target in CLL.
Collapse
|
21
|
Ballester M, Sánchez A, Folch JM. Assignment of the phospholipase Cbeta1 (PLCB1) gene to porcine chromosome 17. Anim Genet 2006; 36:516-7. [PMID: 16293129 DOI: 10.1111/j.1365-2052.2005.01354.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Ballester
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | | | | |
Collapse
|
22
|
Ballester M, Molist J, Lopez-Bejar M, Sánchez A, Santaló J, Folch JM, Ibáñez E. Disruption of the mouse phospholipase C-beta1 gene in a beta-lactoglobulin transgenic line affects viability, growth, and fertility in mice. Gene 2005; 341:279-89. [PMID: 15474310 DOI: 10.1016/j.gene.2004.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 06/14/2004] [Accepted: 07/05/2004] [Indexed: 11/15/2022]
Abstract
A recessive insertional mutation was identified in one line of transgenic mice for the caprine beta-lactoglobulin (betaLG) gene. High mortality after birth, a significant reduction in postnatal growth and adult body size, changes in the morphometric features of the head, and infertility are the most prominent phenotypic traits of the mutant animals. Molecular cloning and sequencing of the transgene insertion site showed that 22 copies of the betaLG transgene are inserted in an intronic region of the phospholipase C-beta1 (PLC-beta1) gene, which plays a pivotal role in modulating different cellular functions. As a result of the insertional mutation (PLC-beta1(betaLG) mutation), a hybrid messenger RNA (mRNA) between the mouse PLC-beta1 and the goat betaLG genes is transcribed. The tissue-specific pattern of expression of this hybrid mRNA in PLC-beta1(betaLG) homozygotes is equivalent to that of the endogenous PLC-beta1 mRNA in nontransgenic animals, which is reported for the first time in this species, but expression levels are significantly reduced. Although the hybrid PLCbeta1-betaLG mRNA contains all the essential information to produce a PLCbeta1 protein that could be activated, this protein was not detected by Western blot. The PLC-beta1(betaLG) mouse model described here represents a useful tool to investigate the role of the PLC-beta1 gene in the molecular mechanisms underlying growth and fertility.
Collapse
Affiliation(s)
- Maria Ballester
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Caricasole A, Ferraro T, Iacovelli L, Barletta E, Caruso A, Melchiorri D, Terstappen GC, Nicoletti F. Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 2003; 278:37024-31. [PMID: 12857724 DOI: 10.1074/jbc.m300191200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
WNT factors represent key mediators of many processes in animal development and homeostasis and act through a receptor complex comprised of members of the Frizzled and low density lipoprotein-related receptors (LRP). In mammals, 19 genes encoding Wingless and Int-related factor (WNTs), 10 encoding Frizzled, and 2 encoding LRP proteins have been identified, but little is known of the identities of individual Frizzled-LRP combinations mediating the effects of specific WNT factors. Additionally, several secreted modulators of WNT signaling have been identified, including at least three members of the Dickkopf family. WNT7A is a WNT family member expressed in the vertebrate central nervous system capable of modulating aspects of neuronal plasticity. Gene knock-out models in the mouse have revealed that WNT7A plays a role in cerebellar maturation, although its function in the development of distal limb structures and of the reproductive tract have been more intensely studied. To identify a receptor complex for this WNT family member, we have analyzed the response of the rat pheochromocytoma cell line PC12 to WNT7A. We find that PC12 cells are capable of responding to WNT7A as measured by increased beta-catenin stability and activation of a T-cell factor-based luciferase reporter construct and that these cells express three members of the Frizzled family (Frizzled-2, -5, and -7) and LRP6. Our functional analysis indicates that WNT7A can specifically act via a Frizzled-5.LRP6 receptor complex in PC12 cells and that this activity can be antagonized by Dickkopf-1 and Dickkopf-3.
Collapse
Affiliation(s)
- Andrea Caricasole
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Copani A, Sortino MA, Caricasole A, Chiechio S, Chisari M, Battaglia G, Giuffrida-Stella AM, Vancheri C, Nicoletti F. Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 2002; 16:2006-8. [PMID: 12397084 DOI: 10.1096/fj.02-0422fje] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ectopic reentrance into the cell cycle with ensuing DNA replication is required for neuronal apoptosis induced by beta-amyloid. Here, we investigate the repertoire of DNA polymerases expressed in beta-amyloid-treated neurons, and their specific role in DNA synthesis and apoptosis. We show that exposure of cultured cortical neurons to beta-amyloid induces the expression of DNA polymerase-beta, proliferating cell nuclear antigen, and the p49 and p58 subunits of DNA primase. Induction requires the activity of cyclin-dependent kinases. The knockdown of the p49 primase subunit prevents beta-amyloid-induced neuronal DNA synthesis and apoptosis. Similar effects are observed by knocking down DNA polymerase-beta or by using dideoxycytidine, a preferential inhibitor of this enzyme. Thus, the reparative enzyme DNA polymerase-beta unexpectedly mediates a large component of de novo DNA synthesis and apoptotic death in neurons exposed to beta-amyloid. These data indicate that DNA polymerases become death signals when erratically expressed by differentiated neurons.
Collapse
Affiliation(s)
- Agata Copani
- Department of Pharmaceutical Sciences, University of Catania, Catania, 95125, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peruzzi D, Aluigi M, Manzoli L, Billi AM, Di Giorgio FP, Morleo M, Martelli AM, Cocco L. Molecular characterization of the human PLC beta1 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:46-54. [PMID: 12213492 DOI: 10.1016/s1388-1981(02)00269-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inositide-specific phospholipase C (PLC) signaling constitutes a central intermediate in a number of cellular functions among which the control of cell growth raises a particular interest. Indeed, we have previously shown that nuclear phospholipase C beta1 (PLC beta1) is central for the regulation of mitogen-induced cell growth. We have also assigned by fluorescence in situ hybridization (FISH) analysis the PLC beta1 to human chromosome 20p12. In this study, we have carried out a detailed analysis of the human gene, showing the existence of alternative splicing, which gives rise, besides the two forms (1a and 1b) already shown in rodents, to a new 600 bp smaller form coding for a 110 kDa protein. We have also identified a new exon at the 5', showing no homology with the rodent sequence. Here we provide the complete determination of the exon/intron structure of the gene spanning 250 kb of DNA. We found that the exons are quite small, ranging from 49 to 222 bp, while the introns vary between 108 bp and 34,400 bp. The availability of the understanding of the genome organization of this inositide-specific PLC, which represents a key step of the cell cycle related signaling, could actually pave the way for further genetic analysis of p12 region of human chromosome 20 in diseases involving alterations of the control of cell growth such as malignancies.
Collapse
Affiliation(s)
- Daniela Peruzzi
- Department of Anatomical Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio, 48, I-40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Caricasole A, Bruno V, Cappuccio I, Melchiorri D, Copani A, Nicoletti F. A novel rat gene encoding a Humanin-like peptide endowed with broad neuroprotective activity. FASEB J 2002; 16:1331-3. [PMID: 12154011 DOI: 10.1096/fj.02-0018fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the identification of a novel rat cDNA encoding a peptide homologous to Humanin, a secreted peptide that specifically protects against neuronal cell death induced by beta-amyloid peptide (Ab) or by mutations causing early-onset familial Alzheimer's disease. The rat gene, which we termed Rattin, encodes a peptide of 38 residues (15 residues longer than Humanin) showing 73% identity in the conserved region to Humanin. The expression profile of the 1.6-kb Rattin transcript is comparable to that displayed by Humanin, with significant expression levels in the central nervous system and in cardiac and skeletal muscle. The full-length Rattin peptide and its 1-25 fragment were equally effective as Humanin in protecting rat- and mouse-cultured cortical neurons against Ab-induced toxicity. However, Rattin was much more effective than Humanin against excitotoxic neuronal death induced by a toxic pulse with NMDA. Rattin and its short fragment were protective against excitotoxic death not only when coapplied with NMDA, but also when added to the cultures after the NMDA pulse. Neither Rattin not Humanin could affect neuronal apoptosis by trophic deprivation induced in cultured cerebellar granule cells depleted of extracellular potassium. This suggests that Rattin is the prototype of a novel class of peptides, phylogenetically related to Humanin, endowed with protective activity not only against Ab but also toward excitotoxic neuronal death. The identification of Rattin may be instrumental for the development of novel pharmacological strategies aimed at enhancing the production of endogenous Humanin-like peptides.
Collapse
Affiliation(s)
- Andrea Caricasole
- Institute of Human Physiology and Pharmacology Vittorio Erspamer, Department of Human Physiology and Pharmacology, University of Rome La Sapienza, 00185, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Matrisciano F, Storto M, Ngomba RT, Cappuccio I, Caricasole A, Scaccianoce S, Riozzi B, Melchiorri D, Nicoletti F. Imipramine treatment up-regulates the expression and function of mGlu2/3 metabotropic glutamate receptors in the rat hippocampus. Neuropharmacology 2002; 42:1008-15. [PMID: 12128001 DOI: 10.1016/s0028-3908(02)00057-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the effect of a chronic imipramine treatment (10 mg/kg, i.p., once daily for 21 days) on the expression and function of metabotropic glutamate (mGlu) receptors in discrete regions of the rat brain. Chronic imipiramine treatment up-regulated the expression of mGlu2/3 receptor proteins in the hippocampus, nucleus accumbens, cerebral cortex and corpus striatum. Expression of mGlu1a receptor protein was increased exclusively in the hippocampus, whereas no changes in the expression of mGlu4 and mGlu5 receptors or Homer-1a protein were detected. Using hippocampal slices, we examined the stimulation of polyphosphoinositide (PI) hydrolysis induced by mGlu receptor agonists in control and imipramine-treated rats. Imipramine treatment amplified the PI response to the non subtype-selective mGlu receptor agonist, 1S,3R-aminocyclopentane-1,3-dicarboxylated (1S,3R-ACPD) in both hippocampal and cortical slices, but failed to affect the response to the selective mGlu1/5 receptor agonist, S-3,5-dihydroxyphenylglycine (DHPG). Amplification was restored when DHPG was combined with the selective mGlu2/3 receptor agonist, LY379268. In addition, 1S,3R-ACPD-stimulated PI hydrolysis was no longer enhanced in imipramine-treated rats when the mGlu2/3 component of the PI response was abrogated by the antagonist, LY341495. In contrast, the ability of LY379268 to inhibit forskolin-stimulated cAMP formation was reduced in hippocampal slices of rats chronically treated with imipramine. Taken together, these results suggest that neuroadaptive changes in the expression and function of mGlu2/3 receptors occur in response to chronic antidepressants.
Collapse
Affiliation(s)
- F Matrisciano
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bortul R, Aluigi M, Tazzari PL, Tabellini G, Baldini G, Bareggi R, Narducci P, Martelli AM. Phosphoinositide-specific phospholipase Cbeta1 expression is not linked to nerve growth factor-induced differentiation, cell survival or cell cycle control in PC12 rat pheocromocytoma cells. J Cell Biochem 2002; 84:56-67. [PMID: 11746516 DOI: 10.1002/jcb.1266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent reports have highlighted that phosphoinositide-specific phospholipase Cbeta1 expression is linked to neuronal differentiation in different experimental models. We sought to determine whether or not this is also true for nerve growth factor (NGF)-induced neuronal differentiation of rat PC12 cells. However, we did not find differences in the expression of both the forms of phosphoinositide-specific phospholipase Cbeta1 (a and b) during sympathetic differentiation of these cells. Also, PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 were not more susceptible to the differentiating effect of NGF. Furthermore, since it is well established that phosphoinositide-specific phospholipase Cbeta1 affects cell proliferation, we investigated whether or not PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 showed differences in survival to serum deprivation and cell cycle, when compared to wild type cells. Nevertheless, we did not find any differences in these parameters between wild type cells and the overexpressing clones. Interestingly, in PC12 cells the overexpressed phosphoinositide-specific phospholipase Cbeta1 did not localize to the nucleus, but by immunofluorescence analysis, was detected in the cytoplasm. Therefore, our findings may represent another important clue to the fact that only when it is located within the nucleus phosphoinositide-specific phospholipase Cbeta1 is able to influence cell proliferation.
Collapse
Affiliation(s)
- R Bortul
- Dipartimento di Morfologia Umana Normale, Università di Trieste, via Manzoni 16, 34138 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Caricasole A, Bettini E, Sala C, Roncarati R, Kobayashi N, Caldara F, Goto K, Terstappen GC. Molecular cloning and characterization of the human diacylglycerol kinase beta (DGKbeta) gene: alternative splicing generates DGKbeta isotypes with different properties. J Biol Chem 2002; 277:4790-6. [PMID: 11719522 DOI: 10.1074/jbc.m110249200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol kinases are key modulators of levels of diacylglycerol, a second messenger involved in a variety of cellular responses to extracellular stimuli. A number of diacylglycerol kinases encoded by separate genes are present in mammalian genomes. We have cloned cDNAs encoding several isoforms of the human homologue of the rat diacylglycerol kinase beta gene and characterized two such isoforms that differ at their carboxyl terminus through alternative splicing and the usage of different polyadenylation signals. Quantitative analysis of gene expression in a panel of human tissue cDNAs revealed that transcripts corresponding to both isoforms are co-expressed in central nervous system tissues and in the uterus, with one variant being expressed at relatively higher levels. As green fluorescent protein fusions, the two isoforms displayed localization to different subcellular compartments, with one variant being associated with the plasma membrane, while the other isoform was predominantly localized within the cytoplasm. Differences were also observed in their subcellular localization in response to phorbol ester stimulation. Enzymatic assays demonstrated that the two isoforms display comparable diacylglycerol kinase activities. Therefore, the human diacylglycerol kinase beta gene can generate several enzyme isoforms, which can display different expression levels and subcellular localization but similar enzymatic activities in vitro.
Collapse
Affiliation(s)
- Andrea Caricasole
- GlaxoSmithKline Systems Research and Department of Biology, Via Fleming 4, 37135 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|