1
|
Zhang X, Lv K, Xie H, Gan Y, Yu W, Gong Q. Cloning, expression and characterization of novel hyaluronan lyases Vhylzx1 and Vhylzx2 from Vibrio sp. ZG1. Carbohydr Res 2024; 543:109221. [PMID: 39067181 DOI: 10.1016/j.carres.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Hyaluronidases are a class of enzymes that can degrade hyaluronic acid and have a wide range of applications in the medical field. In this study, the marine bacterium Vibrio sp. ZG1, which can degrade HA, was isolated, leading to the discovery of two novel hyaluronan lyases, Vhylzx1 and Vhylzx2, through genome sequencing and bioinformatic analysis. These lyases belong to the polysaccharide lyase-8 family. Vhylzx1 and Vhylzx2 specifically degrade HA, with highest activity at 35 °C, pH 5.7 and 50 °C, pH 7.1. Vhylzx1 and Vhylzx2 are endo-type enzymes that can fully degrade HA into unsaturated disaccharides. Sequence homology assessment and site-directed mutagenesis revealed that the catalytic residues of Vhylzx1 are Asn231, His281, and Tyr290, and that the catalytic residues of Vhylzx2 are Asn227, His277, and Tyr286. Moreover, this study used consensus sequences to enhance the specific activity of Vhylzx2 mutants. Notably, the mutants V564I, N742D, L619F, and D658G increases the specific activity by 2.4, 2.2, 1.3, and 1.2-fold. These characteristics are useful for further basic research and applications, and have a promising application in the preparation of biologically active hyaluronic acid oligosaccharides.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Hongjie Xie
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
2
|
Johnson AO, Shipman BM, Hunt BC, Learman BS, Brauer AL, Zhou SP, Hageman Blair R, De Nisco NJ, Armbruster CE. Function and contribution of two putative Enterococcus faecalis glycosaminoglycan degrading enzymes to bacteremia and catheter-associated urinary tract infection. Infect Immun 2024; 92:e0019924. [PMID: 38842305 PMCID: PMC11238560 DOI: 10.1128/iai.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.
Collapse
Affiliation(s)
- Alexandra O. Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Braden M. Shipman
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Serena P. Zhou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Johnson AO, Shipman BM, Hunt BC, Learman BS, Brauer AL, Zhou SP, Blair RH, De Nisco NJ, Armbruster CE. Function and contribution of two putative Enterococcus faecalis glycosaminoglycan degrading enzymes to bacteremia and catheter-associated urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593205. [PMID: 38766094 PMCID: PMC11100720 DOI: 10.1101/2024.05.08.593205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enterococcus faecalis is a common cause of healthcare acquired bloodstream infections and catheter associated urinary tract infections (CAUTI) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, Δ hylA exhibited defects in bladder colonization and dissemination to the bloodstream, and Δ hylB exhibited a defect in kidney colonization. Furthermore, a Δ hylA Δ hylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both HA and CS in vitro while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during stationary phase and also contributed to dampening of LPS-mediated NF-Bκ activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.
Collapse
|
4
|
Lentini G, De Gaetano GV, Famà A, Galbo R, Coppolino F, Mancuso G, Teti G, Beninati C. Neutrophils discriminate live from dead bacteria by integrating signals initiated by Fprs and TLRs. EMBO J 2022; 41:e109386. [PMID: 35112724 PMCID: PMC8886525 DOI: 10.15252/embj.2021109386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms whereby neutrophils respond differentially to live and dead organisms are unknown. We show here that neutrophils produce 5- to 30-fold higher levels of the Cxcl2 chemokine in response to live bacteria, compared with killed bacteria or isolated bacterial components, despite producing similar levels of Cxcl1 or pro-inflammatory cytokines. Secretion of high levels of Cxcl2, which potently activates neutrophils by an autocrine mechanism, requires three signals. The first two signals are provided by two different sets of signal peptides released by live bacteria, which selectively activate formylated peptide receptor 1 (Fpr1) and Fpr2, respectively. Signal 3 originates from Toll-like receptor activation by microbial components present in both live and killed bacteria. Mechanistically, these signaling pathways converge at the level of the p38 MAP kinase, leading to activation of the AP-1 transcription factor and to Cxcl2 induction. Collectively, our data demonstrate that the simultaneous presence of agonists for Fpr1, Fpr2, and Toll-like receptors represents a unique signature associated with viable bacteria, which is sensed by neutrophils and induces Cxcl2-dependent autocrine cell activation.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | | | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical SciencesUniversity of MessinaMessinaItaly
| | - Francesco Coppolino
- Department of BiomedicalDental, Morphological and Functional Imaging SciencesUniversity of MessinaMessinaItaly
| | | | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly,Scylla Biotech SrlMessinaItaly
| |
Collapse
|
5
|
Wang Z, Sun J, Li Y, Song G, Su H, Yu W, Gong Q. Cloning, expression, and characterization of a glycosaminoglycan lyase from Vibrio sp. H240. Enzyme Microb Technol 2021; 154:109952. [PMID: 34871823 DOI: 10.1016/j.enzmictec.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yunlu Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hai Su
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Zhang Z, Li Y, Hu M, Yu A. Genome reanalysis to decipher resistome, virulome, and attenuated characters of attenuated Streptococcus agalactiae strain HZAUSC001. Microb Pathog 2020; 147:104416. [PMID: 32745666 DOI: 10.1016/j.micpath.2020.104416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Streptococcus agalactiae is a serious pathogen causing severe anthropozoonosis in a broad range of hosts, from aquatic animals to mammals, including humans. S. agalactiae HZAUSC001 was isolated from a moribund tilapia fish exhibiting classic clinical symptoms of streptococcosis in Zhanjiang, Guangdong, China. And it was identified as the etiological factor resulting in fish disease, but was notable because it exhibited attenuated virulence. Here, the genome of S. agalactiae HZAUSC001 was re-analyzed; we assessed the resistome and virulome and deciphered the attenuated characters of HZAUSC001. The S. agalactiae HZAUSC001 genome was assembled into one chromosome with a GC-content of 35.37% and 1972 predicted open reading frames (ORFs). Phylogenetic analysis indicated that it is evolutionarily similar to piscine GBS strains GD201008-001 and ZQ0910. After re-analyzing the published genomic sequence of HZAUSC001, we identified 38 virulence factor genes and one antibiotic-resistance gene. Note that three previously noted virulence genes, bca (C protein alpha-antigen), cpbA (choline-binding protein A) and esp (enterococcal surface protein), were absent in the virulence-attenuated strain S. agalactiae HZAUSC001 but present in the highly virulent strain S. agalactiae GD201008-001. We speculate that the absence of these three virulence genes may be associated with the attenuated traits of the HZAUSC001 strain. Collectively, our study supports that HZAUSC001 may be an excellent candidate for development of an attenuated vaccine, and our results contribute to further understanding of GBS epidemiology and surveillance targets.
Collapse
Affiliation(s)
- Ze Zhang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Yuhui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minqiang Hu
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Angen Yu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
7
|
Cools P, Melin P. Group B Streptococcus and perinatal mortality. Res Microbiol 2017; 168:793-801. [PMID: 28435137 DOI: 10.1016/j.resmic.2017.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
The World Health Organization estimates that every year, one million neonatal deaths occur because of neonatal infection. Furthermore, an equal number of stillbirths are thought to be caused by infections. Here we discuss the role of Streptococcus agalactiae (group B Streptococcus, GBS) in neonatal disease and stillbirth.
Collapse
Affiliation(s)
- Piet Cools
- Laboratory Bacteriology Research, Department of Microbiology, Immunology and Clinical Chemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Pierrette Melin
- Clinical Microbiology, National Reference Centre for Streptococcus agalactiae, University Hospital of Liège, Faculty of Medicine, Liege University, Liège, Belgium
| |
Collapse
|
8
|
MacDonald LC, Berger BW. A polysaccharide lyase from Stenotrophomonas maltophilia with a unique, pH-regulated substrate specificity. J Biol Chem 2013; 289:312-25. [PMID: 24257754 DOI: 10.1074/jbc.m113.489195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-D-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-D-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity.
Collapse
|
9
|
Nakamichi Y, Maruyama Y, Mikami B, Hashimoto W, Murata K. Structural determinants in streptococcal unsaturated glucuronyl hydrolase for recognition of glycosaminoglycan sulfate groups. J Biol Chem 2011; 286:6262-71. [PMID: 21147778 PMCID: PMC3057837 DOI: 10.1074/jbc.m110.182618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/23/2010] [Indexed: 11/06/2022] Open
Abstract
Pathogenic Streptococcus agalactiae produces polysaccharide lyases and unsaturated glucuronyl hydrolase (UGL), which are prerequisite for complete degradation of mammalian extracellular matrices, including glycosaminoglycans such as chondroitin and hyaluronan. Unlike the Bacillus enzyme, streptococcal UGLs prefer sulfated glycosaminoglycans. Here, we show the loop flexibility for substrate binding and structural determinants for recognition of glycosaminoglycan sulfate groups in S. agalactiae UGL (SagUGL). UGL also degraded unsaturated heparin disaccharides; this indicates that the enzyme released unsaturated iduronic and glucuronic acids from substrates. We determined the crystal structures of SagUGL wild-type enzyme and both substrate-free and substrate-bound D175N mutants by x-ray crystallography and noted that the loop over the active cleft exhibits flexible motion for substrate binding. Several residues in the active cleft bind to the substrate, unsaturated chondroitin disaccharide with a sulfate group at the C-6 position of GalNAc residue. The sulfate group is hydrogen-bonded to Ser-365 and Ser-368 and close to Lys-370. As compared with wild-type enzyme, S365H, S368G, and K370I mutants exhibited higher Michaelis constants toward the substrate. The conversion of SagUGL to Bacillus sp. GL1 UGL-like enzyme via site-directed mutagenesis demonstrated that Ser-365 and Lys-370 are essential for direct binding and for electrostatic interaction, respectively, for recognition of the sulfate group by SagUGL. Molecular conversion was also achieved in SagUGL Arg-236 with an affinity for the sulfate group at the C-4 position of the GalNAc residue. These residues binding to sulfate groups are frequently conserved in pathogenic bacterial UGLs, suggesting that the motif "R-//-SXX(S)XK" (where the hyphen and slash marks in the motif indicate the presence of over 100 residues in the enzyme and parentheses indicate that Ser-368 makes little contribution to enzyme activity) is crucial for degradation of sulfated glycosaminoglycans.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- From the Laboratories of Basic and Applied Molecular Biotechnology and
| | - Yukie Maruyama
- From the Laboratories of Basic and Applied Molecular Biotechnology and
| | - Bunzo Mikami
- Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- From the Laboratories of Basic and Applied Molecular Biotechnology and
| | - Kousaku Murata
- From the Laboratories of Basic and Applied Molecular Biotechnology and
| |
Collapse
|
10
|
Maruyama Y, Nakamichi Y, Itoh T, Mikami B, Hashimoto W, Murata K. Substrate specificity of streptococcal unsaturated glucuronyl hydrolases for sulfated glycosaminoglycan. J Biol Chem 2009; 284:18059-69. [PMID: 19416976 PMCID: PMC2709336 DOI: 10.1074/jbc.m109.005660] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/08/2009] [Indexed: 11/06/2022] Open
Abstract
Unsaturated glucuronyl hydrolase (UGL) categorized into the glycoside hydrolase family 88 catalyzes the hydrolytic release of an unsaturated glucuronic acid from glycosaminoglycan disaccharides, which are produced from mammalian extracellular matrices through the beta-elimination reaction of polysaccharide lyases. Here, we show enzyme characteristics of pathogenic streptococcal UGLs and structural determinants for the enzyme substrate specificity. The putative genes for UGL and phosphotransferase system for amino sugar, a component of glycosaminoglycans, are assembled into a cluster in the genome of pyogenic and hemolytic streptococci such as Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes, which produce extracellular hyaluronate lyase as a virulent factor. The UGLs of these three streptococci were overexpressed in Escherichia coli cells, purified, and characterized. Streptococcal UGLs degraded unsaturated hyaluronate and chondroitin disaccharides most efficiently at approximately pH 5.5 and 37 degrees C. Distinct from Bacillus sp. GL1 UGL, streptococcal UGLs preferred sulfated substrates. DNA microarray and Western blotting indicated that the enzyme was constitutively expressed in S. agalactiae cells, although the expression level increased in the presence of glycosaminoglycan. The crystal structure of S. agalactiae UGL (SagUGL) was determined at 1.75 A resolution by x-ray crystallography. SagUGL adopts alpha(6)/alpha(6)-barrel structure as a basic scaffold similar to Bacillus UGL, but the arrangement of amino acid residues in the active site differs between the two. SagUGL Arg-236 was found to be one of the residues involved in its activity for the sulfated substrate through structural comparison and site-directed mutagenesis. This is the first report on the structure and function of streptococcal UGLs.
Collapse
Affiliation(s)
- Yukie Maruyama
- From the Laboratory of Basic and Applied Molecular Biotechnology, and
| | - Yusuke Nakamichi
- From the Laboratory of Basic and Applied Molecular Biotechnology, and
| | - Takafumi Itoh
- From the Laboratory of Basic and Applied Molecular Biotechnology, and
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, and
| | - Kousaku Murata
- From the Laboratory of Basic and Applied Molecular Biotechnology, and
| |
Collapse
|
11
|
Abstract
Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-91304, USA.
| |
Collapse
|
12
|
Akhtar MS, Bhakuni V. Role of ionic interactions and linker in the domain interaction and modulation of functional activity of hyaluronate lyases. Biochem Biophys Res Commun 2007; 353:286-92. [PMID: 17188648 DOI: 10.1016/j.bbrc.2006.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/02/2006] [Indexed: 11/26/2022]
Abstract
Hyaluronate lyases from Streptococcus pneumoniae (SpnHL) and Streptococcus agalactiae (SagHL) are composed of four domains; N-terminal domain, spacer domain, alpha-domain and C-terminal domain, which are connected through peptide linkers. We have earlier shown that the recombinant alpha- and C-terminal domains of SpnHL/SagHL interact with each other even in absence of the linker and form a functional complex with enhanced enzymatic activity. Here, we looked into the role of ionic interactions in the enzyme stability and also the role of C-terminal domain and linker in the functional regulation. Domain swapping studies showed that the C-terminal domain does not bind directly to the substrate; instead the domain contributes to the interaction with the polymeric hyaluronan for catalysis. Furthermore, the substrate specificity exchanges with the size of catalytic cleft. The role of linker connecting alpha-domain to C-terminal domain was found to hold the C-terminal domain in a conformation suitable for achieving maximum activity.
Collapse
Affiliation(s)
- Md Sohail Akhtar
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India
| | | |
Collapse
|
13
|
Akhtar MS, Krishnan MY, Bhakuni V. Insights into the Mechanism of Action of Hyaluronate Lyase. J Biol Chem 2006; 281:28336-44. [PMID: 16854993 DOI: 10.1074/jbc.m601165200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hyaluronate lyases (HLs) cleave hyaluronan and certain other chondroitin/chondroitin sulfates. Although native HL from Streptococcus agalactiae is composed of four domains, it finally stabilizes after autocatalytic conversion as a 92-kDa enzyme composed of the N-terminal spacer, middle alpha-, and C-terminal domains. These three domains are independent folding/unfolding units of the enzyme. Comparative structural and functional studies using the enzyme and its various fragments/domains suggest a relatively insignificant role of the N-terminal spacer domain in the 92-kDa enzyme. Functional studies demonstrate that the alpha-domain is the catalytic domain. However, independently it has a maximum of only about 10% of the activity of the 92-kDa enzyme, whereas its complex with the C-terminal domain in vitro shows a significant enhancement (about 6-fold) in the activity. It has been previously proposed that the C-terminal domain modulates the enzymatic activity of HLs. In addition, one of the possible roles for calcium ions was suggested to induce conformational changes in the enzyme loops, making HL more suitable for catalysis. However, we observed that calcium ions do not interact with the enzyme, and its role actually is in modulating the hyaluronan conformation and not in the functional regulation of enzyme.
Collapse
|
14
|
Hertel W, Peschel G, Ozegowski JH, Müller PJ. Inhibitory Effects of Triterpenes and Flavonoids on the Enzymatic Activity of Hyaluronic Acid-Splitting Enzymes. Arch Pharm (Weinheim) 2006; 339:313-8. [PMID: 16718670 DOI: 10.1002/ardp.200500216] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of triterpenes and flavonoids on the activity of several hyaluronic acid-splitting enzymes was investigated. Studies showed that the inhibitory effect of the triterpenes glycyrrhizin and glycyrrhetinic acid is dependent on the source of hyaluronate lyase. Hyaluronate lyase from Streptococcus agalactiae (Hyal B) and recombinant hyaluronate lyase from Streptococcus agalactiae (rHyal B) demonstrated strongest inhibition. In contrast, hyaluronate lyases from Streptomyces hyalurolyticus (Hyal S), Streptococcus equisimilis (Hyal C) and hyaluronidase from bovine testis (Dase) showed only reduced inhibition action. A non-competitive dead end inhibition with Ki=3.1+/-1.8x10(-6) mol/mL and Kii=6.7+/-2.4x10(-6) mol/mL was found for glycyrrhizin on recombinant hyaluronate lyase from Streptococcus agalactiae. The inhibitory effect of flavonoids on Hyal B, rHyal B and Dase was determined depending on the number of hydroxyl groups and side chain substituents in the molecule. Flavonoids with many hydroxyl groups inhibited hyaluronate lyase stronger than those with only a few. Native hyaluronate lyase (Hyal B) showed a more extensive inhibition than the recombinant protein (rHyal B). Accordingly, the inhibition by triterpenes and flavonoids is presumably specific for each hyaluronic acid (HA)-splitting enzyme.
Collapse
Affiliation(s)
- Waltraud Hertel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | | | | |
Collapse
|
15
|
Tkacikova E, Mikula I, Dmitriev A. Molecular epidemiology of group B streptococcal infections. Folia Microbiol (Praha) 2004; 49:387-97. [PMID: 15530003 DOI: 10.1007/bf03354665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Streptococcus agalactiae (GBS) is a causative agent of sepsis and meningitis in newborns and diseases in pregnant women and nonpregnant adults. Various approaches, including both nongenetic and genetic techniques, are currently used for the study of epidemiology of GBS infections. In the present paper the different methods of molecular epidemiology of GBS infections are reviewed, and several novel approaches are introduced. The advantages and disadvantages of molecular methods are discussed and compared with traditional serotyping technique. The possible use of the molecular approaches for identification of different genetic lineages in GBS as well as for identification and control of the epidemiologically actual clones is discussed.
Collapse
Affiliation(s)
- E Tkacikova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine, 041 81 Kosice, Slovakia
| | | | | |
Collapse
|
16
|
Kühn AV, Ozegowski JH, Peschel G, Neubert RHH. Complementary exploration of the action pattern of hyaluronate lyase from Streptococcus agalactiae using capillary electrophoresis, gel-permeation chromatography and viscosimetric measurements. Carbohydr Res 2004; 339:2541-7. [PMID: 15476715 DOI: 10.1016/j.carres.2004.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 08/16/2004] [Indexed: 11/19/2022]
Abstract
Hyaluronic acid (HA) was treated with hyaluronate lyase (GBS HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae strain 4755), and the products have been analyzed by capillary electrophoresis (CE-UV and online CE-ESIMS), gel-permeation chromatography (GPC) and viscosimetric measurements. The resulting electropherograms showed that the enzyme produced a mixture of oligosaccharides with a 4,5-unsaturated uronic acid nonreducing terminus. More exhaustive degradation of HA led to increasing amounts of di-, tetra-, hexa-, octa- and decasaccharides. Using CE, linear relationships were found between peak area of the observed oligosaccharides and reaction time. Determination of viscosity at different stages of reaction yielded an initial rapid decrease following Michaelis-Menten theory. A reaction time-dependent change in the elution position of the HA peak due to partial digestion of HA with GBS hyaluronate lyase has been observed by GPC. These results indicated that the HA lyase under investigation is an eliminase that acts in a nonprocessive endolytic manner, as at all stages of digestion a mixture of oligosaccharides of different size were found. For GBS HA lyase from Streptococcus agalactiae strain 3502, previously published findings reported an action pattern that involves an initial random endolytic cleavage followed by rapid exolytic and processive release of unsaturated disaccharides. Our results suggest that differences between the two enzymes from distinct S. agalactiae strains (GBS strains 4755 and 3502) have to be considered.
Collapse
Affiliation(s)
- Andrea V Kühn
- Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Street 4, 06120 Halle (S.), Germany
| | | | | | | |
Collapse
|
17
|
Miyake O, Kobayashi E, Nankai H, Hashimoto W, Mikami B, Murata K. Posttranslational processing of polysaccharide lyase: maturation route for gellan lyase in Bacillus sp. GL1. Arch Biochem Biophys 2004; 422:211-20. [PMID: 14759609 DOI: 10.1016/j.abb.2003.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 12/13/2003] [Indexed: 10/26/2022]
Abstract
Cells of Bacillus sp. GL1 extracellularly secrete a gellan lyase with a molecular mass of 130 kDa responsible for the depolymerization of a heteropolysaccharide (gellan), although the gene is capable of encoding a huge protein with a molecular mass of 263 kDa. A maturation route for gellan lyase in the bacterium was determined using anti-gellan lyase antibodies. The fluid of the bacterial exponentially growing cultures on gellan contained two proteins with molecular masses of 260 and 130 kDa, both of which reacted with the antibodies. The 260 kDa protein was purified from the cultured fluid and characterized. The protein exhibited gellan lyase activity and showed similar enzyme properties, such as optimal pH and temperature, thermal stability, and substrate specificity, to those of the 130 kDa gellan lyase. The N-terminal amino acid sequences of the 260 and 130 kDa enzymes were found to be identical. Determination of the C-terminal amino acid of the 130 kDa enzyme indicated that the 260 kDa enzyme is cleaved between the 1205Gly and 1206Leu residues to yield the mature form (130 kDa) of the gellan lyase. Therefore, the mature enzyme consists of 1170 amino acids (36Ala-1205Gly) with a molecular weight of 125,345, which is in good agreement with that calculated from SDS-PAGE analysis. Judging from these results, gellan lyase is first synthesized as a preproform (263 kDa) and then secreted as a precursor (260 kDa) into the medium through cleavage of the signal peptide. Finally, the precursor is post-translationally processed into the N-terminal half domain of 130 kDa as the mature form, the function of C-terminal half domain being unclear.
Collapse
Affiliation(s)
- Osamu Miyake
- Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Puopolo KM, Madoff LC. Upstream short sequence repeats regulate expression of the alpha C protein of group B Streptococcus. Mol Microbiol 2004; 50:977-91. [PMID: 14617155 DOI: 10.1046/j.1365-2958.2003.03745.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group B streptococci (GBS) express a family of repeat-containing surface proteins, the prototype of which is the alpha C protein expressed in type Ia/C strain A909. We have isolated a series of mutant GBS strains by mouse-passage of A909 that do not produce normal levels of the alpha C protein. Polymerase chain reaction amplification and sequencing of the gene encoding the alpha C protein, bca, from four mutant strains revealed the presence of a full-length gene in each strain. However, Northern and RT-PCR analysis revealed greatly reduced levels of RNA encoding the alpha C protein. Sequence analysis of the mutant genes found the coding region unchanged from the wild-type gene in each case, but variation was observed in a specific locus located 110 bp upstream of the start codon. The presence of a 5-nucleotide repeat, AGATT, and a string of adenine residues mark this locus. Both deletion and expansion of the AGATT motif were associated with the complete null phenotype. Deletions in the string of adenine residues were associated with both a decreased-production phenotype and a complete null phenotype. Cloning of this upstream region into a green-fluorescent protein (GFP) reporter system in GBS demonstrated promoter activity that was completely abolished by changes in the pentanucleotide repeat or adenine string. Primer extension studies of the wild-type strain revealed one dominant and two minor transcription start sites. Primer extension studies of the null and low-expression mutant strains revealed that the dominant transcript is completely absent in each mutant. The short sequence repeat locus is located at position - 55 to - 78 relative to the start site of the dominant transcript. We have demonstrated in vitro phase variation in expression of the alpha C protein associated with variation at the pentanucleotide repeat locus. We conclude that this short sequence repeat motif is located upstream of the dominant promoter for the alpha C protein and represents a regulatory site for alpha C protein expression. This is the first evidence of transcriptional regulation by short-sequence repeats in a Gram-positive organism.
Collapse
Affiliation(s)
- Karen M Puopolo
- Department of Newborn Medicine, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
19
|
Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J Biosci Bioeng 2004; 98:399-413. [PMID: 16233728 DOI: 10.1016/s1389-1723(05)00304-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
Cells of Sphingomonas sp. A1 directly incorporate a macromolecule, alginate, into the cytoplasm through a biosystem, super-channel, consisting of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. The alginate is finally depolymerized into constituent monosaccharides by polysaccharide lyases present in the cytoplasm. The fundamental frame of the biosystem for alginate transport, and the functions of the pit, binding proteins, and ABC transporter have already been reviewed together with those of alginate-depolymerization processes [Hashimoto et al., J. Biosci. Bioeng., 87, 123-136 (1999)]. In this review, we have attempted to demonstrate the three-dimensional structure and evolution features of the super-channel, and alginate-depolymerization processes by using information obtained mainly through genomics, proteomics, and X-ray crystallography.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Rigden DJ, Jedrzejas MJ. Genome-based identification of a carbohydrate binding module in Streptococcus pneumoniae hyaluronate lyase. Proteins 2003; 52:203-11. [PMID: 12833544 DOI: 10.1002/prot.10405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hyaluronate lyase enzymes degrade hyaluronan, the main polysaccharide component of the connective tissues of higher animals, thereby destroying the normal connective tissue structure and exposing the host tissue cells to various endo- and exogenous factors, including bacterial toxins. The 3D crystal structures of functionally active but truncated Streptococcus pneumoniae and S. agalactiae hyaluronate lyases, along with their substrate and product complexes, have been determined. The enzymes are multidomain proteins with helical barrel-like catalytic domains and two types of beta-sheet domains. Here, through genome-based bioinformatics studies we identify an additional beta-sheet domain present in the most N-terminal part of streptococcal hyaluronate lyases. Fold recognition and modeling studies show that the domain is structurally similar to carbohydrate binding modules and is therefore likely to be directly involved in hyaluronan binding. Likely carbohydrate binding residues were identified and electrostatic complementarity of the hyaluronate lyase domain with hyaluronan demonstrated. The newly identified presumed hyaluronan binding domain likely improves catalytic efficiency by colocalizing the enzyme and its substrate. Other possible functions are discussed. Two contacting aromatic residues are conserved in the hydrophobic core of the hyaluronate lyase domain and in many, perhaps all, families in the superfamily in which they may be placed. This observation may help the identification and classification of other carbohydrate binding modules.
Collapse
Affiliation(s)
- Daniel J Rigden
- Embrapa Genetic Resources and Biotechnology, Cenargen/Embrapa, Brasilia-DF, Brazil.
| | | |
Collapse
|
21
|
Mishima Y, Momma K, Miyake O, Hashimoto W, Mikami B, Murata K. A super-channel in bacteria: macromolecule uptake and depolymerization systems of Sphingomonas sp. A1 with a special cell surface structure. Biotechnol Genet Eng Rev 2003; 19:105-19. [PMID: 12520874 DOI: 10.1080/02648725.2002.10648025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yumiko Mishima
- Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Oettl M, Hoechstetter J, Asen I, Bernhardt G, Buschauer A. Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations. Eur J Pharm Sci 2003; 18:267-77. [PMID: 12659938 DOI: 10.1016/s0928-0987(03)00022-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although bovine testicular hyaluronidase (BTH) has been used in several medical fields for many years, these drugs are poorly characterized. We compared pharmaceutical BTH preparations (Neopermease, Hylase "Dessau") and a hyaluronate lyase from Streptococcus agalactiae. The BTH preparations were complex mixtures of proteins (SDS-PAGE, gel filtration) with enzymatic activity in different fractions. In the case of Neopermease the highest specific activity was found in the 58 kDa fraction (optimum at pH 3.6), whereas the 77 and 33 kDa fractions showed markedly lower specific activities at an optimal pH of 6.2. Maximum specific activity of the bacterial enzyme (approx. 1000 micromol min(-1) mg(-1)) was found at pH 5.0, being 410- and 5100-times higher compared to Neopermease and Hylase "Dessau", respectively. The hyaluronate lyase preparation was separated into two main proteins [100 kDa (pI=8.9) and 85 kDa (pI=9.2)] which were enzymatically active in SDS substrate-PAGE. Zymography after limited proteolysis of the bacterial enzyme with trypsin revealed active fragments (75-50 kDa). Our results suggest that hyaluronate lyase is an alternative for BTH, of which there has been a shortage, since companies have stopped the production of BTH preparations due to the risk of BSE.
Collapse
Affiliation(s)
- Martin Oettl
- Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93040, Regensburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Takao A. Cloning and expression of hyaluronate lyase genes of Streptococcus intermedius and Streptococcus constellatus subsp. constellatus(1). FEMS Microbiol Lett 2003; 219:143-50. [PMID: 12594036 DOI: 10.1016/s0378-1097(03)00023-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Hyaluronate lyase (HAase) genes of Streptococcus intermedius and Streptococcus constellatus subsp. constellatus were isolated. In S. constellatus subsp. constellatus, the deduced amino acid sequence of HAase was most similar to that of S. intermedius (68%), whereas the enzyme of S. intermedius was most similar to that of S. pneumoniae (72%). Upstream of the HAase gene on the opposite strands, an open reading frame of a putative glutathione peroxidase started in S. intermedius, and this arrangement was similar to that in S. pneumoniae but unlike that in S. constellatus subsp. constellatus. Cell lysates of Escherichia coli carrying each streptococcal gene showed HAase activity, demonstrating that each cloned gene actually coded for HAase.
Collapse
Affiliation(s)
- Ayuko Takao
- Department of Oral Bacteriology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, 230-8501, Yokohama, Japan.
| |
Collapse
|
24
|
Yildirim AO, Fink K, Lämmler C. Distribution of the hyaluronate lyase encoding gene hylB and the insertion element IS1548 in streptococci of serological group B isolated from animals and humans. Res Vet Sci 2002; 73:131-5. [PMID: 12204630 DOI: 10.1016/s0034-5288(02)00029-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was performed to investigate streptococci of serological group B obtained from various sources and group B streptococcal reference strains for serotype, hyaluronate lyase enzyme activity, the occurrence of the hylB gene and the insertion sequence IS1548. All group B streptococci were identified by cultural, biochemical, and serological properties and by polymerase chain reaction amplification of species-specific parts of the 16S-23S rDNA intergenic spacer region, the 16S rRNA gene and the CAMP-factor (cfb) gene. Of the 73 group B streptococci investigated, 59 strains displayed hyaluronate lyase enzyme activity. All hyaluronate-lyase-positive strains and three phenotypically hyaluronate-lyase-negative strains had a hylB gene with an amplicon size of 3.3kb. Eleven of the 14 phenotypically hyaluronate-lyase-negative strains generated a hylB gene PCR product with a size of 4.6kb, and 10 of these strains displayed a IS1548 amplicon with a size of 0.98kb. The hyaluronate-lyase-negative isolates were mainly observed among group B streptococci of serotype III/Rib. All strains harbouring IS1548 had an additional copy of IS1548 located downstream of the C5a peptidase (scpB) gene.
Collapse
Affiliation(s)
- A O Yildirim
- Institut für Frankfurter Strasse 107, 35392 der Justus-Liebig-Universität Giessen, Pharmakologie und Toxikologie, Germany
| | | | | |
Collapse
|
25
|
Mello LV, De Groot BL, Li S, Jedrzejas MJ. Structure and flexibility of Streptococcus agalactiae hyaluronate lyase complex with its substrate. Insights into the mechanism of processive degradation of hyaluronan. J Biol Chem 2002; 277:36678-88. [PMID: 12130645 DOI: 10.1074/jbc.m205140200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus agalactiae hyaluronate lyase degrades primarily hyaluronan, the main polysaccharide component of the host connective tissues, into unsaturated disaccharide units as the end product. Such function of the enzyme destroys the normal connective tissue structure of the host and exposes the tissue cells to various bacterial toxins. The crystal structure of hexasaccharide hyaluronan complex with the S. agalactiae hyaluronate lyase was determined at 2.2 A resolution; the mechanism of the catalytic process, including the identification of specific residues involved in the degradation of hyaluronan, was clearly identified. The enzyme is composed structurally and functionally from two distinct domains, an alpha-helical alpha-domain and a beta-sheet beta-domain. The flexibility of the protein was investigated by comparing the crystal structures of the S. agalactiae and the Streptococcus pneumoniae enzymes, and by using essential dynamics analyses of CONCOORD computer simulations. These revealed important modes of flexibility, which could be related to the protein function. First, a rotation/twist of the alpha-domain relative to the beta-domain is potentially related to the mechanism of processivity of the enzyme; this twist motion likely facilitates shifting of the ligand along the catalytic site cleft in order to reposition it to be ready for further cleavage. Second, a movement of the alpha- and beta-domains with respect to each other was found to contribute to a change in electrostatic characteristics of the enzyme and appears to facilitate binding of the negatively charged hyaluronan ligand. Third, an opening/closing of the substrate binding cleft brings a catalytic histidine closer to the cleavable substrate beta1,4-glycosidic bond. This opening/closing mode also reflects the main conformational difference between the crystal structures of the S. agalactiae and the S. pneumoniae hyaluronate lyases.
Collapse
Affiliation(s)
- Luciane V Mello
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | |
Collapse
|
26
|
Li S, Jedrzejas MJ. Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. J Biol Chem 2001; 276:41407-16. [PMID: 11527972 DOI: 10.1074/jbc.m106634200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Streptococcus agalactiae hyaluronate lyase is a virulence factor that helps this pathogen to break through the biophysical barrier of the host tissues by the enzymatic degradation of hyaluronan and certain chondroitin sulfates at beta-1,4 glycosidic linkages. Crystal structures of the native enzyme and the enzyme-product complex were determined at 2.1- and 2.2-A resolutions, respectively. An elongated cleft transversing the middle of the molecule has been identified as the substrate-binding place. Two product molecules of hyaluronan degradation were observed bound to the cleft. The enzyme catalytic site was identified to comprise three residues: His(479), Tyr(488), and Asn(429). The highly positively charged cleft facilitates the binding of the negatively charged polymeric substrate chain. The matching between the aromatic patch of the enzyme and the hydrophobic patch of the substrate chain anchors the substrate chain into degradation position. A pair of proton exchanges between the enzyme and the substrate results in the cleavage of the beta-1,4 glycosidic linkage of the substrate chain and the unsaturation of the product. Phe(423) likely determines the size of the product at the product release side of the catalytic region. Hyaluronan chain is processively degraded from the reducing end toward the nonreducing end. The unsulfated or 6-sulfated regions of chondroitin sulfate can also be degraded in the same manner as hyaluronan.
Collapse
Affiliation(s)
- S Li
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
27
|
Abstract
Streptococcus agalactiae is an important human pathogen causing severe neonatal infections. During the course of infection, S. agalactiae colonizes and invades a number of different host compartments. Bacterial molecules including the polysaccharide capsule, the hemolysin, the C5a peptidase, the C-proteins, the hyaluronate lyase and a number of unknown bacterial components determine the interaction with host tissues. This review summarizes our current knowledge about these interactions.
Collapse
Affiliation(s)
- B Spellerberg
- Institute of Medical Microbiology and National Reference Center for Streptococci, University Hospital Aachen, Pauwelsstr. 30, D-52057, Aachen, Germany.
| |
Collapse
|
28
|
Hynes WL, Dixon AR, Walton SL, Aridgides LJ. The extracellular hyaluronidase gene (hylA) of Streptococcus pyogenes. FEMS Microbiol Lett 2000; 184:109-12. [PMID: 10689175 DOI: 10.1111/j.1574-6968.2000.tb08999.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Group A streptococci produce an extracellular hyaluronidase (hyaluronate lyase) which may be associated with the spread of the organism during infection. The gene for this hyaluronidase (hylA) encodes an 868 amino acid protein with a molecular size of 99636 Da. Cleavage of the proposed signal peptide results in an extracellular protein of 95941 Da. Comparison with other bacterial hyaluronidases indicates strong similarities to the genes from Streptococcus pneumoniae, Streptococcus agalactiae and Staphylococcus aureus. A region internal to the hylA gene was amplified from all 175 strains of Streptococcus pyogenes tested suggesting a widespread distribution of the gene.
Collapse
Affiliation(s)
- W L Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529-0266, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Bacterial hyaluronidases, enzymes capable of breaking down hyaluronate, are produced by a number of pathogenic Gram-positive bacteria that initiate infections at the skin or mucosal surfaces. Since reports of the hyaluronidases first appeared, there have been numerous suggestions as to the role of the enzyme in the disease process. Unlike some of the other more well studied virulence factors, much of the information on the role of hyaluronidase is speculative, with little or no data to substantiate proposed roles. Over the last 5 years, a number of these enzymes from Gram-positive organisms have been cloned, and the nucleotide sequence determined. Phylogenetic analysis, using the deduced amino acid sequences of the Gram-positive hyaluronidases, suggests a relatedness among some of the enzymes. Molecular advances may lead to a more thorough understanding of the role of hyaluronidases in bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- W L Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.
| | | |
Collapse
|
30
|
Rodig H, Ozegowski JH, Peschel G, Müller PJ. Complementary characterization of a hyaluronic acid splitting enzyme from Streptococcus agalactiae. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 2000; 289:835-43. [PMID: 10705615 DOI: 10.1016/s0934-8840(00)80011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hyaluronic acid splitting enzyme of Streptococcus agalactiae was characterized by splitting mechanism, Michaelis-constant and inhibition type for sulfated hyaluronic acid: The enzyme splits hyaluronic acid as a hyaluronate lyase [EC 4.2.2.1]. The Km = 8 x 10(-4) mg ml-1 was determined with the influence of substrate inhibition constant Kiu = 2 x 10(-6) mg ml-1. Sulfated hyaluronic acid inhibits the enzyme in a partially non-competitive way. The inhibition constant is Ki = 5.47 x 10(-4) mg ml-1. The GBS-hyaluronate lyase cleaves hyaluronic acid as an endoglycosidase. The work is related with the intention to establish a hyaluronate lyase of microbial origin as a therapeutical enzyme replacing bovine hyaluronidase.
Collapse
Affiliation(s)
- H Rodig
- Hans-Knöll-Institut für Naturstoff-Forschung e.V., Jena, Germany
| | | | | | | |
Collapse
|