1
|
Kageler L, Aquilanti E. Discovery of telomerase inhibitors: existing strategies and emerging innovations. Biochem Soc Trans 2024; 52:1957-1968. [PMID: 39194999 DOI: 10.1042/bst20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Telomerase, crucial for maintaining telomere length, is an attractive target for cancer therapy due to its role in cellular immortality. Despite three decades of research efforts, no small-molecule telomerase inhibitors have been clinically approved, highlighting the extensive challenges in developing effective telomerase-based therapeutics. This review examines conventional and emerging methods to measure telomerase activity and discusses existing inhibitors, including oligonucleotides and small molecules. Furthermore, this review highlights recent breakthroughs in structural studies of telomerase using cryo-electron microscopy, which can facilitate improved structure-based drug design. Altogether, advancements in structural methodologies and high-throughput screening offer promising prospects for telomerase-based cancer therapeutic development.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, U.S.A
| | - Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
| |
Collapse
|
2
|
Radzikowska E, Kaczmarek R, Korczyński D, Krakowiak A, Mikołajczyk B, Baraniak J, Guga P, Wheeler KA, Pawlak T, Nawrot B. P-stereocontrolled synthesis of oligo(nucleoside N3'→O5' phosphoramidothioate)s - opportunities and limitations. RSC Adv 2020; 10:35185-35197. [PMID: 35515667 PMCID: PMC9056831 DOI: 10.1039/d0ra04987e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
3'-N-(2-Thio-1,3,2-oxathiaphospholane) derivatives of 5'-O-DMT-3'-amino-2',3'-dideoxy-ribonucleosides (NOTP-N), that bear a 4,4-unsubstituted, 4,4-dimethyl, or 4,4-pentamethylene substituted oxathiaphospholane ring, were synthesized. Within these three series, NOTP-N differed by canonical nucleobases (i.e., AdeBz, CytBz, GuaiBu, or Thy). The monomers were chromatographically separated into P-diastereomers, which were further used to prepare NNPSN' dinucleotides (3), as well as short P-stereodefined oligo(deoxyribonucleoside N3'→O5' phosphoramidothioate)s (NPS-) and chimeric NPS/PO- and NPS/PS-oligomers. The condensation reaction for NOTP-N monomers was found to be 5-6 times slower than the analogous OTP derivatives. When the 5'-end nucleoside of a growing oligomer adopts a C3'-endo conformation, a conformational 'clash' with the incoming NOTP-N monomer takes place, which is a main factor decreasing the repetitive yield of chain elongation. Although both isomers of NNPSN' were digested by the HINT1 phosphoramidase enzyme, the isomers hydrolyzed at a faster rate were tentatively assigned the R P absolute configuration. This assignment is supported by X-ray analysis of the protected dinucleotide DMTdGiBu NPSMeTOAc, which is P-stereoequivalent to the hydrolyzed faster P-diastereomer of dGNPST.
Collapse
Affiliation(s)
- Ewa Radzikowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Barbara Mikołajczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Janina Baraniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Kraig A Wheeler
- Whitworth University, Department of Chemistry 300 W. Hawthorne Rd. Spokane WA 99251 USA
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| |
Collapse
|
3
|
O'Flaherty DK, Zhou L, Szostak JW. Nonenzymatic RNA-templated Synthesis of N3'→P5' Phosphoramidate DNA. Bio Protoc 2020; 10:e3734. [PMID: 33659395 DOI: 10.21769/bioprotoc.3734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/02/2022] Open
Abstract
The RNA world hypothesis describes a scenario where early life forms relied on RNA to govern both inheritance and catalyze useful chemical reactions. Prior to the emergence of enzymes capable of replicating the RNA genome, a nonenzymatic replication process would have been necessary to initiate Darwinian Evolution. However, the one-pot nonenzymatic RNA chemical copying of templates with mixed-sequences is insufficient to generate strand products long enough to encode useful function. The use of alternate (RNA-like) genetic polymers may overcome hurdles associated with RNA copying, and further our understanding of nonenzymatic copying chemistry. This protocol describes the nonenzymatic copying of RNA templates into N3'→P5' phosphoramidate DNA (3'-NP-DNA). We describe, in detail, the synthesis of 3'-amino-2',3'-dideoxyribonucleotide monomers activated with 2-aminoimidazole (3'-NH2-2AIpddN), and their use in template-directed polymerization.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Zhou L, O'Flaherty DK, Szostak JW. Assembly of a Ribozyme Ligase from Short Oligomers by Nonenzymatic Ligation. J Am Chem Soc 2020; 142:15961-15965. [PMID: 32820909 PMCID: PMC9594310 DOI: 10.1021/jacs.0c06722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our current understanding of the chemistry of the primordial genetic material is fragmentary at best. The chemical replication of oligonucleotides long enough to perform catalytic functions is particularly problematic because of the low efficiency of nonenzymatic template copying. Here we show that this problem can be circumvented by assembling a functional ribozyme by the templated ligation of short oligonucleotides. However, this approach creates a new problem because the splint oligonucleotides used to drive ribozyme assembly strongly inhibit the resulting ribozyme. We explored three approaches to the design of splint oligonucleotides that enable efficient ligation but which allow the assembled ribozyme to remain active. DNA splints, splints with G:U wobble pairs, and splints with G to I (Inosine) substitutions all allowed for the efficient assembly of an active ribozyme ligase. Our work demonstrates the possibility of a transition from nonenzymatic ligation to enzymatic ligation and reveals the importance of avoiding ribozyme inhibition by complementary oligonucleotides.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Lelyveld VS, O'Flaherty DK, Zhou L, Izgu EC, Szostak JW. DNA polymerase activity on synthetic N3'→P5' phosphoramidate DNA templates. Nucleic Acids Res 2019; 47:8941-8949. [PMID: 31428779 PMCID: PMC6755091 DOI: 10.1093/nar/gkz707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
Genetic polymers that could plausibly govern life in the universe might inhabit a broad swath of chemical space. A subset of these genetic systems can exchange information with RNA and DNA and could therefore form the basis for model protocells in the laboratory. N3'→P5' phosphoramidate (NP) DNA is defined by a conservative linkage substitution and has shown promise as a protocellular genetic material, but much remains unknown about its functionality and fidelity due to limited enzymatic tools. Conveniently, we find widespread NP-DNA-dependent DNA polymerase activity among reverse transcriptases, an observation consistent with structural studies of the RNA-like conformation of NP-DNA duplexes. Here, we analyze the consequences of this unnatural template linkage on the kinetics and fidelity of DNA polymerization activity catalyzed by wild-type and variant reverse transcriptases. Template-associated deficits in kinetics and fidelity suggest that even highly conservative template modifications give rise to error-prone DNA polymerase activity. Enzymatic copying of NP-DNA sequences is nevertheless an important step toward the future study and engineering of this synthetic genetic polymer.
Collapse
Affiliation(s)
- Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019; 47:5511-5521. [PMID: 31073604 PMCID: PMC6582331 DOI: 10.1093/nar/gkz352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Daniel Carbajo
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Panchami Prabhakaran
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Krzysztof Ziach
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Pradeep Kumar Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | | | - Carole Legeay
- Sanofi recherche & développement, Montpellier 34184, France
| | - Rachel Vogel
- Sanofi recherche & développement, Montpellier 34184, France
| | - Vincent Parissi
- Université de Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux 33146, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier 34298, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| |
Collapse
|
7
|
Hasija A, Chopra D. Exploring concomitant/conformational dimorphism in a difluoro-substituted phosphoramidate derivative. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:451-461. [PMID: 30957791 DOI: 10.1107/s2053229619003589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 11/10/2022]
Abstract
The concomitant occurrence of dimorphs of diphenyl (3,4-difluorophenyl)phosphoramidate, C18H14F2NO3P, was observed via a solution-mediated crystallization process with variation in the symmetry-free molecules (Z'). The existence of two forms, i.e. Form I (block, Z' = 1) and Form II (needle, Z' = 2), was characterized by single-crystal X-ray diffraction, differential scanning calorimetry and powder X-ray diffraction. Furthermore, a quantitative analysis of the energetics of the different intermolecular interactions was carried out via the energy decomposition method (PIXEL), which corroborates with inputs from the energy framework and looks at the topology of the various intermolecular interactions present in both forms. The unequivocally distinguished contribution of strong N-H...O hydrogen bonds along with other interactions, such as C-H...O, C-H...F, π-π and C-H...π, mapped on the Hirshfeld surface is depicted by two-dimensional fingerprint plots. Apart from the major electrostatic contribution from N-H...O hydrogen bonds, the crystal structures are stabilized by contributions from the dispersion energy. The closely related melting points and opposite trends in the calculated lattice energies are interesting to investigate with respect to the thermodynamic stability of the observed dimorphs. The significant variation in the torsion angles in both forms helps in classifying them in the category of conformational polymorphs.
Collapse
Affiliation(s)
- Avantika Hasija
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
8
|
Kulik K, Kaczmarek R, Baraniak J, Ślepokura K, Gryaznov S. Novel method for the synthesis of dinucleoside-(N3′ →P5′)-phosphoramidothioates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Guo Y, Zhao X, Liu Q. Dispersion-corrected DFT study on the structural transformations and absorption properties of crystalline 3′-Amino-3′-deoxyadenosine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Wan J, Bauman JA, Graziewicz MA, Sazani P, Kole R. Oligonucleotide therapeutics in cancer. Cancer Treat Res 2016; 158:213-33. [PMID: 24222360 DOI: 10.1007/978-3-642-31659-3_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in pre-mRNA splicing can have profound effects on gene expression and lead to cellular transformation. Oligonucleotide therapeutics are drugs that manipulate gene expression and improve the disease state. Antisense oligonucleotides hybridize with a target mRNA to downregulate gene expression via an RNase H-dependent mechanism. Additionally, RNase H-independent splice switching oligonucleotides (SSO) modulate alternative or aberrant splicing, to favor the therapeutically relevant splicing product. This chapter summarizes the progress made in the application of these oligonucleotide drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Jing Wan
- AVI Biopharma, 3450 Monte Villa Parkway, Bothell, WA 98021, USA
| | | | | | | | | |
Collapse
|
11
|
Kaczmarek R, Kaźmierski S, Pawlak T, Radzikowska E, Baraniak J. Assignment of the absolute configuration at stereogenic phosphorus atoms in P-diastereomers of dithymidyl-(N3′→P5′)-phosphoramidothioate. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Features of "All LNA" Duplexes Showing a New Type of Nucleic Acid Geometry. J Nucleic Acids 2012; 2012:156035. [PMID: 22666550 PMCID: PMC3361345 DOI: 10.1155/2012/156035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 12/18/2022] Open
Abstract
"Locked nucleic acids" (LNAs) belong to the backbone-modified nucleic acid family. The 2'-O,4'-C-methylene-β-D-ribofuranose nucleotides are used for single or multiple substitutions in RNA molecules and thereby introduce enhanced bio- and thermostability. This renders LNAs powerful tools for diagnostic and therapeutic applications. RNA molecules maintain the overall canonical A-type conformation upon substitution of single or multiple residues/nucleotides by LNA monomers. The structures of "all" LNA homoduplexes, however, exhibit significant differences in their overall geometry, in particular a decreased twist, roll and propeller twist. This results in a widening of the major groove, a decrease in helical winding, and an enlarged helical pitch. Therefore, the LNA duplex structure can no longer be described as a canonical A-type RNA geometry but can rather be brought into proximity to other backbone-modified nucleic acids, like glycol nucleic acids or peptide nucleic acids. LNA-modified nucleic acids provide thus structural and functional features that may be successfully exploited for future application in biotechnology and drug discovery.
Collapse
|
13
|
Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 2010; 5. [PMID: 20927342 PMCID: PMC2948018 DOI: 10.1371/journal.pone.0013050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/02/2010] [Indexed: 01/16/2023] Open
Abstract
Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (KD = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition) of sLex positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.
Collapse
|
14
|
Gryaznov SM. Oligonucleotide n3'-->p5' phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Chem Biodivers 2010; 7:477-93. [PMID: 20232321 DOI: 10.1002/cbdv.200900187] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nucleic acids analogues, i.e., oligonucleotide N3'-->P5' phosphoramidates and N3'-->P5' thio-phosphoramidates, containing 3'-amino-3'-deoxy nucleosides with various 2'-substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, DeltaT(m), relative to their phosphodiester counterparts, reaches 2.2-4.0 degrees per modified nucleoside. 2'-OH- (RNA-like), 2'-O-Me-, and 2'-ribo-F-nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2'-deoxy- and 2'-fluoro-phosphoramidate compounds form extremely stable triple-stranded complexes with either single- or double-stranded phosphodiester DNA oligonucleotides. Melting temperature, T(m), of these triplexes exceeds T(m) values for the isosequential phosphodiester counterparts by up to 35 degrees . 2'-Deoxy-N3'-->P5' phosphoramidates adopt RNA-like C3'-endo or N-type nucleoside sugar-ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2'-deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H-mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio-phosphoramidates conjugated with lipid groups are cell-permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3'-->P5' thio-phosphoramidate conjugated to 5'-palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase-I and Phase-I/II clinical trials as potential broad-spectrum anticancer agent.
Collapse
Affiliation(s)
- Sergei M Gryaznov
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| |
Collapse
|
15
|
Eisenhuth R, Richert C. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers. J Org Chem 2009; 74:26-37. [PMID: 19053612 DOI: 10.1021/jo8018889] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.
Collapse
Affiliation(s)
- Ralf Eisenhuth
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | |
Collapse
|
16
|
Tsai CH, Chen J, Szostak JW. Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proc Natl Acad Sci U S A 2007; 104:14598-603. [PMID: 17785419 PMCID: PMC1976233 DOI: 10.1073/pnas.0704211104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycerol nucleic acid (GNA) is an interesting alternative base-pairing system based on an acyclic, glycerol-phosphate backbone repeat unit. The question of whether DNA polymerases can catalyze efficient template-dependent synthesis using GNA as the template is of particular interest because GNA is unable to form a stable duplex with DNA. In the present study, we screened a variety of DNA polymerases for GNA-dependent DNA synthesis. We find that Bst DNA polymerase can catalyze full-length DNA synthesis on a dodecamer GNA template. The efficiency of DNA synthesis is increased by replacing adenine with diaminopurine in both the GNA template and the DNA monomers and by the presence of manganese ions. We suggest that the BstDNA polymerase maintains a short, transient region of base-pairing between the DNA product strand and the GNA template, but that stable duplex formation between product and template strands is not required for template-dependent polymerization.
Collapse
Affiliation(s)
- Ching-Hsuan Tsai
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, Department of Molecular Biology, and Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02144
| | - Jingyang Chen
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, Department of Molecular Biology, and Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02144
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, Department of Molecular Biology, and Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02144
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Bentley J, Brazier JA, Fisher J, Cosstick R. Duplex stability of DNA·DNA and DNA·RNA duplexes containing 3′-S-phosphorothiolate linkages. Org Biomol Chem 2007; 5:3698-702. [DOI: 10.1039/b713292a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Van Hecke K, Uytterhoeven K, Van Meervelt L. Exploration of triple-helical fragments: crystallization and preliminary X-ray diffraction of d(TGGCCTTAAGG). Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:52-5. [PMID: 17183175 PMCID: PMC2330110 DOI: 10.1107/s1744309106054522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/15/2006] [Indexed: 11/10/2022]
Abstract
The nonamer d(GCGAATTCG) and decamer d(GGCCAATTGG), containing one and two overhanging guanines, respectively, form G x GC triplets in their crystal packing. In order to introduce a third subsequent T x AT triplet, the decamer was further extended by one overhanging thymine residue. Two different crystal morphologies of the sequence d(TGGCCTTAAGG) were obtained by hanging-drop vapour diffusion and diffracted to 2.5 and 2.3 A resolution, respectively. However, both crystals belong to the orthorhombic space group P2(1)2(1)2(1), with similar unit-cell parameters. Therefore, the two data sets could be merged to a resolution of 2.4 A with unit-cell parameters a = 26.97, b = 41.12, c = 52.72 A.
Collapse
Affiliation(s)
- Kristof Van Hecke
- Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, B-3001 Leuven (Heverlee), Belgium
| | - Koen Uytterhoeven
- Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, B-3001 Leuven (Heverlee), Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, B-3001 Leuven (Heverlee), Belgium
| |
Collapse
|
19
|
Obika S, Sekiguchi M, Somjing R, Imanishi T. Adjustment of the gamma dihedral angle of an oligonucleotide P3'-->N5' phosphoramidate enhances its binding affinity towards complementary strands. Angew Chem Int Ed Engl 2006; 44:1944-7. [PMID: 15678433 DOI: 10.1002/anie.200461942] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
20
|
Trepanier JB, Tanner JE, Alfieri C. Oligonucleotide-Based Therapeutic Options against Hepatitis C Virus Infection. Antivir Ther 2006. [DOI: 10.1177/135965350601100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hepatitis C virus (HCV) is the cause of a silent pandemic that, due to the chronic nature of the disease and the absence of curative therapy, continues to claim an ever-increasing number of lives. Current antiviral regimens have proven largely unsatisfactory for patients with HCV drug-resistant genotypes. It is therefore important to explore alternative therapeutic stratagems whose mode of action allows them to bypass viral resistance. Antisense oligonucleotides, ribozymes, small interfering RNAs, aptamers and deoxyribozymes constitute classes of oligonucleotide-based compounds designed to target highly conserved or functionally crucial regions contained within the HCV genome. The therapeutic expectation for such compounds is the elimination of HCV from infected individuals. Progress in oligonucleotide-based HCV antivirals towards clinical application depends on development of nucleotide designs that bolster efficacy while minimizing toxicity, improvement in liver-targeting delivery systems, and refinement of small-animal models for preclinical testing.
Collapse
Affiliation(s)
- Janie B Trepanier
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | | | - Caroline Alfieri
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Matthes E, Lehmann C, Stulich M, Wu Y, Dimitrova L, Uhlmann E, Janta-Lipinski MV. Potent inhibitory activity of chimeric oligonucleotides targeting two different sites of human telomerase. Oligonucleotides 2006; 15:255-68. [PMID: 16396620 DOI: 10.1089/oli.2005.15.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Suppression of telomerase activity in tumor cells has been considered as a new anticancer strategy. Here, we present chimeric oligonucleotides (chimeric ODNs) as a new type of telomerase inhibitor that contains differently modified oligomers to address two different sites of telomerase: the RNA template and a suggested protein motif. We have shown previously that phosphorothioate-modified oligonucleotides (PS ODNs) interact in a length-dependent rather than in a sequence-dependent manner, presumably with the protein part of the primer-binding site of telomerase, causing strong inhibition of telomerase. In the present study, we demonstrate that extensions of these PS ODNs at their 3'-ends with an antisense oligomer partial sequence covering 11 bases of the RNA template cause significantly increased inhibitory activity, with IC(50) values between 0.60 and 0.95 nM in a Telomeric Repeat Amplification Protocol (TRAP) assay based on U-87 cell lysates. The enhanced inhibitory activity is observed regardless of whether the antisense part is modified (phosphodiester, PO; 2'-O-methylribosyl, 2'-OMe/PO; phosphoramidate, PAM). However, inside intact U-87 cells, these modifications of the antisense part proved to be essential for efficient telomerase inhibition 20 hours after transfection. In particular, the chimeric ODNs containing PAM or 2'-OMe/PO modifications, when complexed with lipofectin, were most efficient telomerase inhibitors (ID(50) = 0.04 and 0.06 microM, respectively). In conclusion, ODNs of this new type emerged as powerful inhibitors of human telomerase and are, therefore, promising candidates for further investigations of the anticancer strategy of telomerase inhibition.
Collapse
Affiliation(s)
- Eckart Matthes
- Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee DS, Jung KE, Yoon CH, Lim H, Bae YS. Newly designed six-membered azasugar nucleotide-containing phosphorothioate oligonucleotides as potent human immunodeficiency virus type 1 inhibitors. Antimicrob Agents Chemother 2006; 49:4110-20. [PMID: 16189087 PMCID: PMC1251495 DOI: 10.1128/aac.49.10.4110-4120.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of modified oligonucleotides (ONs), characterized by a phosphorothioate (P S) backbone and a six-membered azasugar (6-AZS) as a sugar substitute in a nucleotide, were newly synthesized and assessed for their ability to inhibit human immunodeficiency virus type 1 (HIV-1) via simple treatment of HIV-1-infected cultures, without any transfection process. While unmodified P S ONs exhibited only minor anti-HIV-1 activity, the six-membered azasugar nucleotide (6-AZN)-containing P S oligonucleotides (AZPSONs) exhibited remarkable antiviral activity against HIV-1/simian-human immunodeficiency virus (SHIV) replication and syncytium formation (50% effective concentration = 0.02 to 0.2 microM). The AZPSONs exhibited little cytotoxicity at concentrations of up to 100 microM. DBM 2198, one of the most effective AZPSONs, exhibited antiviral activity against a broad spectrum of HIV-1, including T-cell-tropic, monotropic, and even drug-resistant HIV-1 variants. The anti-HIV-1 activities of DBM 2198 were similarly maintained in HIV-1-infected cultures of peripheral blood mononuclear cells. When we treated severely infected cultures with DBM 2198, syncytia disappeared completely within 2 days. Taken together, our results indicate that DBM 2198 and other AZPSONs may prove useful in the further development of safe and effective AIDS-therapeutic drugs against a broad spectrum of HIV-1 variants.
Collapse
Affiliation(s)
- Dong-Seong Lee
- Department of Biological Science, Sungkyunkwan University, Jangan-gu, Suwon, Gyounggi-do, South Korea
| | | | | | | | | |
Collapse
|
23
|
Kierzek E, Ciesielska A, Pasternak K, Mathews DH, Turner DH, Kierzek R. The influence of locked nucleic acid residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res 2005; 33:5082-93. [PMID: 16155181 PMCID: PMC1201327 DOI: 10.1093/nar/gki789] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/08/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022] Open
Abstract
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2'-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3' terminal U LNA and 5' terminal LNAs are less stabilizing than interior and other 3' terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2'-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2'-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2'-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2'-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37 degrees C are presented for 2'-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.
Collapse
Affiliation(s)
- Elzbieta Kierzek
- Department of Chemistry and Department of Pediatrics, University of RochesterRC Box 270216, Rochester, NY 14627-0216, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences60-714 Poznan, Noskowskiego 12/14, Poland
| | - Anna Ciesielska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences60-714 Poznan, Noskowskiego 12/14, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences60-714 Poznan, Noskowskiego 12/14, Poland
| | - David H. Mathews
- Center for Molecular Pediatric Research, University of Rochester School of Medicine and DentistryRochester, New York, 14642, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and DentistryRochester, New York, 14642, USA
| | - Douglas H. Turner
- Department of Chemistry and Department of Pediatrics, University of RochesterRC Box 270216, Rochester, NY 14627-0216, USA
- Center for Molecular Pediatric Research, University of Rochester School of Medicine and DentistryRochester, New York, 14642, USA
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences60-714 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
24
|
Obika S. Development of bridged nucleic acid analogues for antigene technology. Chem Pharm Bull (Tokyo) 2005; 52:1399-404. [PMID: 15577233 DOI: 10.1248/cpb.52.1399] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last decade, increased efforts have been directed toward the development of oligonucleotide-based technologies for genome analyses, diagnostics, or therapeutics. Among them, an antigene strategy is one promising technology to regulate gene expression in living cells. Stable triplex formation between the triplex-forming oligonucleotide (TFO) and the target double-stranded DNA (dsDNA) is fundamental to the antigene strategy. However, there are two major drawbacks in triplex formation by a natural TFO: low stability of the triplex and limitations of the target DNA sequence. To overcome these problems, we have developed various bridged nucleic acids (BNAs), and found that the 2',4'-BNA modification of oligonucleotides strongly promotes parallel motif triplex formation under physiological conditions. Some nucleobase analogues to extend the target DNA sequence were designed, synthesized, and introduced into the 2',4'-BNA structure. The obtained 2',4'-BNA derivatives with unnatural nucleobases effectively recognized a pyrimidine-purine interruption in the target dsDNA. Some other examples of nucleic acid analogues for stable triplex formation and extension of the target DNA sequence are also summarized.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
25
|
Obika S, Hiroto A, Nakagawa O, Imanishi T. Promotion of stable triplex formation by partial incorporation of 2',5'-phosphodiester linkages into triplex-forming oligonucleotides. Chem Commun (Camb) 2005:2793-5. [PMID: 15928760 DOI: 10.1039/b417688j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pentadecamer homopyrimidine oligonucleotides containing three or more 2',5'-phosphodiester linkages in different modes were prepared and used to evaluate the ability as a triplex-forming oligonucleotide (TFO), and it was found that discontinuous replacement of the 3',5'-phosphodiester linkages in TFO by 2',5'-linkages significantly stabilizes parallel-motif triplexes.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
26
|
Obika S, Sekiguchi M, Somjing R, Imanishi T. Adjustment of the? Dihedral Angle of an Oligonucleotide P3??N5? Phosphoramidate Enhances Its Binding Affinity towards Complementary Strands. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Seregin KV, Chudinov MV, Iurkevich AM, Shvets VI. An efficient synthesis of 3′-amino-3′-deoxythymidine derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:147-50. [PMID: 15889788 DOI: 10.1007/s11171-005-0018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An efficient method of reduction of 3'-azido-3'-deoxythymidine and its 5'-protected derivatives to 3'-aminothymidine derivatives on a palladium catalyst using ammonium formate as a source of hydrogen was suggested.
Collapse
|
28
|
Abstract
The completion of the human genome sequencing project will greatly accelerate the development of novel and practical technologies for genome-analysis, diagnostics or therapeutics. Oligonucleotides are playing an important role in these genome technologies, because of their sequence-specific hybridization ability toward the complementary strand. Besides the sequence-specific duplex formation, oligonucleotides are able to form stable triplex structures, which is fundamental to the antigene strategy to regulate gene expression in a living cell. However, two major drawbacks are known in the triplex formation by a natural oligonucleotide: low stability of the triplex and limitations of the target DNA sequence. One promising strategy to overcome these problems is chemical modification of the oligonucleotides. We have developed various bridged nucleic acids (BNAs), and found that the oligonucleotides containing 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification form a stable parallel motif triplex with the double-stranded DNA target under physiological conditions. Some nucleobase analogues to extend the target DNA sequence were designed, synthesized and incorporated into the 2',4'-BNA structure. The obtained 2',4'-BNA derivatives containing modified nucleobases effectively recognized a pyrimidine-purine interruption. Some other examples of nucleic acid analogues to overcome the two major drawbacks in the triplex-forming oligonucleotides are also summarized.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
29
|
O'Sullivan JN, Finley JC, Risques RA, Shen WT, Gollahon KA, Moskovitz AH, Gryaznov S, Harley CB, Rabinovitch PS. Telomere length assessment in tissue sections by quantitative FISH: image analysis algorithms. Cytometry A 2004; 58:120-31. [PMID: 15057965 DOI: 10.1002/cyto.a.20006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Telomeres are tandem repeated DNA sequences at the ends of every chromosome, which cap, stabilize, and prevent chromosome fusions and instability. Telomere regulation is an important mechanism in cellular proliferation and senescence in normal diploid and neoplastic cells. Quantitative methods to assess telomere lengths are essential to understanding how telomere dynamics play a role in these processes. METHODS Telomere lengths have been conventionally measured using terminal restriction fragment (TRF), quantitative fluorescence in situ hybridization (QFISH), and flow FISH. In this study, we have applied QFISH to measure average telomere lengths in cultured cells and human tissues of the GI tract. Importantly, this method can be used to analyze telomere lengths in sections using confocal microscopy. We describe and compare three image analysis algorithms: a simple pixel histogram calculation of background corrected fluorescence, a telomere spot-finding method, and a background curve subtraction algorithm. RESULTS Using normal human diploid fibroblasts (NHDF) either dropped on slides or sectioned after agar embedding, similar telomere length shortening is evident with increasing population doubling levels (PDLs), using peptide nucleic acid (PNA) and an N3'-P5'-phosphoamidate (PA) oligonucleotide probe for all three methods. Validation of these in situ telomere quantification methods showed excellent agreement with the commonly used telomere repeat fragment-Southern blot method. Telomere length reductions can also be demonstrated in tissue sections from histologically normal mucosa from patients with chronic ulcerative colitis (with dysplasia or cancer elsewhere in the colon), in colon adenomas, and in mucosal biopsies from patients with Barrett's esophagus. Both on slides and in tissue sections, the telomere spot-finding method has the greatest variability, while intra- and inter-biopsy variability in telomere length assessment using the other methods is relatively low. CONCLUSIONS Accurate and reproducible telomere length measurements can be made in tissue sections using QFISH and confocal microscopy. The simplest methods proved the most reliable and make these methods readily accessible to many laboratories. The use of these methods will enhance the ability to measure telomere lengths in tissue samples and aid in the understanding of the role of telomere length in aging and disease.
Collapse
Affiliation(s)
- Jacintha N O'Sullivan
- Department of Pathology, University of Washington, Seattle, Washington 98195-7705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pradeepkumar PI, Cheruku P, Plashkevych O, Acharya P, Gohil S, Chattopadhyaya J. Synthesis, physicochemical and biochemical studies of 1',2'-oxetane constrained adenosine and guanosine modified oligonucleotides, and their comparison with those of the corresponding cytidine and thymidine analogues. J Am Chem Soc 2004; 126:11484-99. [PMID: 15366894 DOI: 10.1021/ja048417i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have earlier reported the synthesis and antisense properties of the conformationally constrained oxetane-C and -T containing oligonucleotides, which have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells. Here we report on the straightforward syntheses of the oxetane-A and oxetane-G nucleosides as well as their incorporations into antisense oligonucleotides (AONs), and compare their structural and antisense properties with those of the T and C modified AONs (including the thermostability and RNase H recruitment capability of the AON/RNA hybrid duplex by Michaelis-Menten kinetic analyses, their resistance in the human serum, as well as in the presence of exo and endonucleases).
Collapse
Affiliation(s)
- Pushpangadan I Pradeepkumar
- Contribution from the Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Sazani P, Astriab-Fischer A, Kole R. Effects of base modifications on antisense properties of 2'-O-methoxyethyl and PNA oligonucleotides. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2004; 13:119-28. [PMID: 12954112 DOI: 10.1089/108729003768247583] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recently developed antisense splicing assay was used to determine the relative activities of 2'-O-methoxyethoxy (2'-MOE) phosphorothioate oligonucleotides containing base modifications. In the assay, RNase H-inactive oligonucleotides are used to block aberrant splicing and restore correct splicing of an Enhanced Green Fluorescence Protein (EGFP) reporter pre-mRNA stably expressed in HeLa cells. Thus, the extent of EGFP upregulation is proportional to the antisense activity of the tested molecule. The base modifications included C-5 propynyl analogs of uridine and cytidine and phenoxazine and G-clamp analogs of cytosine. Base-modified 2'-MOE oligonucleotides were delivered to the HeLa EGFP-654 test cells by cationic lipid transfection or scrape-loading or without any delivery method (free uptake). When delivered with a cationic lipid, the G-clamp and phenoxazine oligomers showed increases in activity over the unmodified 2'-MOE parent compound. However, when delivered by scrape-loading or without a delivery method, the unmodified oligomer performed best. The results suggest that base modifications do not enhance the free uptake activity of RNase H inactive 2'-MOE oligomers.
Collapse
Affiliation(s)
- Peter Sazani
- Lineberger Comprehensive Cancer Center & Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
32
|
Takahashi H, Hamazaki H, Habu Y, Hayashi M, Abe T, Miyano-Kurosaki N, Takaku H. A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells. FEBS Lett 2004; 560:69-74. [PMID: 14988000 DOI: 10.1016/s0014-5793(04)00073-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/16/2003] [Accepted: 01/20/2004] [Indexed: 11/16/2022]
Abstract
DNA enzymes are RNA-cleaving single-stranded DNA molecules. We designed DNA enzymes targeting the PB2 mRNA translation initiation (AUG) region of the influenza A virus (A/PR/8/34). The modified DNA enzymes have one or two N3'-P5' phosphoramidate bonds at both the 3'- and 5'-termini of the oligonucleotides, which significantly enhanced their nuclease resistance. These modified DNA enzymes had the same cleavage activity as the unmodified DNA enzymes, determined by kinetic analyses, and reduced influenza A virus replication by more than 99%, determined by plaque formation. These DNA enzymes are highly specific; their protective effect was not observed in influenza B virus (B/Ibaraki)-infected Madin-Darby canine kidney cells.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Olejniczak S, Sobczak M, Potrzebowski MJ, Polak M, Plavec J, Nawrot B. Assignment of absolute configuration at phosphorus of P-chiral diastereomers of deoxyribonucleoside methanephosphonamidates by means of NMR spectroscopy. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
Current treatment modalities available for hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are not efficient. The enormous disease burden caused by these two infections makes the development of novel therapies critical. For HCV, the development of an effective vaccine is urgent in view of the escalating number of infected individuals. Molecular therapies for HBV and HCV infection can be directed at reducing viral load by interfering with the life cycle of the viruses or at generating immune response against viral epitopes. The antiviral approaches consist of the delivery or expression of antisense RNAs, ribozymes or dominant negative proteins. Viral biology can be interrupted by attacking various potential targets within the two viruses. DNA-based vaccination strategies are being explored for both prevention and treatment of these diseases. Both non-viral and recombinant viral vectors are being developed for safe, effective and long-term gene transfer to the liver. Although no "ideal" vector is available at this time, the ingenuity of numerous investigators is leading to the improvement of the vector systems, promising successful application of gene therapy to the prevention and treatment of viral hepatitis in the foreseeable future.
Collapse
Affiliation(s)
- Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
35
|
Obika S, Nakagawa O, Hiroto A, Hari Y, Imanishi T. Synthesis and properties of a novel bridged nucleic acid with a P3' --> N5' phosphoramidate linkage, 5'-amino-2',4'-BNA. Chem Commun (Camb) 2003:2202-3. [PMID: 13678201 DOI: 10.1039/b307290h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5'-Amino-2',4'-BNA, a novel analogue of BNA series compounds, was successfully synthesized, and its incorporated oligonucleotides showed potent duplex- and triplex-forming ability and resistance against snake venom phosphodiesterase.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
36
|
Nielsen JT, Stein PC, Petersen M. NMR structure of an alpha-L-LNA:RNA hybrid: structural implications for RNase H recognition. Nucleic Acids Res 2003; 31:5858-67. [PMID: 14530434 PMCID: PMC219478 DOI: 10.1093/nar/gkg800] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alpha-L-LNA (alpha-L-ribo configured locked nucleic acid) is a nucleotide analogue that raises the thermostability of nucleic acid duplexes by up to approximately 4 degrees C per inclusion. We have determined the NMR structure of a nonamer alpha-L-LNA:RNA hybrid with three alpha-L-LNA modifications. The geometry of this hybrid is intermediate between A- and B-type, all nucleobases partake in Watson-Crick base pairing and base stacking, and the global structure is very similar to that of the corresponding unmodified hybrid. The sugar-phosphate backbone is rearranged in the vicinity of the modified nucleotides. As a consequence, the phosphate groups following the modified nucleotides are rotated into the minor groove. It is interesting that the alpha-L-LNA:RNA hybrid, which has an elevation in melting temperature of 17 degrees C relative to the corresponding DNA:RNA hybrid, retains the global structure of this hybrid. To our knowledge, this is the first example of such a substantial increase in melting temperature of a nucleic acid analogue that does not act as an N-type (RNA) mimic. alpha-L-LNA:RNA hybrids are recognised by RNase H with subsequent cleavage of the RNA strand, albeit with slow rates. We attempt to rationalise this impaired enzyme activity from the rearrangement of the sugar-phosphate backbone of the alpha-L-LNA:RNA hybrid.
Collapse
Affiliation(s)
- Jakob T Nielsen
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | |
Collapse
|
37
|
Selective recognition of CG interruption by 2′,4′-BNA having 1-isoquinolone as a nucleobase in a pyrimidine motif triplex formation. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00728-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Tømmerholt HV, Christensen NK, Nielsen P, Wengel J, Stein PC, Jacobsen JP, Petersen M. NMR solution structure of dsDNA containing a bicyclic D-arabino-configured nucleotide fixed in an O4'-endo sugar conformation. Org Biomol Chem 2003; 1:1790-7. [PMID: 12926371 DOI: 10.1039/b300848g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[3.2.0]bcANA is a D-arabino-configured bicyclic nucleotide with a 2'-O,3'-C-methylene bridge. We here present the high-resolution NMR structure of a [3.2.0]bcANA modified dsDNA nonamer with one modified nucleotide incorporated. NOE restraints were obtained by analysis of NOESY cross peak intensities using a full relaxation matrix approach, and subsequently these restraints were incorporated into a simulated annealing scheme for the structure determination. In addition, the furanose ring puckers of the deoxyribose moieties were determined by analysis of COSY cross peaks. The modified duplex adopts a B-like geometry with Watson-Crick base pairing in all base pairs and all glycosidic angles in the anti range. The stacking arrangement of the nucleobases appears to be unperturbed relative to the normal B-like arrangement. The 2'-O,3'-C-methylene bridge of the modified nucleotide is located at the brim of the major groove where it fits well into the B-type duplex framework. The sugar pucker of the [3.2.0]bcANA nucleotide is O4'-endo and this sugar conformation causes a change in the delta backbone angle relative to the C2'-endo deoxyribose sugar pucker. This change is absorbed locally by slight changes in the epsilon and zeta angles of the modified nucleotide. Overall, the [3.2.0]bcANA modifications fits very well into a B-like duplex framework and only small and local perturbations are observed relative to the unmodified dsDNA of identical base sequence.
Collapse
Affiliation(s)
- Henning V Tømmerholt
- Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Teresa A Golden
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | |
Collapse
|
40
|
Manoharan M, Inamati GB, Lesnik EA, Sioufi NB, Freier SM. Improving antisense oligonucleotide binding to human serum albumin: dramatic effect of ibuprofen conjugation. Chembiochem 2002; 3:1257-60. [PMID: 12465035 DOI: 10.1002/1439-7633(20021202)3:12<1257::aid-cbic1257>3.0.co;2-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Sazani P, Vacek MM, Kole R. Short-term and long-term modulation of gene expression by antisense therapeutics. Curr Opin Biotechnol 2002; 13:468-72. [PMID: 12459339 DOI: 10.1016/s0958-1669(02)00366-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To achieve effective modulation of gene expression by antisense oligonucleotides, novel oligonucleotide chemistries that do not promote RNase H degradation of target RNA are needed. In addition to short-term oligonucleotide effects, long-term gene regulation can be accomplished by intracellularly expressed antisense RNAs delivered by viral vectors.
Collapse
Affiliation(s)
- Peter Sazani
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, CB 7295, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
42
|
Renneberg D, Bouliong E, Reber U, Schümperli D, Leumann CJ. Antisense properties of tricyclo-DNA. Nucleic Acids Res 2002; 30:2751-7. [PMID: 12087157 PMCID: PMC117067 DOI: 10.1093/nar/gkf412] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tricyclo (tc)-DNA belongs to the class of conformationally constrained DNA analogs that show enhanced binding properties to DNA and RNA. We prepared tc-oligonucleotides up to 17 nt in length, and evaluated their binding efficiency and selectivity towards complementary RNA, their biological stability in serum, their RNase H inducing potential and their antisense activity in a cellular assay. Relative to RNA or 2'-O-Me-phosphorothioate (PS)-RNA, fully modified tc-oligodeoxynucleotides, 10-17 nt in length, show enhanced selectivity and enhanced thermal stability by approximately 1 degrees C/modification in binding to RNA targets. Tricyclodeoxyoligonucleotides are completely stable in heat-deactivated fetal calf serum at 37 degree C. Moreover, tc-DNA-RNA duplexes are not substrates for RNase H. To test for antisense effects in vivo, we used HeLa cell lines stably expressing the human beta-globin gene with two different point mutations in the second intron. These mutations lead to the inclusion of an aberrant exon in beta-globin mRNA. Lipofectamine-mediated delivery of a 17mer tc-oligodeoxynucleotide complementary to the 3'-cryptic splice site results in correction of aberrant splicing already at nanomolar concentrations with up to 100-fold enhanced efficiency relative to a 2'-O-Me-PS-RNA oligonucleotide of the same length and sequence. In contrast to 2'-O-Me-PS-RNA, tc-DNA shows antisense activity even in the absence of lipofectamine, albeit only at much higher oligonucleotide concentrations.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Cattle
- DNA/chemistry
- DNA/genetics
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/physiology
- Fetal Blood/physiology
- Globins/genetics
- HeLa Cells
- Humans
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- RNA, Complementary/chemistry
- RNA, Complementary/genetics
- RNA, Complementary/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonuclease H/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Dorte Renneberg
- Departement für Chemie und Biochemie der Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
43
|
de Semir D, Avinyó A, Larriba S, Nunes V, Casals T, Estivill X, Aran JM. Quantitative assessment of chimeraplast stability in biological fluids by polyacrylamide gel electrophoresis and laser-assisted fluorescence analysis. Pharm Res 2002; 19:914-8. [PMID: 12134966 DOI: 10.1023/a:1016133722394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David de Semir
- Centre de Genètica Mèdica i Molecular, Institut de Recerca Oncològica, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Petersen M, Bondensgaard K, Wengel J, Jacobsen JP. Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J Am Chem Soc 2002; 124:5974-82. [PMID: 12022830 DOI: 10.1021/ja012288d] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Locked nucleic acids (LNAs) containing one or more 2'-O,4'-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. unprecedented helical thermostability when hybridized with cognate RNA and DNA. To acquire a detailed understanding of the structural features of LNA giving rise to its remarkable properties, we have conducted structural studies by use of NMR spectroscopy and now report high-resolution structures of two LNA:RNA hybrids, the LNA strands being d(5'-CTGAT(L)ATGC-3') and d(5'-CT(L)GAT(L)AT(L)GC-3'), respectively, T(L) denoting a modified LNA monomer with a thymine base, along with the unmodified DNA:RNA hybrid. In the structures, the LNA nucleotides are positioned as to partake in base stacking and Watson-Crick base pairing, and with the inclusion of LNA nucleotides, we observe a progressive change in duplex geometry toward an A-like duplex structure. As such, with the inclusion of three LNA nucleotides, the hybrid adopts an almost canonical A-type duplex geometry, and thus it appears that the number of modifications has reached a saturation level with respect to structural changes, and that further incorporations would furnish only minute changes in the duplex structure. We attempt to rationalize the conformational steering induced by the LNA nucleotides by suggesting that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.
Collapse
Affiliation(s)
- Michael Petersen
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, Odense University, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
45
|
Abstract
Mainly driven by the needs of antisense research, a large number of oligonucleotide analogues have been prepared and evaluated over the last 15 years. Besides minor structural modifications of the building blocks of DNA and RNA itself, a considerable effort has been devoted to the de novo design of nucleoside analogues with improved binding properties. A particularly successful concept turned out to be that of conformational restriction. This review focuses on recent advances in this area and tries to summarize scope and limitations of this design principle.
Collapse
Affiliation(s)
- Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
46
|
Manoharan M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:103-28. [PMID: 12074364 DOI: 10.1089/108729002760070849] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.
Collapse
Affiliation(s)
- Muthiah Manoharan
- Department of Medicinal Chemistry, Isis Pharmaceuticals, Inc, Carlsbad, CA 92008, USA.
| |
Collapse
|
47
|
Nielsen P, Christensen NK, Dalskov JK. Alpha-LNA (locked nucleic acid with alpha-D-configuration): synthesis and selective parallel recognition of RNA. Chemistry 2002; 8:712-22. [PMID: 11855719 DOI: 10.1002/1521-3765(20020201)8:3<712::aid-chem712>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alpha-LNA is presented as a stereoisomer of LNA (locked nucleic acid) with alpha-D-configuration. Three different approaches towards the thymine alpha-LNA monomer as well as the 5-methylcytosine alpha-LNA monomer are presented. Different alpha-LNA sequences have been synthesised and their hybridisation with complementary DNA and RNA has been evaluated by means of thermal stability experiments and circular dichroism spectroscopy. In a mixed pyrimidine sequence, alpha-LNA displays unprecedented parallel-stranded and selective RNA binding. Furthermore, a remarkable selectivity for hybridisation with RNA over DNA is indicated.
Collapse
Affiliation(s)
- Poul Nielsen
- Department of Chemistry, University of Southern Denmark, Odense M.
| | | | | |
Collapse
|
48
|
Herbert BS, Pongracz K, Shay JW, Gryaznov SM, Shea-Herbert B. Oligonucleotide N3'-->P5' phosphoramidates as efficient telomerase inhibitors. Oncogene 2002; 21:638-42. [PMID: 11850790 DOI: 10.1038/sj.onc.1205064] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human telomerase is a unique reverse transcriptase that is expressed in multiple cancers, but not in the vast majority of normal cells. The enzyme is responsible for telomere protection and maintenance, and supports the proliferative immortality of cancer cells. Thus, it has been proposed that the specific inhibition of telomerase activity in tumors might have significant and beneficial therapeutic effects. To this goal we have designed, synthesized, and evaluated several oligonucleotide N3'-->P5' phosphoramidates as telomerase inhibitors. These oligonucleotides are complementary to the template region of the RNA domain of telomerase (hTR). The prepared compounds were evaluated in HME50-5E breast epithelial cells, where their effects on telomerase activity were determined using a cell-based telomerase (TRAP) assay at 24 as well as 72 h after exposure to compounds. The oligo-N3'-->P5' phosphoramidate inhibited telomerase activity in cells in the presence of the cellular up-take enhancer (FuGENE6) in a dose- and sequence-dependent manner, with IC(50) values of approximately 1 nM. Inhibition of telomerase activity by this compound without the lipid carrier was not efficient. However, the isosequential oligonucleotide N3'-->P5' thio-phosphoramidate was able to inhibit telomerase activity with or without lipid carriers at nM, or low-microM concentrations, respectively. This inhibition of telomerase activity in HME50-5E cells by the oligonucleotide thio-phosphoramidates was also sequence specific. Long-term treatment of the cells with 0.5 microM of FuGENE6 formulated 13-mer thio-phosphoramidates, fully complementary to hTR, resulted in gradual telomere shortening, followed by cellular senescence and apoptosis, as would be predicted for a telomerase inhibitor. The mismatched control compound had no effect on cell proliferation. The results suggest that the oligonucleotide N3'-->P5' phosphoramidates, and particularly thio-phosphoramidates, might be further developed as selective anti-telomerase reagents.
Collapse
Affiliation(s)
- Brittney-Shea Herbert
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, TX 75390-9039, USA
| | | | | | | | | |
Collapse
|
49
|
Pruzan R, Pongracz K, Gietzen K, Wallweber G, Gryaznov S. Allosteric inhibitors of telomerase: oligonucleotide N3'-->P5' phosphoramidates. Nucleic Acids Res 2002; 30:559-68. [PMID: 11788719 PMCID: PMC99832 DOI: 10.1093/nar/30.2.559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Revised: 11/14/2001] [Accepted: 11/14/2001] [Indexed: 02/02/2023] Open
Abstract
Telomerase is a ribonucleoprotein responsible for maintaining telomeres in nearly all eukaryotic cells. The enzyme is able to utilize a short segment of its RNA subunit as the template for the reverse transcription of d(TTAGGG) repeats onto the ends of human chromosomes. Transfection with telomerase was shown to confer immortality on several types of human cells. Moreover, telomerase activation appears to be one of the key events required for malignant transformation of normal cells. Inhibition of telomerase activity in transformed cells results in the cessation of cell proliferation in cultures and provides the rationale for the selection of telomerase as a target for anticancer therapy. Using oligonucleotide N3'-->P5' phosphoramidates (NPs) we have identified a region of the human telomerase RNA subunit (hTR) approximately 100 nt downstream from the template region whose structural integrity appears crucial for telomerase enzymatic activity. The oligonucleotides targeted to this segment of hTR are potent and specific inhibitors of telomerase activity in biochemical assays. Mutant telomerase, in which 3 nt of hTR were not complementary to a 15 nt NP, was found to be refractory to inhibition by that oligonucleotide. We also demonstrated that the binding of NP, oligonucleotides to this hTR allosteric site results in a marked decrease in the affinity of a telomerase substrate (single-stranded DNA primer) for the enzyme.
Collapse
Affiliation(s)
- Ronald Pruzan
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| | | | | | | | | |
Collapse
|
50
|
Basye J, Trent JO, Gao D, Ebbinghaus SW. Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/neu promoter requires the pyrimidine motif. Nucleic Acids Res 2001; 29:4873-80. [PMID: 11726697 PMCID: PMC96684 DOI: 10.1093/nar/29.23.4873] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine-homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.
Collapse
Affiliation(s)
- J Basye
- Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | |
Collapse
|