1
|
Benoit I, Di Curzio D, Civetta A, Douville RN. Drosophila as a Model for Human Viral Neuroinfections. Cells 2022; 11:cells11172685. [PMID: 36078091 PMCID: PMC9454636 DOI: 10.3390/cells11172685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The study of human neurological infection faces many technical and ethical challenges. While not as common as mammalian models, the use of Drosophila (fruit fly) in the investigation of virus–host dynamics is a powerful research tool. In this review, we focus on the benefits and caveats of using Drosophila as a model for neurological infections and neuroimmunity. Through the examination of in vitro, in vivo and transgenic systems, we highlight select examples to illustrate the use of flies for the study of exogenous and endogenous viruses associated with neurological disease. In each case, phenotypes in Drosophila are compared to those in human conditions. In addition, we discuss antiviral drug screening in flies and how investigating virus–host interactions may lead to novel antiviral drug targets. Together, we highlight standardized and reproducible readouts of fly behaviour, motor function and neurodegeneration that permit an accurate assessment of neurological outcomes for the study of viral infection in fly models. Adoption of Drosophila as a valuable model system for neurological infections has and will continue to guide the discovery of many novel virus–host interactions.
Collapse
Affiliation(s)
- Ilena Benoit
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Domenico Di Curzio
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
| | - Renée N. Douville
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
- Correspondence:
| |
Collapse
|
2
|
Copur S, Rossing P, Afsar B, Sag AA, Siriopol D, Kuwabara M, Ortiz A, Kanbay M. A primer on metabolic memory: why existing diabesity treatments fail. Clin Kidney J 2021; 14:756-767. [PMID: 34512957 PMCID: PMC8422888 DOI: 10.1093/ckj/sfaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur with long-time exposure to metabolic derangements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | | | - Alberto Ortiz
- School of Medicine, Dialysis Unit, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Zhao Y, Shi Z, Hao Z, Zhou J, Han C, Li R, Lv Q, Liu Y, Liang C. Hypoxia-mediated down-regulation of miRNAs' biogenesis promotes tumor immune escape in bladder cancer. Clin Transl Oncol 2021; 23:1678-1687. [PMID: 33625672 DOI: 10.1007/s12094-021-02569-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The study examines the function of hypoxia-mediated down-regulation of microRNAs (miRNAs) (mir-30c, mir-135a, and mir-27a) in the process of bladder cancer immune escape. METHODS Quantitative Real-time PCR (qRT-PCR) was carried out to determine gene expression levels of Drosha and Dicer under hypoxia treatment, while western blotting and flow cytometry were used to determine protein expression. Seven reported miRNAs were identified via qRT-PCR assay. Flow cytometry detection of CD3/CD4/CD8-positive expression and statistics. Enzyme-linked immunosorbent assay (ELISA) detected cellular immune factors content. Cell apoptosis was checked via flow cytometry assay. Luciferase report assay and western blot assays were both used to verify the relationship between miRNAs and Casitas B-lineage lymphoma proto-oncogene b (Cbl-b). The animal model was established and Hematoxylin-eosin (HE) staining, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunohistochemistry (IHC) assays were separately used to verify the conclusions. RESULTS The CD3 + /CD4 + expression was increased in the hypoxia group, while CD3 + /CD8 + expression, the cellular immune factors content Interleukin-2 (IL-2) and Tumor Necrosis Factor-α (TNFα) along with the cell apoptosis were suppressed. The protein expression of Cbl-b was found to be up-regulated in the hypoxia group. After constructing the overexpression/ knockdown of Cbl-b in peripheral blood mononuclear cell (PBMC), Cbl-b has been found to promote tumor immune escape in bladder cancer. Furthermore, Cbl-b had been identified as the co-targets of mir-30c, mir-135a, and mir-27a and down-regulation of miRNA biogenesis promotes Cbl-b expression and deactivating T cells in vitro/in vivo. CONCLUSION Hypoxia-mediated down-regulation of miRNAs' biogenesis promotes tumor immune escape in bladder cancer, which could bring much more advance to the medical research on tumors.
Collapse
Affiliation(s)
- Y Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Z Shi
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Z Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
| | - J Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
| | - C Han
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - R Li
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Q Lv
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Y Liu
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - C Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China.
- Institute of Urology, Anhui Medical University, Hefei, 230000, China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
4
|
Caroleo AM, De Ioris MA, Boccuto L, Alessi I, Del Baldo G, Cacchione A, Agolini E, Rinelli M, Serra A, Carai A, Mastronuzzi A. DICER1 Syndrome and Cancer Predisposition: From a Rare Pediatric Tumor to Lifetime Risk. Front Oncol 2021; 10:614541. [PMID: 33552988 PMCID: PMC7859642 DOI: 10.3389/fonc.2020.614541] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a rare genetic condition predisposing to hereditary cancer and caused by variants in the DICER1 gene. The risk to present a neoplasm before the age of 10 years is 5.3 and 31.5% before the age of 60. DICER1 variants have been associated with a syndrome involving familial pleuropulmonary blastoma (PPB), a rare malignant tumor of the lung, which occurs primarily in children under the age of 6 years and represents the most common life-threatening manifestation of DICER1 syndrome. Type I, II, III, and Ir (type I regressed) PPB are reported with a 5-year overall survival ranging from 53 to 100% (for type Ir). DICER1 gene should be screened in all patients with PPB and considered in other tumors mainly in thyroid neoplasms (multinodular goiter, thyroid cancer, adenomas), ovarian tumors (Sertoli-Leydig cell tumor, sarcoma, and gynandroblastoma), and cystic nephroma. A prompt identification of this syndrome is necessary to plan a correct follow-up and screening during lifetime.
Collapse
Affiliation(s)
- Anna Maria Caroleo
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Maria Antonietta De Ioris
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, United States.,School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Iside Alessi
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Giada Del Baldo
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Antonella Cacchione
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Annalisa Serra
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Andrea Carai
- Department of Neuroscience, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| |
Collapse
|
5
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
6
|
Hu XB, Fu SH, Luo Q, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
8
|
DiStefano JK. Beyond the Protein-Coding Sequence: Noncoding RNAs in the Pathogenesis of Type 2 Diabetes. Rev Diabet Stud 2016; 12:260-76. [PMID: 26859655 DOI: 10.1900/rds.2015.12.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus results from a deficiency or failure to maintain normal glucose homeostasis. The most common form of the disease is type 2 diabetes (T2D), a progressive metabolic disorder characterized by elevated glucose levels that develops in response to either multi-organ insulin resistance or insufficient insulin secretion from pancreatic β-cells. Although the etiology of T2D is complex, many factors are known to contribute to defects of glucose homeostasis, including obesity, unhealthy lifestyle choices, genetic susceptibility, and environmental exposures. In addition to these factors, noncoding RNAs (ncRNAs) have been recently implicated in the pathogenesis of T2D, playing roles in several of the pathophysiological mechanisms underlying the disease, particularly in insulin-sensitive tissues such as pancreatic β-cells, liver, muscle, and adipose tissue. A growing number of publications demonstrate that polymorphisms in ncRNAs or their target genes may represent a new class of genetic variation contributing to the development of T2D. This review summarizes both the current state of knowledge of ncRNAs, specifically microRNAs (miRNAs), involved in the regulation of β-cell function, insulin sensitivity, and insulin action in peripheral organs. The role of genetic variation in miRNAs or miRNA binding sites in the pathogenesis of T2D is also discussed. While far less is known about the impact of long ncRNAs (lncRNAs) in the development of T2D, emerging evidence suggests that these molecules may be able to contribute to β-cell dysfunction in response to hyperglycemia. This article provides an overview of the studies conducted to date in this field, focusing on lncRNAs that are dysregulated in human pancreatic islets.
Collapse
|
9
|
Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci Rep 2015; 5:10693. [PMID: 26024431 PMCID: PMC4448662 DOI: 10.1038/srep10693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
In plants and invertebrates RNA silencing is a major defense mechanism against virus infections. The first event in RNA silencing is dicing of long double stranded RNAs into small interfering RNAs (siRNAs). The Dicer proteins involved in this process are phylogenetically conserved and have the same domain organization. Accordingly, the production of viral derived siRNAs has also been observed in the mouse, but only in restricted cell types. To gain insight on this restriction, we compare the dicing activity of human Dicer and fly Dicer-2 in the context of Sindbis virus (SINV) infection. Expression of human Dicer in flies inefficiently rescues the production of viral siRNAs but confers some protection against SINV. Conversely, expression of Dicer-2 in human cells allows the production of viral 21 nt small RNAs. However, this does not confer resistance to viral infection, but on the contrary results in stronger accumulation of viral RNA. We further show that Dicer-2 expression in human cells perturbs interferon (IFN) signaling pathways and antagonizes protein kinase R (PKR)-mediated antiviral immunity. Overall, our data suggest that a functional incompatibility between the Dicer and IFN pathways explains the predominance of the IFN response in mammalian somatic cells.
Collapse
|
10
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
11
|
Leti F, Taila M, DiStefano JK. The Role of ncRNA in Diabetes. MICRORNAS AND OTHER NON-CODING RNAS IN INFLAMMATION 2015:197-218. [DOI: 10.1007/978-3-319-13689-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Li F, Liang X, Chen Y, Li S, Liu J. Role of microRNA-93 in regulation of angiogenesis. Tumour Biol 2014; 35:10609-13. [PMID: 25217985 DOI: 10.1007/s13277-014-2605-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is essential for a wide variety of physiological and pathological processes. To date, many angiogenic microRNAs (miRNAs) have been identified and several of them were further investigated to elucidate the mechanisms of specific miRNAs in regulating angiogenesis. In recent studies concerning tumor and ischemia, the miRNA-93 had been demonstrated to be able to modulate angiogenesis in different molecular pathways. The miRNA-93 can promote angiogenesis via enhancing endothelial cell proliferation, migration, and tube formation. Additionally, miRNA-93-over-expressing cells developed a relationship with the blood vessels allowing tumor cells to survive and to grow well. However, high expression of miRNA-93 can depress the vascular endothelial growth factor (VEGF) secretion and its downstream molecular targets in in vivo and vitro experiments. MiRNA-93's effects on angiogenesis are dependent on the interaction of other multiple genes and signal pathways, such as P21, E2F1, integrin-β8, LATS2, etc. Future investigation should involve mapping the network by which miRNA-93 exerts its functions.
Collapse
Affiliation(s)
- Fangxuan Li
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | | | | | | |
Collapse
|
13
|
Yao M, Wang X, Tang Y, Zhang W, Cui B, Liu Q, Xing L. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L829-37. [PMID: 25172909 DOI: 10.1152/ajplung.00081.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung alveolar epithelial cells are exposed to hypoxia under a variety of physiological and pathological conditions. It has been shown recently that miR-143, which can directly target the key glycolytic enzyme hexokinase II (HK2), may be regulated by miR-155. We investigated whether microRNAs contribute to the cellular glycolysis in response to hypoxia. Using the A549 cells, we found that the expression of Dicer is decreased under hypoxia. When Dicer was knocked down with small-interfering RNA (siRNA), pre-miR143 was increased and mature miR-143 was decreased as that in hypoxia, indicating that reduction of Dicer is responsible for the change of miR-143 under hypoxia. Interestingly, both hypoxia and knockdown of Dicer resulted in miR-155 and pre-miR-155 expression increases. We also examined the expression of HK2 and glucose metabolism in the cells. Both HK2 mRNA and protein were increased under hypoxia, which is accompanied by an increase of glucose uptake and production of lactate. The same alterations were found with siRNA Dicer knockdown. Moreover, transfection with anti-miR-143 also led to a HK2 production and an increase of glucose uptake and lactate production, whereas anti-miR-155 had opposite effects. The miR-143 and anti-miR-155 transfection resulted in a significant cell apoptosis. The expression of Dicer was decreased with HK2 accumulating in mouse lung tissues under hypoxia identified by immunohistochemistry. The changes of miR-143 and miR-155 were similar to those in A549 cells. Our data demonstrate that Dicer regulation of miRNAs promotes HK2 activation and glycolysis, which might protect the cell from hypoxic damage and enter into an adaptive process.
Collapse
Affiliation(s)
- Mengying Yao
- Department of Severe Respiratory Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Tang
- Shanghai Navy Medical Institute, Shanghai, China
| | - Weihong Zhang
- Department of Anatomy, Nursing College of Zhengzhou University, Zhengzhou, China; and
| | - Bing Cui
- Center of Kidney Diseases, the First Affiliated Hospital, Henan College of Traditional Chinese Medicine, Zhengzhou, China
| | - Qiuhong Liu
- Department of Severe Respiratory Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Xing
- Department of Severe Respiratory Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| |
Collapse
|
14
|
Hu S, Cao W, Yang M, Liu H, Li L, Wang J. Molecular characterization, tissue distribution, and expression of two ovarian Dicer isoforms during follicle development in goose (Anser cygnoides). Comp Biochem Physiol B Biochem Mol Biol 2014; 170:33-41. [DOI: 10.1016/j.cbpb.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/24/2022]
|
15
|
Torres A, Torres K, Paszkowski T, Jodłowska-Jędrych B, Radomański T, Książek A, Maciejewski R. Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol 2011; 32:769-76. [PMID: 21559780 PMCID: PMC3131523 DOI: 10.1007/s13277-011-0179-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 01/10/2023] Open
Abstract
Alterations in microRNAs expression have been proposed to play role in endometrial cancer pathogenesis. Dicer and Drosha are main regulators of microRNA biogenesis and deregulation of their expression has been indicated as a possible cause of microRNAs alterations observed in various cancers. The objective of this study was to investigate Dicer and Drosha genes expression in endometrial cancer and to analyze the impact of clinicopathological characteristics on their expression. Fresh tissue samples were collected from 44 patients (26 endometroid endometrial carcinoma and 18 controls). Clinical and pathological data were acquired from medical documentation. Dicer and Drosha genes expressions were assessed by qRT-PCR using validated reference genes. Dicer and Drosha expression levels were significantly lower in endometrial cancer samples comparing to controls. Dicer was down-regulated by the factor of 1.54 (p=0.009) and Drosha gene mean expression value was 1.4 times lower in endometrial cancer group versus control group (p=0.008). Down-regulation of Dicer significantly correlated with decreased expression of Drosha (coefficient value 0.75). Decreased expression of Drosha correlated with higher histological grade and was influenced by BMI. Lower Dicer expression was found in nulli- and uniparous females comparing to multiparous individuals (p=0.002). Neither the FIGO stage nor the menstrual status had significant influence on the expression of studied genes. This study revealed for the first time that expression alterations of main regulators of microRNAs biogenesis are present in endometrial cancer tissue and could be potentially responsible for altered microRNAs profiles observed in this malignancy.
Collapse
Affiliation(s)
- Anna Torres
- Laboratory of Biostructure, Department of Human Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-094, Lublin, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kitagishi Y, Okumura N, Yoshida H, Tateishi C, Nishimura Y, Matsuda S. Dicer functions in aquatic species. JOURNAL OF AMINO ACIDS 2011; 2011:782187. [PMID: 22312469 PMCID: PMC3268030 DOI: 10.4061/2011/782187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/02/2011] [Indexed: 12/04/2022]
Abstract
Dicer is an RNase III enzyme with two catalytic subunits, which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro-RNAs, which are mainly involved in invasive nucleic acid defense and endogenous genes regulation. Dicer is abundantly expressed in embryos, indicating the importance of the protein in early embryonic development. In addition, Dicer is thought to be involved in defense mechanism against foreign nucleic acids such as viruses. This paper will mainly focus on the recent progress of Dicer-related research and discuss potential RNA interference pathways in aquatic species.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | | | | | |
Collapse
|
17
|
de Jong D, Eitel M, Jakob W, Osigus HJ, Hadrys H, Desalle R, Schierwater B. Multiple dicer genes in the early-diverging metazoa. Mol Biol Evol 2009; 26:1333-40. [PMID: 19276153 DOI: 10.1093/molbev/msp042] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dicer proteins are highly conserved, are present in organisms ranging from plants to metazoans, and are essential components of the RNA interference pathway. Although the complement of Dicer proteins has been investigated in many "higher" metazoans, there has been no corresponding characterization of Dicer proteins in any early-branching metazoan. We cloned partial cDNAs of genes belonging to the Dicer family from the anthozoan cnidarian Nematostella vectensis and two distantly related haplotypes (species lineages) of the Placozoa (Trichoplax adhaerens 16S haplotype 1 [H1] and Placozoa sp. [H2]). We also identified Dicer genes in the hydrozoan Hydra magnipapillata and the demosponge Amphimedon queenslandica with the use of publicly available sequence databases. Two Dicer genes are present in each cnidarian species, whereas five Dicer genes each are found in the Porifera and Placozoa. Phylogenetic analyses comparing these and other metazoan Dicers suggest an ancient duplication event of a "Proto-Dicer" gene. We show that the Placozoa is the only known metazoan phylum which contains both representatives of this duplication event and that the multiple Dicer genes of the "basal" metazoan phyla represent lineage-specific duplications. There is a striking diversity of Dicer genes in basal metazoans, in stark contrast to the single Dicer gene found in most higher metazoans. This new data has allowed us to formulate new hypotheses regarding the evolution of metazoan Dicer proteins and their possible functions in the early diverging metazoan phyla. We theorize that the multiple placozoan Dicer genes fulfill a specific biological requirement, such as an immune defense strategy against viruses.
Collapse
Affiliation(s)
- Danielle de Jong
- Tieraerztliche Hochschule, Division of Ecology and Evolution, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu X, Yang J, Shang F, Hong C, Guo W, Wang B, Zheng Q. Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA. Mol Biol Rep 2008; 36:1345-52. [PMID: 18636235 DOI: 10.1007/s11033-008-9318-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 07/07/2008] [Indexed: 11/26/2022]
Abstract
GIRK4 has been shown to be a subunit of I(KACh), and the use of GIRK4 in human atrial myocytes to treat arrhythmia remains an important research pursuit. Adenovirus-delivered small hairpin RNA (shRNA) has been used to mediate gene knockdown in mouse cardiocytes, yet there is no information on the successful application of this technique in human cardiocytes. In the current study, we used a siRNA validation system to select the most efficient sequence for silencing GIRK4. To this end, adenovirus-delivered shRNA, which expresses this sequence, was used to silence GIRK4 expression in human atrial myocytes. Finally, the feasibility, challenges, and results of silencing GIRK4 expression were evaluated by RT-PCR, western blotting, and the voltage-clamp technique. The levels of mRNA and protein were depressed significantly in cells infected by adenovirus-delivered shRNA against GIRK4, approximately 86.3% and 51.1% lower than those cells infected by adenovirus-delivered nonsense shRNA, respectively. At the same time, I(KACh) densities were decreased 53% by adenovirus-delivered shRNA against GIRK4. In summary, adenovirus-delivered shRNA against GIRK4 mediated efficient GIRK4 knockdown in human atrial myocytes and decreased I(KACh) densities. As such, these data indicated that adenovirus-delivered shRNA against GIRK4 is a potential tool for treating arrhythmia.
Collapse
Affiliation(s)
- Xiongtao Liu
- Department of Cardiology, Affiliated Tangdu Hospital of the Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Hooghe B, Hulpiau P, van Roy F, De Bleser P. ConTra: a promoter alignment analysis tool for identification of transcription factor binding sites across species. Nucleic Acids Res 2008; 36:W128-32. [PMID: 18453628 PMCID: PMC2447729 DOI: 10.1093/nar/gkn195] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transcription factors (TFs) are key components in signaling pathways, and the presence of their binding sites in the promoter regions of DNA is essential for their regulation of the expression of the corresponding genes. Orthologous promoter sequences are commonly used to increase the specificity with which potentially functional transcription factor binding sites (TFBSs) are recognized and to detect possibly important similarities or differences between the different species. The ConTra (conserved TFBSs) web server provides the biologist at the bench with a user-friendly tool to interactively visualize TFBSs predicted using either TransFac (1) or JASPAR (2) position weight matrix libraries, on a promoter alignment of choice. The visualization can be preceded by a simple scoring analysis to explore which TFs are the most likely to bind to the promoter of interest. The ConTra web server is available at http://bioit.dmbr.ugent.be/ConTra/index.php.
Collapse
Affiliation(s)
- Bart Hooghe
- Bioinformatics Core Facility, VIB, Department of Molecular Biology, Ghent University and Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium
| | | | | | | |
Collapse
|
20
|
Zhao H, Friedman RD, Fournier REK. The locus control region activates serpin gene expression through recruitment of liver-specific transcription factors and RNA polymerase II. Mol Cell Biol 2007; 27:5286-95. [PMID: 17526725 PMCID: PMC1952087 DOI: 10.1128/mcb.00176-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 comprises 11 serpin genes, many of which are expressed specifically in hepatic cells. Previous studies identified a locus control region (LCR) upstream of the human alpha1-antitrypsin (alpha1AT) gene that is required for gene activation, chromatin remodeling, and histone acetylation throughout the proximal serpin subcluster. Here we show that the LCR interacts with multiple liver-specific transcription factors, including hepatocyte nuclear factor 3beta (HNF-3beta), HNF-6alpha, CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta. RNA polymerase II is also recruited to the locus through the LCR. Nongenic transcription at both the LCR and an upstream regulatory region was detected, but the deletion of the LCR abolished transcription at both sites. The deletion of HNF-3 and HNF-6 binding sites within the LCR reduced histone acetylation at both the LCR and the upstream regulatory region and decreased the transcription of the alpha1AT, corticosteroid binding globulin, and protein Z-dependent protease inhibitor genes. These results suggest that the LCR activates genes in the proximal serpin subcluster by recruiting liver-specific transcription factors and components of the general transcription machinery to regulatory regions upstream of the alpha1AT gene.
Collapse
Affiliation(s)
- Hui Zhao
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
21
|
Sasaki T, Shimizu N. Evolutionary conservation of a unique amino acid sequence in human DICER protein essential for binding to Argonaute family proteins. Gene 2007; 396:312-20. [PMID: 17482383 DOI: 10.1016/j.gene.2007.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 11/28/2022]
Abstract
The Argonaute family and DICER proteins are major key proteins involved in the RNA-mediated gene silencing mechanism of various species. In this mechanism, cleavage of messenger RNAs (mRNA) or suppression of mRNA translation takes place via small RNAs that are uniquely processed by DICER. Previously, we demonstrated that human Argonaute family proteins bind to DICER. In this study, we identified a unique amino acid sequence of 127 amino acids in the RIBOc-A domain of human DICER protein as a "binding site" to Argonaute proteins. Comparative genomics analysis revealed that this unique amino acid sequence is highly conserved in the vertebrates, but not found in the non-vertebrate species. Significant difference in the RIBOc-A domain of DICER protein between vertebrate and non-vertebrate species may help exploring the functional complexity in the RNA-mediated gene silencing mechanism.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | |
Collapse
|
22
|
Tian Y, Lu L, Fu Y, Zhao J, Zhang C, Yuan Q, Shen J. Assignment of Dicer gene to chicken chromosome 5 by radiation hybrid panel mapping. Biochem Genet 2007; 45:239-43. [PMID: 17265138 DOI: 10.1007/s10528-006-9069-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yong Tian
- Laboratory of Animal Genetics, College of Animal Sciences, Zhejiang University, Hangzhou 310029, P.R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Irvin-Wilson CV, Chaudhuri G. Alternative initiation and splicing in dicer gene expression in human breast cells. Breast Cancer Res 2005; 7:R563-9. [PMID: 15987463 PMCID: PMC1175071 DOI: 10.1186/bcr1043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/25/2005] [Accepted: 04/14/2005] [Indexed: 11/10/2022] Open
Abstract
Introduction Dicer is a ribonuclease that mediates RNA interference both at the transcriptional and the post-transcriptional levels. Human dicer gene expression is regulated in different tissues. Dicer is responsible for the synthesis of microRNAs and short temporal (st)RNAs that regulate the expression of many genes. Thus, understanding the control of the expression of the dicer gene is essential for the appreciation of double-stranded (ds)RNA-mediated pathways of gene expression. Human dicer mRNA has many upstream open reading frames (uORFs) at the 5'-leader sequences (the nucleotide sequence between the 5'-end and the start codon of the major ORF), and we studied whether these elements at the 5'-leader sequences regulate the expression of the dicer gene. Method We determined the 5'-leader sequences of the dicer mRNAs in human breast cells by 5'-RACE and S1-nuclease protection analysis. We have analyzed the functions of the 5'-leader variants by reporter gene expression in vitro and in vivo. Results We found that the dicer transcripts in human breast cells vary in the sequence of their 5'-leader sequences, and that alternative promoter selection along with alternative splicing of the 5'-terminal exons apparently generate these variations. The breast cell has at least two predominant forms of dicer mRNAs, one of which has an additional 110 nucleotides at the 5'-end. Sequence comparison revealed that the first 80 nucleotides of these mRNA isoforms are encoded by a new exon located approximately 16 kb upstream of the reported start site. There are 30 extra nucleotides added to the previously reported exon 1. The human breast cells studied predominantly express two 5'-leader variants of dicer mRNAs, one with the exons 2 and 3 (long form) and the other without them (short form). By reporter gene expression analysis we found that the exon 2 and 3 sequences at the 5'-leader sequences are greatly inhibitory for the translation of the mRNA into protein. Conclusion Dicer gene expression in human breast cells is regulated by alternative promoter selection to alter the length and composition of the 5'-leader sequence of its mRNA. Furthermore, alternative splicing of its exon 2 and 3 sequences of their pre-mRNA creates a more translationally competent mRNA in these cells.
Collapse
Affiliation(s)
- Charletha V Irvin-Wilson
- Division of Cancer Biology, Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA
| | - Gautam Chaudhuri
- Division of Cancer Biology, Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
24
|
Sago N, Omi K, Tamura Y, Kunugi H, Toyo-oka T, Tokunaga K, Hohjoh H. RNAi induction and activation in mammalian muscle cells where Dicer and eIF2C translation initiation factors are barely expressed. Biochem Biophys Res Commun 2004; 319:50-7. [PMID: 15158441 DOI: 10.1016/j.bbrc.2004.04.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Dicer plays an important role in the course of RNA interference (RNAi), i.e., it digests long double-stranded RNAs into 21-25 nucleotide small-interfering RNA (siRNA) duplexes functioning as sequence-specific RNAi mediators. In this study, we investigated the expression levels of Dicer and eIF2C1 approximately 4, which, like Dicer, appear to participate in mammalian RNAi, in various mouse tissues. Results indicate that the levels of eIF2C1 approximately 4 as well as Dicer are lower in skeletal muscle and heart than in other tissues. To see if RNAi could occur under such a condition with low levels of expression of Dicer and eIF2C1 approximately 4, we examined RNAi activity in mouse skeletal muscle fibers. The results indicate that RNAi can be induced by synthetic siRNA duplexes in muscle fibers. We further examined RNAi activity during myogenic differentiation of mouse C2C12 cells. The data indicate that although the expression levels of Dicer and eIF2C1 approximately 4 decrease during the differentiation, RNAi can be induced in the cells. Altogether, the data presented here suggest that muscle cells retain the ability to induce RNAi, although Dicer and eIF2C1 approximately 4 appear to be barely expressed in them.
Collapse
Affiliation(s)
- Noriko Sago
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kawasaki H, Suyama E, Iyo M, Taira K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2003; 31:981-7. [PMID: 12560494 PMCID: PMC149204 DOI: 10.1093/nar/gkg184] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RNA interference has emerged as a powerful tool for the silencing of gene expression in animals and plants. It was reported recently that 21 nt synthetic small interfering RNAs (siRNAs) specifically suppressed the expression of endogenous genes in several lines of mammalian cells. However, the efficacy of siRNAs is dependent on the presence of a specific target site within the target mRNA and it remains very difficult to predict the best or most effective target site. In this study, we demonstrate that siRNAs that have been generated in vitro by recombinant human Dicer (re-hDicer) significantly suppress not only the exogenous expression of a puromycin-resistance gene but also the endogenous expression of H-ras, c-jun and c-fos. In our system, selection of a target site is not necessary in the design of siRNAs. However, it is important to avoid homologous sequences within a target mRNA in a given protein family. Our diced siRNA system should be a powerful tool for the inactivation of genes in mammalian cells.
Collapse
Affiliation(s)
- Hiroaki Kawasaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
26
|
Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 2003; 13:41-6. [PMID: 12526743 DOI: 10.1016/s0960-9822(02)01394-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA interference (RNAi) is the process of long, double-stranded (ds), RNA-dependent posttranscriptional gene silencing (PTGS). In lower eukaryotes, dsRNA introduced into the cytoplasm is cleaved by the RNaseIII-like enzyme, Dicer, to 21-23 nt RNA (short interfering [si] RNA), which may serve as guide for target mRNA degradation. In mammals, long-dsRNA-dependent PTGS is applicable only to a limited number of cell types, whereas siRNA synthesized in vitro is capable of effectively inducing gene silencing in a wide variety of cells. Although biochemical and genetic analyses in lower eukaryotes showed that Dicer and some PIWI family member proteins are essential for long-dsRNA-dependent PTGS, little is known about the molecular mechanisms underlying siRNA-based PTGS. Here, we show that Dicer and eIF2C translation initiation factors belonging to the PIWI family (eIF2C1-4) play an essential role in mammalian siRNA-mediated PTGS, most probably through synergistic interactions. Immunoprecipitation experiments suggest that, in human and mouse cells, complex formation occurs between Dicer and eIF2C1 or 2 and that the PIWI domain of eIF2C is essential for the formation of this complex.
Collapse
Affiliation(s)
- Noboru Doi
- Department of Biophysics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 2002; 21:5875-85. [PMID: 12411505 PMCID: PMC131079 DOI: 10.1093/emboj/cdf582] [Citation(s) in RCA: 448] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dicer is a multi-domain RNase III-related endonuclease responsible for processing double-stranded RNA (dsRNA) to small interfering RNAs (siRNAs) during a process of RNA interference (RNAi). It also catalyses excision of the regulatory microRNAs from their precursors. In this work, we describe the purification and properties of a recombinant human Dicer. The protein cleaves dsRNAs into approximately 22 nucleotide siRNAs. Accumulation of processing intermediates of discrete sizes, and experiments performed with substrates containing modified ends, indicate that Dicer preferentially cleaves dsRNAs at their termini. Binding of the enzyme to the substrate can be uncoupled from the cleavage step by omitting Mg(2+) or performing the reaction at 4 degrees C. Activity of the recombinant Dicer, and of the endogenous protein present in mammalian cell extracts, is stimulated by limited proteolysis, and the proteolysed enzyme becomes active at 4 degrees C. Cleavage of dsRNA by purifed Dicer and the endogenous enzyme is ATP independent. Additional experiments suggest that if ATP participates in the Dicer reaction in mammalian cells, it might be involved in product release needed for the multiple turnover of the enzyme.
Collapse
Affiliation(s)
| | | | - Vincent Brondani
- Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland
Present address: Institute of Medical Microbiology, University of Basel, CH-4003 Basel, Switzerland Present address: Novartis Pharma AG, CH-4056 Basel, Switzerland Corresponding author e-mail:
| | - Eric Billy
- Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland
Present address: Institute of Medical Microbiology, University of Basel, CH-4003 Basel, Switzerland Present address: Novartis Pharma AG, CH-4056 Basel, Switzerland Corresponding author e-mail:
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland
Present address: Institute of Medical Microbiology, University of Basel, CH-4003 Basel, Switzerland Present address: Novartis Pharma AG, CH-4056 Basel, Switzerland Corresponding author e-mail:
| |
Collapse
|
28
|
Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002; 21:5864-74. [PMID: 12411504 PMCID: PMC131075 DOI: 10.1093/emboj/cdf578] [Citation(s) in RCA: 332] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA silencing phenomena, known as post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference (RNAi) in animals, are mediated by double-stranded RNA (dsRNA) and mechanistically intersect at the ribonuclease Dicer. Here, we report cloning and expression of the 218 kDa human Dicer, and characterization of its ribonuclease activity and dsRNA-binding properties. The recombinant enzyme generated approximately 21-23 nucleotide products from dsRNA. Processing of the microRNA let-7 precursor by Dicer produced an apparently mature let-7 RNA. Mg(2+) was required for dsRNase activity, but not for dsRNA binding, thereby uncoupling these reaction steps. ATP was dispensable for dsRNase activity in vitro. The Dicer.dsRNA complex formed at high KCl concentrations was catalytically inactive, suggesting that ionic interactions are involved in dsRNA cleavage. The putative dsRNA-binding domain located at the C-terminus of Dicer was demonstrated to bind dsRNA in vitro. Human Dicer expressed in mammalian cells colocalized with calreticulin, a resident protein of the endoplasmic reticulum. Availability of the recombinant Dicer protein will help improve our understanding of RNA silencing and other Dicer-related processes.
Collapse
Affiliation(s)
- Patrick Provost
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| | - David Dishart
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| | - Johanne Doucet
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| | - David Frendewey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, Stockholm, S-171 77, Sweden, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, 2705 Blvd Laurier, Ste-Foy, Quebec, G1V 4G2, Canada and Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA Corresponding authors e-mail: or
| |
Collapse
|
29
|
Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20:6877-88. [PMID: 11726523 PMCID: PMC125328 DOI: 10.1093/emboj/20.23.6877] [Citation(s) in RCA: 1019] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duplexes of 21-23 nucleotide (nt) RNAs are the sequence-specific mediators of RNA interference (RNAi) and post-transcriptional gene silencing (PTGS). Synthetic, short interfering RNAs (siRNAs) were examined in Drosophila melanogaster embryo lysate for their requirements regarding length, structure, chemical composition and sequence in order to mediate efficient RNAi. Duplexes of 21 nt siRNAs with 2 nt 3' overhangs were the most efficient triggers of sequence-specific mRNA degradation. Substitution of one or both siRNA strands by 2'-deoxy or 2'-O-methyl oligonucleotides abolished RNAi, although multiple 2'-deoxynucleotide substitutions at the 3' end of siRNAs were tolerated. The target recognition process is highly sequence specific, but not all positions of a siRNA contribute equally to target recognition; mismatches in the centre of the siRNA duplex prevent target RNA cleavage. The position of the cleavage site in the target RNA is defined by the 5' end of the guide siRNA rather than its 3' end. These results provide a rational basis for the design of siRNAs in future gene targeting experiments.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Tuschl
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
Corresponding author e-mail: S.M.Elbashir and J.Martinez contributed equally to this work
| |
Collapse
|
30
|
Nykänen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001; 107:309-21. [PMID: 11701122 DOI: 10.1016/s0092-8674(01)00547-5] [Citation(s) in RCA: 664] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.
Collapse
Affiliation(s)
- A Nykänen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
31
|
Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 2001; 98:9742-7. [PMID: 11481446 PMCID: PMC55523 DOI: 10.1073/pnas.171251798] [Citation(s) in RCA: 775] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Short interfering RNAs (siRNAs) are double-stranded RNAs of approximately 21-25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5'-phosphate/3'-hydroxyl ends and a 2-base 3' overhang on each strand of the duplex. In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice. In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides. The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells. These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells.
Collapse
Affiliation(s)
- N J Caplen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
32
|
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409:363-6. [PMID: 11201747 DOI: 10.1038/35053110] [Citation(s) in RCA: 3268] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA interference (RNAi) is the mechanism through which double-stranded RNAs silence cognate genes. In plants, this can occur at both the transcriptional and the post-transcriptional levels; however, in animals, only post-transcriptional RNAi has been reported to date. In both plants and animals, RNAi is characterized by the presence of RNAs of about 22 nucleotides in length that are homologous to the gene that is being suppressed. These 22-nucleotide sequences serve as guide sequences that instruct a multicomponent nuclease, RISC, to destroy specific messenger RNAs. Here we identify an enzyme, Dicer, which can produce putative guide RNAs. Dicer is a member of the RNase III family of nucleases that specifically cleave double-stranded RNAs, and is evolutionarily conserved in worms, flies, plants, fungi and mammals. The enzyme has a distinctive structure, which includes a helicase domain and dual RNase III motifs. Dicer also contains a region of homology to the RDE1/QDE2/ARGONAUTE family that has been genetically linked to RNAi.
Collapse
Affiliation(s)
- E Bernstein
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3' ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Collapse
Affiliation(s)
- S M Elbashir
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|