1
|
Kmezic I, Gustafsson R, Hansson M, Press R. Beta-trace protein in chronic inflammatory demyelinating polyradiculoneuropathy and Guillain-Barré syndrome - clinical utilization and a new insight into pathophysiological mechanisms. J Neurol Sci 2025; 472:123439. [PMID: 40050150 DOI: 10.1016/j.jns.2025.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
INTRODUCTION Beta-trace protein (BTP) is primarily used as a marker for traumatic CSF leakage. Spinal leptomeningeal cells adjacent to the spinal nerve roots are a major producer of this protein, which has prompted interest in its relevance to inflammatory polyradiculoneuropathies. BTP has not previously been investigated in patients with Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculopathy (CIDP). MATERIAL AND METHODS BTP was measured in the cerebrospinal fluid (CSF) and plasma in patients with GBS, CIDP, disease-free controls, non-inflammatory polyneuropathies, and multiple sclerosis. RESULTS Pre-treatment levels of BTP in plasma were increased in patients with CIDP, but not GBS compared to all controls. Pre-treatment levels of BTP in CSF were increased in patients with CIDP compared to all controls but in patients with GBS compared only to disease-free controls. In patients with GBS and CIDP, levels of BTP in CSF were increased compared to disease-free controls irrespective of Q.alb, and the levels correlated with axonal damage markers in CSF and plasma. Elevated pre-treatment levels of BTP in CSF predicted therapy failure 3 months after initiation of immunotherapy in CIDP. CONCLUSIONS BTP in CSF and plasma may be a potential biomarker to aid in the diagnosis of CIDP. BTP in CSF could be a potentially more informative biomarker than albumin in a subgroup of patients with GBS and CIDP who have a normal or mildly elevated Q.alb. BTP in CSF may be predictive for therapy response in patient with CIDP, but needs to be validated in larger studies.
Collapse
Affiliation(s)
- Ivan Kmezic
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Rasmus Gustafsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hansson
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine H5, Karolinska Institutet, Stockholm, Sweden
| | - Rayomand Press
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Chen C, Zhao Z, Han J, Zhang Y, Nie G. Ptgds downregulation protect vestibular hair cells from aminoglycoside-induced vestibulotoxicity. PLoS One 2025; 20:e0320634. [PMID: 40198625 PMCID: PMC11978090 DOI: 10.1371/journal.pone.0320634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/22/2025] [Indexed: 04/10/2025] Open
Abstract
The clinical use of aminoglycosides often results in injury to vestibular hair cells and subsequent vestibular dysfunction. Thus, clarifying the targets and mechanisms underlying aminoglycoside-mediated damage is of urgent importance. Prostaglandin D2 synthase (Ptgds) is a glycoprotein that plays dual roles in lipid transport regulation and prostaglandin metabolism. However, the role of Ptgds in aminoglycoside-induced vestibular dysfunction remains unclear. This study aimed to explore the function of Ptgds in the utricle and HEI-OC1 cells. Neomycin injury induced high levels of Ptgds expression in utricle explants. Moreover, Ptgds knockdown protected against neomycin injury by enhancing cellular proliferation and viability while suppressing reactive oxygen species production, inflammation, and apoptosis. These findings suggest that Ptgds may serve as a novel therapeutic target for treating vestibular dysfunction caused by aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Chen Chen
- Collaborative Training Base of Shenzhen Second People's Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhimin Zhao
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jinghong Han
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yue Zhang
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guohui Nie
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
3
|
Blaner WS, Paik J, Brun PJ, Golczak M. Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease. Curr Top Dev Biol 2024; 161:89-111. [PMID: 39870440 PMCID: PMC12004209 DOI: 10.1016/bs.ctdb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances. Binding of retinol or 2-MAGs involves the same binding pocket and 2-MAGs are able to displace retinol binding. Consequently, RBP2 is a physiologically relevant binding protein for endocannabinoids and endocannabinoid-like substances and is a nexus where the very potent retinoid and endocannabinoid signaling pathways converge. When Rbp2-null mice are challenged orally with fat, this gives rise to elevated levels in the proximal small intestine of both 2-AG and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) in the proximal small intestine. We propose that elevation of GIP concentrations upon high fat diet feeding gives rise to obesity and the other elements of metabolic disease seen in Rbp2-null mice. Unexpectedly, we observed that RBP4 is present in secretory granules of the GIP-secreting intestinal K-cells and is co-secreted with GIP in response to a stimulus that provokes GIP secretion. Moreover, RBP4 is co-secreted along with glucagon from pancreatic alpha-cells in response to a secretory stimulus. The association during the secretory process of RBP4 with potent hormones that regulate metabolism (GIP and glucagon) accounts for at least some of the metabolic disease seen upon overexpression of Rbp4.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Chen B, Guo L, Wang L, Wu P, Zheng X, Tan C, Xie N, Sun X, Zhou M, Huang H, Hao N, Lei Y, Yan K, Wu D, Du Y. Leveraging cell death patterns to predict metastasis in prostate adenocarcinoma and targeting PTGDS for tumor suppression. Sci Rep 2024; 14:21680. [PMID: 39289451 PMCID: PMC11408614 DOI: 10.1038/s41598-024-72985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Metastasis is the major cause of treatment failure in patients with prostate adenocarcinoma (PRAD). Diverse programmed cell death (PCD) patterns play an important role in tumor metastasis and hold promise as predictive indicators for PRAD metastasis. Using the LASSO Cox regression method, we developed PCD score (PCDS) based on differentially expressed genes (DEGs) associated with PCD. Clinical correlation, external validation, functional enrichment analysis, mutation landscape analysis, tumor immune environment analysis, and immunotherapy analysis were conducted. The role of Prostaglandin D2 Synthase (PTGDS) in PRAD was examined through in vitro experiments, single-cell, and Mendelian randomization (MR) analysis. PCDS is elevated in patients with higher Gleason scores, higher T stage, biochemical recurrence (BCR), and higher prostate-specific antigen (PSA) levels. Individuals with higher PCDS are prone to metastasis, metastasis after BCR, BCR, and castration resistance. Moreover, PRAD patients with low PCDS responded positively to immunotherapy. Random forest analysis and Mendelian randomization analysis identified PTGDS as the top gene associated with PRAD metastasis and in vitro experiments revealed that PTGDS was considerably downregulated in PRAD cells against normal prostate cells. Furthermore, the overexpression of PTGDS was found to suppress the migration, invasion, proliferationof DU145 and LNCaP cells. To sum up, PCDS may be a useful biomarker for forecasting the possibility of metastasis, recurrence, castration resistance, and the efficacy of immunotherapy in PRAD patients. Additionally, PTGDS was identified as a viable therapeutic target for the management of PRAD.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Peiqiang Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyu Zheng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Congzhu Tan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Xie
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyue Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mingguo Zhou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 716000, Shaanxi Province, China
| | - Yangyang Lei
- Yan'an University, Yan'an, 710061, Shaanxi Province, China
| | - Kun Yan
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Urology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| | - Yuefeng Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Urology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
5
|
Fu H, Wang S, Xu P, Feng Z, Pan S, Ge X. Early predictive value of lipocalin-type prostaglandin D synthase for 28-day mortality in cardiac arrest patients: study protocol for a prospective study. BMJ Open 2024; 14:e083136. [PMID: 38839386 PMCID: PMC11163600 DOI: 10.1136/bmjopen-2023-083136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
INTRODUCTION Public training in cardiopulmonary resuscitation and treatment in emergency and intensive care unit have made tremendous progress. However, cardiac arrest remains a major health burden worldwide, with brain damage being a significant contributor to disability and mortality. Lipocalin-type prostaglandin D synthase (L-PGDS), which is mainly localised in the central nervous system, has been previously shown to inhibit postischemia neuronal apoptosis. Therefore, we aim to observe whether serum L-PGDS can serve as a potential biomarker and explore its role in determining the severity and prognosis of patients who have achieved restoration of spontaneous circulation (ROSC). METHODS AND ANALYSIS This is a prospective observational study. The participants (n = 60) who achieve ROSC will be distributed into two groups (non-survivor and survivor) based on 28-day survival. Healthy volunteers (n = 30) will be enrolled as controls. Each individual's relevant information will be extracted from Electronic Medical Record System in Xinhua Hospital, including demographic characteristics, clinical data, laboratory findings and so on. On days 1, 3 and 7 after ROSC, blood samples will be drawn and batch tested on the level of serum neuron-specific enolase, soluble protein 100β, L-PGDS, procalcitonin, tumour necrosis factor-alpha and interleukin-6. The cerebral performance category score was assessed on the 28th day after ROSC. ETHICS AND DISSEMINATION This study was performed with the approval of the Clinical Ethical Committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Approval No. XHEC-C-2023-130-1). The results will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry (ChiCTR2300078564).
Collapse
Affiliation(s)
- Huimin Fu
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangyuan Wang
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peixian Xu
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihui Feng
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuming Pan
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Ge
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Huang PY, Hsu BG, Wang CH, Tsai JP. The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis. Diagnostics (Basel) 2024; 14:974. [PMID: 38786272 PMCID: PMC11119092 DOI: 10.3390/diagnostics14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular (CV) diseases are the most commonly encountered etiology of mortality in patients having kidney failure. β-Trace protein (BTP) is a biomarker of glomerular filtration function as well as a potential predictor of adverse CV outcomes. This study aimed to determine the prognostic value of BTP in patients on chronic hemodialysis (HD). A total of 96 patients undergoing HD were enrolled. Baseline variables were collected, and the patients were tracked for 3 years. Twenty-five patients died at 3 years. Those who experienced mortality were noted to have higher serum concentrations of BTP and a higher incidence of diabetes mellitus (DM). The area under the receiver operating characteristic curve for serum BTP distinguishing mortality from survival was 0.659 (95% confidence interval [CI], 0.555-0.752; p = 0.027). After the adjustment of variables potentially affecting survival rates, BTP levels above the median (adjusted hazard ratio [aHR]: 2.913, 95% CI, 1.256-6.754; p = 0.013), the presence of DM (aHR: 2.474, 95% CI, 1.041-5.875; p = 0.040), and low serum albumin (aHR: 0.298, 95% CI, 0.110-0.806; p = 0.017) independently correlated with survival in HD patients. Serum BTP is a novel biomarker for predicting overall outcomes in HD patients.
Collapse
Affiliation(s)
- Po-Yu Huang
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (B.-G.H.); (C.-H.W.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (B.-G.H.); (C.-H.W.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
8
|
Yokoo H, Osawa H, Saito K, Demizu Y. Correlation between Membrane Permeability and the Intracellular Degradation Activity of Proteolysis-Targeting Chimeras. Chem Pharm Bull (Tokyo) 2024; 72:961-965. [PMID: 39537180 DOI: 10.1248/cpb.c24-00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.
Collapse
Affiliation(s)
| | - Hinata Osawa
- National Institute of Health Sciences
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University
| | | | - Yosuke Demizu
- National Institute of Health Sciences
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University
- Graduate School of Medical Life Science, Yokohama City University
| |
Collapse
|
9
|
Chen Q, Jiang H, Ding R, Zhong J, Li L, Wan J, Feng X, Peng L, Yang X, Chen H, Wang A, Jiao J, Yang Q, Chen X, Li X, Shi L, Zhang G, Wang M, Yang H, Li Q. Cell-type-specific molecular characterization of cells from circulation and kidney in IgA nephropathy with nephrotic syndrome. Front Immunol 2023; 14:1231937. [PMID: 37908345 PMCID: PMC10613708 DOI: 10.3389/fimmu.2023.1231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the pathogenesis of NS-IgAN may involve circulating immune imbalance and kidney injury; however, this has yet to be fully elucidated. To investigate the cellular and molecular status of NS-IgAN, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy. Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN patients was higher than in healthy controls. Furthermore, flow cytometry confirmed that IMs were significantly increased in pediatric patients with NS. The characteristic expression of VSIG4 and MHC class II molecules and an increase in oxidative phosphorylation may be important features of IMs in NS-IgAN. Notably, we found that the expression level of CCR2 was significantly increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets of cells: Treg1 (CCR7 high, TCF7 high, and HLA-DR low) and Treg2 (CCR7 low, TCF7 low, and HLA-DR high). We found that the levels of Treg2 cells expressed significant levels of CCR4 and GATA3, which may be related to the recovery of kidney injury. The state of NS in patients was closely related to podocyte injury. The expression levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition were significantly increased in podocytes from NS-IgAN patients. These represent key features of podocyte injury. Our analysis suggests that PTGDS is significantly downregulated following injury and may represent a new marker for podocytes. In this study, we systematically analyzed molecular events in the circulatory system and kidney tissue of pediatric patients with NS-IgAN, which provides new insights for targeted therapy in the future.
Collapse
Affiliation(s)
- Qilin Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huimin Jiang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rong Ding
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Jinjie Zhong
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Longfei Li
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Junli Wan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqian Feng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liping Peng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qin Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xuelan Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqin Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lin Shi
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
10
|
Miyamoto Y, Nakatsuji M, Yoshida T, Ohkubo T, Inui T. Structural and interaction analysis of human lipocalin-type prostaglandin D synthase with the poorly water-soluble drug NBQX. FEBS J 2023; 290:3983-3996. [PMID: 37021622 DOI: 10.1111/febs.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a secretory lipid-transporter protein that was shown to bind a wide variety of hydrophobic ligands in vitro. Exploiting this function, we previously examined the feasibility of using L-PGDS as a novel delivery vehicle for poorly water-soluble drugs. However, the mechanism by which human L-PGDS binds to poorly water-soluble drugs is unclear. In this study, we determined the solution structure of human L-PGDS and investigated the mechanism of L-PGDS binding to 6-nitro-7-sulfamoyl-benzo[f]quinoxalin-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor antagonist. NMR experiments showed that human L-PGDS has an eight-stranded antiparallel β-barrel structure that forms a central cavity, a short 310 -helix and two α-helices. Titration with NBQX was monitored using 1 H-15 N HSQC spectroscopy. At higher NBQX concentrations, some cross-peaks of the protein exhibited fast-exchanging shifts with a curvature, indicating at least two binding sites. These residues were located in the upper portion of the cavity. Singular value decomposition analysis revealed that human L-PGDS has two NBQX binding sites. Large chemical shift changes were observed in the H2-helix and A-, B-, C-, D-, H- and I-strands and H2-helix upon NBQX binding. Calorimetric experiments revealed that human L-PGDS binds two NBQX molecules with dissociation constants of 46.7 μm for primary binding and 185.0 μm for secondary binding. Molecular docking simulations indicated that these NBQX binding sites are located within the β-barrel. These results provide new insights into the interaction between poorly water-soluble drugs and human L-PGDS as a drug carrier.
Collapse
Affiliation(s)
- Yuya Miyamoto
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
11
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
12
|
Yamaguchi Y, Namgung J, Nagata J, Kawasaki T, Hara A, Todo T, Hiramatsu N. Identification and characterization of lipocalin-type prostaglandin D 2 synthase homologs in the urine of male rockfish. Gene X 2023; 854:147093. [PMID: 36476662 DOI: 10.1016/j.gene.2022.147093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Black rockfish (Sebastes schlegelii) and its relatives are viviparous marine fish. Males produce urinary proteins during the copulation season; however, the identity of these proteins was unknown. In this study, we focused on high-molecular-weight urinary proteins (HMWups) in male black rockfish. The HMWups were identified by liquid chromatography and tandem mass spectrometry (LC-MS/MS) of urine. In silico analyses of RNA-seq data predicted the tissue distribution of candidate HMWup transcripts and their gene structures. Candidate cDNAs were cloned and a recombinant protein of a major candidate was prepared. Western blotting of urine using an antiserum against the recombinant protein was performed to reconfirm the LC-MS/MS results. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were employed to validate the prediction by RNA-seq and identify the cells producing HMWups, respectively. LC-MS/MS, in conjunction with Western blotting and cDNA cloning, identified the HMWups as lipocalin-type prostaglandin D2 synthase (l-PGDS) homologs. RNA-seq analyses and qRT-PCR revealed that the l-PGDS homolog transcripts were dominantly expressed in the testis and male kidney; Sertoli cells and epithelial cells in the renal tubules were immunoreactive. These results indicated that major protein components in the urine of male black rockfish are l-PGDS homologs, potentially produced by the renal tubules in the kidney. Male rockfish (genus Sebastes) are thought to release unknown pheromone substances during mating behavior. The knowledge and tools obtained in this study empower research into the role(s) of HMWups in pheromone systems underlying rockfish reproduction. No protein-type teleost pheromone has heretofore been discovered.
Collapse
Affiliation(s)
- Yo Yamaguchi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Jin Namgung
- Education & Research Group for Future Strategy of Aquatic Life Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Jun Nagata
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takuma Kawasaki
- Mariculture Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, 1-156-3 Funami, Muroran, Hokkaido 051-0013, Japan
| | - Akihiko Hara
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takashi Todo
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Naoshi Hiramatsu
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
13
|
Otčenášková T, Macíčková E, Vondráková J, Frolíková M, Komrskova K, Stopková R, Stopka P. Proteomic analysis of the mouse sperm acrosome - towards an understanding of an organelle with diverse functionality. Eur J Cell Biol 2023; 102:151296. [PMID: 36805822 DOI: 10.1016/j.ejcb.2023.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The acrosome located within the mammalian sperm head is essential for successful fertilization, as it enables the sperm to penetrate the extracellular layers of the oocyte and fuse with oolemma. However, the mammalian acrosomal vesicle is no longer considered to contain only hydrolytic enzymes. Using label-free nano-scale liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics, we identified a total of 885 proteins in the acrosome isolated from spermatozoa obtained from cauda epididymis of free-living house mice Mus musculus musculus contains a total of 885 proteins. Among these, 334 proteins were significantly enriched in the acrosome thus representing 27.3% of the whole proteome of the intact sperm. Importantly, we have detected a total of nine calycins while eight of them belong to the lipocalin protein family. In mice, lipocalins are involved in multi-level chemical communication between individuals including pheromone transport and odor perception. Using an indirect immunofluorescence assay, we demonstrated that lipocalin 5 (LCN5) is expressed in the mouse germ cells, and after completing spermatogenesis, it remains localized in the sperm acrosome until the last step of the extratesticular maturation, the acrosome reaction. The presence of lipocalins in the acrosome and acrosome-reacted sperm suggests their original role as chelators of organic and potentially toxic compounds resulting from ongoing spermiogenesis. Along with this evidence, detected mitochondrial (e.g., a subunit of the cytochrome c oxidase MTCO1) and proteasomal proteins (subunits of both 20 S core proteasome [PSMA2, PSMBs] and 19 S regulatory particle [PSMDs]) in acrosomes provide further evidence that acrosomes could also function as `waste baskets` after testicular sperm maturation.
Collapse
Affiliation(s)
- Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Eliška Macíčková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Jana Vondráková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Michaela Frolíková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Katerina Komrskova
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
14
|
Pan L, Trimarco A, Zhang AJ, Fujimori K, Urade Y, Sun LO, Taveggia C, Zhang Y. Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination. eLife 2023; 12:e77441. [PMID: 36779701 PMCID: PMC9946447 DOI: 10.7554/elife.77441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.
Collapse
Affiliation(s)
- Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Amelia Trimarco
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Alice J Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of TokyoFukushimaJapan
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Carla Taveggia
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Shimamoto S, Nakahata Y, Hidaka Y, Yoshida T, Ohkubo T. NMR resonance assignments of mouse lipocalin-type prostaglandin D synthase/prostaglandin J 2 complex. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:225-229. [PMID: 35445291 DOI: 10.1007/s12104-022-10084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH2 to produce PGD2, an endogenous somenogen, in the brains of various mammalians. We recently reported that various other PGs also bind to L-PGDS, suggesting that it could serve as an extracellular carrier for PGs. Although the solution and crystal structure of L-PGDS has been determined, as has the structure of L-PGDS complexed PGH2 analog, a structural analysis of L-PGDS complexed with other PGs is needed in order to understand the mechanism responsible for the PG trapping. Here, we report the nearly complete 1H, 13C, and 15N backbone and side chain resonance assignments of the L-PGDS/PGJ2 complex and the binding site for PGJ2 on L-PGDS.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan.
| | - Yuta Nakahata
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Fujimori K. Prostaglandin D<sub>2</sub> and F<sub>2α</sub> as Regulators of Adipogenesis and Obesity. Biol Pharm Bull 2022; 45:985-991. [DOI: 10.1248/bpb.b22-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
18
|
Zhou P, Wu S, Huang D, Wang K, Su X, Yang R, Shao C, Wu J. Oral exposure to DEHP may stimulate prostatic hyperplasia associated with upregulation of COX-2 and L-PGDS expressions in male adult rats. Reprod Toxicol 2022; 112:160-170. [PMID: 35905844 DOI: 10.1016/j.reprotox.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine disruptor (EED), can disrupt estrogen and androgen secretion and metabolism process, thus inducing dysfunctional reproduction such as impaired gonadal development and spermatogenesis disorder. Prostaglandin synthases (PGS) catalyze various prostaglandins biosynthesis, involved in inflammatory cascade and tumorigenesis. Yet, little is known about how PGS may impact prostatic hyperplasia development and progression. This study concentrates predominantly on the potential prostatic toxicity of DEHP exposure and the mediating role of PGS. In vivo study, adult male rats were administered via oral gavage 30 μg/kg/d, 90 μg/kg/d, 270 μg/kg/d, 810 μg/kg/d DEHP or vehicle for four weeks. The results elucidated that low-dose DEHP may cause the proliferation of the prostate with an increased PCNA/TUNEL ratio. Given the importance of estrogens and androgens in prostatic hyperplasia, our first objective was to evaluate the levels of sex hormones. DEHP improved the ratio of estradiol (E2)/testosterone (T) in a dose-dependent manner and upregulated estrogen receptor alpha (ERα) and androgen receptor (AR) expressions. Prostaglandin synthases, including cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), were significantly upregulated in the ventral prostate. COX-2 and L-PGDS might mediate the tendency of prostatic hyperplasia induced by low-dose DEHP through estradiol/androgen regulation and imbalance between proliferation and apoptosis in vivo. These findings provide the first evidence that prostaglandin synthases contribute to the tendency toward benign prostatic hyperplasia induced by DEHP. Further investigations will have to be performed to facilitate an improved understanding of the role of prostaglandin synthases in DEHP-induced prostatic lesions.
Collapse
Affiliation(s)
- Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Shuangshuang Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China.
| |
Collapse
|
19
|
Hu S, Ren S, Cai Y, Liu J, Han Y, Zhao Y, Yang J, Zhou X, Wang X. Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling. Cell Death Differ 2022; 29:642-656. [PMID: 34743203 PMCID: PMC8901925 DOI: 10.1038/s41418-021-00880-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-β-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-β in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-β-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.
Collapse
Affiliation(s)
- Shunfeng Hu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Shuai Ren
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yiqing Cai
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Jiarui Liu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yang Han
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yi Zhao
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Juan Yang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China. .,School of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, 250021, Jinan, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, 250021, Jinan, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, 251006, Suzhou, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China. .,School of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, 250021, Jinan, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, 250021, Jinan, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, 251006, Suzhou, China.
| |
Collapse
|
20
|
Yokoo H, Shibata N, Endo A, Ito T, Yanase Y, Murakami Y, Fujii K, Hamamura K, Saeki Y, Naito M, Aritake K, Demizu Y. Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. J Med Chem 2021; 64:15868-15882. [PMID: 34652145 DOI: 10.1021/acs.jmedchem.1c01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Targeted protein degradation by proteolysis-targeting chimera (PROTAC) is one of the exciting modalities for drug discovery and biological discovery. It is important to select an appropriate linker, an E3 ligase ligand, and a target protein ligand in the development; however, it is necessary to synthesize a large number of PROTACs through trial and error. Herein, using a docking simulation of the ternary complex of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, H-PGDS, and cereblon, we have succeeded in developing PROTAC(H-PGDS)-7 (6), which showed potent and selective degradation activity (DC50 = 17.3 pM) and potent suppression of prostaglandin D2 production in KU812 cells. Additionally, in a Duchenne muscular dystrophy model using mdx mice with cardiac hypertrophy, compound 6 showed better inhibition of inflammatory cytokines than a potent H-PGDS inhibitor TFC-007. Thus, our results demonstrated that in silico simulation would be useful for the rational development of PROTACs.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yuta Yanase
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Yuki Murakami
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Kiyonaga Fujii
- Laboratory of Analytical Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Kengo Hamamura
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| |
Collapse
|
21
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
23
|
Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021; 49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.
Collapse
Affiliation(s)
- Leslie A Obert
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Daniela Ennulat
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | | |
Collapse
|
24
|
Yokoo H, Shibata N, Naganuma M, Murakami Y, Fujii K, Ito T, Aritake K, Naito M, Demizu Y. Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Med Chem Lett 2021; 12:236-241. [PMID: 33603969 PMCID: PMC7883460 DOI: 10.1021/acsmedchemlett.0c00605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
Although hematopoietic prostaglandin D synthase (H-PGDS) is an attractive target for treatment of a variety of diseases, including allergic diseases and Duchenne muscular dystrophy, no H-PGDS inhibitors have yet been approved for treatment of these diseases. Therefore, the development of novel agents having other modes of action to modulate the activity of H-PGDS is required. In this study, a chimeric small molecule that degrades H-PGDS via the ubiquitin-proteasome system, PROTAC(H-PGDS)-1, was developed. PROTAC(H-PGDS)-1 is composed of two ligands, TFC-007 (that binds to H-PGDS) and pomalidomide (that binds to cereblon). PROTAC(H-PGDS)-1 showed potent activity in the degradation of H-PGDS protein via the ubiquitin-proteasome system and in the suppression of prostaglandin D2 (PGD2) production. Notably, PROTAC(H-PGDS)-1 showed sustained suppression of PGD2 production after the drug removal, whereas PGD2 production recovered following removal of TFC-007. Thus, the H-PGDS degrader-PROTAC(H-PGDS)-1-is expected to be useful in biological research and clinical therapies.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Norihito Shibata
- Division
of Biochemistry, National Institute of Health
Sciences, Kanagawa, Japan
| | - Miyako Naganuma
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Yuki Murakami
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Kiyonaga Fujii
- Laboratory
of Analytical Chemistry, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Kosuke Aritake
- Laboratory
of Chemical Pharmacology, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Mikihiko Naito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Laboratory
of Targeted Protein Degradation, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| |
Collapse
|
25
|
Perera SN, Williams RM, Lyne R, Stubbs O, Buehler DP, Sauka-Spengler T, Noda M, Micklem G, Southard-Smith EM, Baker CVH. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. Glia 2020; 68:2550-2584. [PMID: 32857879 PMCID: PMC7116175 DOI: 10.1002/glia.23870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.
Collapse
Affiliation(s)
- Surangi N. Perera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ruth M. Williams
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Oliver Stubbs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dennis P. Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Clare V. H. Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Sert ET, Akilli N, Köylü R, Cander B, Kokulu K, Köylü Ö. The Effect of Beta-Trace Protein on Diagnosis and Prognosis in Patients with Acute Coronary Syndrome. Cureus 2020; 12:e7135. [PMID: 32257680 PMCID: PMC7105264 DOI: 10.7759/cureus.7135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective The purpose of this study was to determine the effect of beta-trace protein (BTP) levels at the time of admission and at 8th hour on diagnosis and prognosis in patients who were under treatment and follow-up with acute coronary syndrome (ACS) diagnosis at coronary intensive care unit and emergency department. Materials and Methods This study was conducted between June 2014 and December 2014 at the Emergency Department of Konya Training and Research Hospital. Demographic characteristics, background, vital findings, laboratory findings, blood BTP levels, coronary angiography results, and echocardiography findings of the patients diagnosed with ACS were recorded. Risk classification was performed for patients with ACS and their mortality rates were recorded. Relation of BTP level with risk classification and mortality was evaluated. Results A total of 174 individuals, 138 patients and 36 control subjects, were included in the study. No significant difference was detected between BTP levels at the time of admission and at 8th hour in the patient group (p=0.883). There was no difference between the patient and control groups in terms of the BTP level (p=0.335). Ten patients (7.2%) died in the patient group. BTP levels measured at the time of admission and at 8th hour were not different for dead and living patients (admission p=0.085, 8th hour p=0.141). Conclusion We determined that there was a lack of biochemical markers that could be used for the prognosis of serum BTP levels in patients admitting to the emergency unit with ACS.
Collapse
Affiliation(s)
- Ekrem T Sert
- Emergency Medicine, Aksaray University Medical School, Aksaray, TUR
| | - Nazire Akilli
- Emergency Medicine, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| | - Ramazan Köylü
- Emergency Medicine, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| | - Basar Cander
- Emergency Medicine, Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, Istanbul, TUR
| | - Kamil Kokulu
- Emergency Medicine, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, TUR
| | - Öznur Köylü
- Biochemistry, Konya Training and Research Hospital, University of Health Sciences, Konya, TUR
| |
Collapse
|
27
|
A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nat Commun 2020; 11:782. [PMID: 32034128 PMCID: PMC7005839 DOI: 10.1038/s41467-020-14458-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor expression in the mPFC-NAc pathway promotes the addiction-like phenotype. Our study unravels a new neurobiological mechanism underlying resilience and vulnerability to the development of food addiction, which could pave the way towards novel and efficient interventions for this disorder. Food addiction is linked to obesity and eating disorders. In a mouse model of food addiction, the authors show that a medial prefrontal cortex-nucleus accumbens pathway is involved in vulnerability and resilience against the development of food addiction-like behavior.
Collapse
|
28
|
Abstract
Antibacterial agents are a group of materials that selectively destroy bacteria by interfering with bacterial growth or survival. With the emergence of resistance phenomenon of bacterial pathogens to current antibiotics, new drugs are frequently entering into the market along with the existing drugs, and the alternative compounds with antibacterial functions are being explored. Due to the advantages of their inherent biochemical and biophysical properties including precise targeting ability, biocompatibility, biodegradability, long blood circulation time, and low cytotoxicity, biomolecules such as peptides, carbohydrates, and nucleic acids have huge potential for the antimicrobial application and have been extensively studied in recent years. In this review, antimicrobial therapeutic agents composed of three kinds of functional biological molecules were summarized. In addition, the research progress of antibacterial mechanism, chemical modification, and nanoparticle coupling of those biomolecules were also discussed.
Collapse
|
29
|
Weiler CR, Austen KF, Akin C, Barkoff MS, Bernstein JA, Bonadonna P, Butterfield JH, Carter M, Fox CC, Maitland A, Pongdee T, Mustafa SS, Ravi A, Tobin MC, Vliagoftis H, Schwartz LB. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol 2019; 144:883-896. [DOI: 10.1016/j.jaci.2019.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
30
|
Werder RB, Lynch JP, Simpson JC, Zhang V, Hodge NH, Poh M, Forbes-Blom E, Kulis C, Smythe ML, Upham JW, Spann K, Everard ML, Phipps S. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN- λ production. Sci Transl Med 2019; 10:10/440/eaao0052. [PMID: 29743346 DOI: 10.1126/scitranslmed.aao0052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Prostaglandin D2 (PGD2) signals through PGD2 receptor 2 (DP2, also known as CRTH2) on type 2 effector cells to promote asthma pathogenesis; however, little is known about its role during respiratory syncytial virus (RSV) bronchiolitis, a major risk factor for asthma development. We show that RSV infection up-regulated hematopoietic prostaglandin D synthase expression and increased PGD2 release by cultured human primary airway epithelial cells (AECs). Moreover, PGD2 production was elevated in nasopharyngeal samples from young infants hospitalized with RSV bronchiolitis compared to healthy controls. In a neonatal mouse model of severe viral bronchiolitis, DP2 antagonism decreased viral load, immunopathology, and morbidity and ablated the predisposition for subsequent asthma onset in later life. This protective response was abolished upon dual DP1/DP2 antagonism and replicated with a specific DP1 agonist. Rather than mediating an effect via type 2 inflammation, the beneficial effects of DP2 blockade or DP1 agonism were associated with increased interferon-λ (IFN-λ) [interleukin-28A/B (IL-28A/B)] expression and were lost upon IL-28A neutralization. In RSV-infected AEC cultures, DP1 activation up-regulated IFN-λ production, which, in turn, increased IFN-stimulated gene expression, accelerating viral clearance. Our findings suggest that DP2 antagonists or DP1 agonists may be useful antivirals for the treatment of viral bronchiolitis and possibly as primary preventatives for asthma.
Collapse
Affiliation(s)
- Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Jennifer C Simpson
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia.,Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia
| | - Vivian Zhang
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia
| | - Nick H Hodge
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Matthew Poh
- School of Paediatrics and Child Health, University of Western Australia, Western Australia 6840, Australia
| | | | - Christina Kulis
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - John W Upham
- Diamantina Institute, University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland 4102, Australia
| | - Kirsten Spann
- Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4067, Australia.,School of Biomedical Sciences, Queensland University of Technology, Queensland 4001, Australia
| | - Mark L Everard
- School of Paediatrics and Child Health, University of Western Australia, Western Australia 6840, Australia
| | - Simon Phipps
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia. .,Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4067, Australia
| |
Collapse
|
31
|
Chai D, Cheng Y, Sun Y, Yan J, Hu R, Zhang L, Jiang H. Multiple sevoflurane exposures during pregnancy inhibit neuronal migration by upregulating prostaglandin D2 synthase. Int J Dev Neurosci 2019; 78:77-82. [PMID: 31499143 DOI: 10.1016/j.ijdevneu.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The second trimester is a period of neurogenesis and neuronal migration, which may be affected by exposure to anesthetics. Studies have suggested that multiple anesthetic exposures may have a significant impact on neuronal migration. METHODS Pregnant C57BL/6 mice at embryonic day 14.5 were randomly divided into four groups: Con x 1, Sev x 1, Con x 2, and Sev x 2. Cortical neuronal migration in offspring mice was detected by GFP immunostaining, and the number of cells in the cortex was analyzed. RESULTS Dual exposure to sevoflurane, not single sevoflurane exposure, caused neuronal migration deficits. Dual exposure to sevoflurane increased the expression of prostaglandin D2 synthase (Ptgds). Furthermore, Ptgds siRNA attenuated neuronal migration deficits induced by dual sevoflurane exposure. CONCLUSION Our study suggests that multiple sevoflurane exposures in pregnant mice may induce neuronal migration deficits in offspring mice. Additional studies comprising long-term behavioral tests are required to confirm the effects of sevoflurane exposure during pregnancy.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyong Cheng
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hu
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression. Neurobiol Dis 2019; 127:482-491. [DOI: 10.1016/j.nbd.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023] Open
|
33
|
Expression of prostaglandin (PG) D synthase lipocalin and hematopoietic type and PG D receptor during restart of spermatogenesis following downregulation using a slow release GnRH agonist implant in the dog. Cell Tissue Res 2019; 378:359-370. [PMID: 31256286 DOI: 10.1007/s00441-019-03059-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/14/2019] [Indexed: 01/30/2023]
Abstract
Prostaglandin D and the associated prostaglandin D synthases (PGDS) and receptor (DP) are considered to be involved in spermatogenesis. However, the interplay of the PGDS-DP system in male reproduction is far from being understood. The expression of PGDS lipocalin (L) and hematopoietic (H) type and DP was studied in the GnRH agonist-downregulated canine testis (week, w 0) and during recrudescence of spermatogenesis after implant removal (w 3, 6, 9, 12). H-PGDS, L-PGDS and DP were present in the adult (CG), juvenile (JG) and downregulated canine testis at the mRNA level. PGDS immunohistochemistry revealed positive staining in the cytoplasm of Leydig cells (LCs) of all samples i.e., no difference between groups. mRNA expression (ratio) of L-, H-PGDS and DP did not differ between groups w 0-12 and CG. In contrast, significant differences were found for L-PGDS (p = 0.0388), H-PGDS (p < 0.001) and DP (p < 0.001) for the groups at downregulation (w0, suprelorin group, SG, profact group, PRG) compared with the control groups (JG, CG). L-PGDS expression was lowest in JG, whereas H-PGDS was significantly lower in CG compared with JG and at downregulation (p < 0.001 to p < 0.01). The highest ratio for H-PGDS and DP was observed in the dogs treated with buserelin acetate (PRG). Our data show that the PGDS-DP system is expressed in juvenile and adult canine testes and that downregulation of the testicular endocrine and germinative function significantly affects H-PGDS, L-PGDS and DP mRNA expression indicating a role in the regulation of spermatogenesis.
Collapse
|
34
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
35
|
The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella. Biometals 2019; 32:453-467. [PMID: 30810876 PMCID: PMC6584246 DOI: 10.1007/s10534-019-00180-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether Ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores.
Collapse
|
36
|
L-PGDS-produced PGD 2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep 2019; 9:1931. [PMID: 30760783 PMCID: PMC6374461 DOI: 10.1038/s41598-018-38453-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is responsible for the production of PGD2 in adipocytes and is selectively induced by a high-fat diet (HFD) in adipose tissue. In this study, we investigated the effects of HFD on obesity and insulin resistance in two distinct types of adipose-specific L-PGDS gene knockout (KO) mice: fatty acid binding protein 4 (fabp4, aP2)-Cre/L-PGDSflox/flox and adiponectin (AdipoQ)-Cre/L-PGDSflox/flox mice. The L-PGDS gene was deleted in adipocytes in the premature stage of the former strain and after maturation of the latter strain. The L-PGDS expression and PGD2 production levels decreased in white adipose tissue (WAT) under HFD conditions only in the aP2-Cre/L-PGDSflox/flox mice, but were unchanged in the AdipoQ-Cre/L-PGDSflox/flox mice. When fed an HFD, aP2-Cre/L-PGDSflox/flox mice significantly reduced body weight gain, adipocyte size, and serum cholesterol and triglyceride levels. In WAT of the HFD-fed aP2-Cre/L-PGDSflox/flox mice, the expression levels of the adipogenic, lipogenic, and M1 macrophage marker genes were decreased, whereas those of the lipolytic and M2 macrophage marker genes were enhanced or unchanged. Insulin sensitivity was improved in the HFD-fed aP2-Cre/L-PGDSflox/flox mice. These results indicate that PGD2 produced by L-PGDS in premature adipocytes is involved in the regulation of body weight gain and insulin resistance under nutrient-dense conditions.
Collapse
|
37
|
Enko D, Meinitzer A, Scharnagl H, Stojakovic T, Kleber ME, Delgado GE, Zelzer S, Drechsler C, Krämer BK, Wanner C, März W, Woitas RP. Prospective cohort studies of beta-trace protein and mortality in haemodialysis patients and patients undergoing coronary angiography. Nephrol Dial Transplant 2018; 33:1984-1991. [PMID: 29474602 DOI: 10.1093/ndt/gfy025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background Beta-trace protein (BTP) is a low-molecular-weight glycoprotein, which may serve as an endogenous biomarker of kidney function and cardiovascular risk. Methods We examined cardiovascular and all-cause mortality according to BTP concentrations in 2962 individuals referred for coronary angiography from the Ludwigshafen Risk and Cardiovascular Health study and in 907 patients with Type 2 diabetes mellitus undergoing haemodialysis from the German Diabetes and Dialysis (4D) study. Results Haemodialysis patients had considerably higher median (interquartile range) BTP concentrations [6.00 (4.49-7.96) mg/L] and experienced a 4-fold increased mortality rate compared with coronary angiography patients [BTP concentration: 0.55 (0.44-0.67) mg/L]. After adjustment for age, sex, cardiovascular risk factors and creatinine, 4D patients in the highest quartile (>7.96 mg/L) had a 1.6-fold increased rate of all-cause mortality [hazard ratio (HR) 1.62, 95% confidence interval (CI) 1.19-2.20] compared with the lowest quartile (<4.49 mg/L) (P = 0.002) In patients undergoing coronary angiography, the adjusted HRs (95% CI) for all-cause and cardiovascular mortality were 1.23 (1.0-1.51) and 1.27 (0.99-1.63) in the highest (>0.67 mg/L) compared with the lowest (<0.44 mg/L) quartile (P = 0.043 and 0.062). In both cohorts, the BTP/creatinine ratio was a stronger predictor of all-cause and cardiovascular mortality compared with BTP. Conclusion BTP was associated with all-cause mortality independently of renal function in haemodialysis patients. The BTP/creatinine ratio was more predictive for all-cause and cardiovascular mortality in haemodialysis patients and individuals referred for angiography compared with BTP as single marker.
Collapse
Affiliation(s)
- Dietmar Enko
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Steyr, Steyr, Austria.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christiane Drechsler
- Division of Nephrology, University of Würzburg, University Hospital, Würzburg, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Wanner
- Division of Nephrology, University of Würzburg, University Hospital, Würzburg, Germany
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Synlab Academy, Synlab Holding Germany GmbH, Mannheim and Augsburg, Germany
| | - Rainer P Woitas
- Division of Nephrology, Department of Internal Medicine I, Medical University of Bonn, Bonn.,KfH Renal Center Bonn, Bonn, Germany
| |
Collapse
|
38
|
Bezerra MJB, Silva MB, Lobo CH, Vasconcelos FR, Lobo MD, Monteiro-Moreira ACO, Moreira RA, Machado-Neves M, Figueiredo JR, Moura AA. Gene and protein expression in the reproductive tract of Brazilian Somalis rams. Reprod Domest Anim 2018; 54:939-948. [PMID: 30246506 DOI: 10.1111/rda.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Brazilian Somalis is a locally-adapted breed of rams raised in tropical climate and native pastures. The present study was conducted to evaluate gene expression and proteome of the reproductive tract of such rams. Samples were collected from testes, epididymides, seminal vesicles and bulbourethral glands of four rams. Expression of clusterin (CLU), osteopontin (OPN) and prostaglandin D2 synthase (PGDS) genes were evaluated in all samples by real-time PCR. Shotgun proteomic analysis was performed using samples from the head, corpus and cauda epididymides and from all other structures as well. Gene ontology terms and protein interactions were obtained from UniProtKB databases and MetaCore v.6.8 platform. CLU trasncripts were detected in the testes, epididymides, seminal vesicles and bulbourethral glands of the Somalis rams. The initial region and body of the epididymis had the greatest CLU expression. OPN mRNA was localized in all tissues of the ram reproductive tract. PGDS mRNA was detected in the testes and epididymides. Lable-free mass spectrometry allowed the identification of 137 proteins in all samples. Proteins of the epididymis head mainly participate in cellular processes and response to stimulus, participating in catalityc activity and binding. Proteins of epididymis body acted as regulatory proteins and in cellular processes, with binding and catalytic activity. Cauda epididymis molecules were associated with cellular processes and regulation, with binding function and catalytic activity as well. Testis proteins were mainly linked to cell processes and response to stimuli, and had catalytic function. Seminal vesicle proteins were involved in regulation and mainly with binding functions. Most bulbourethral gland proteins participated in cellular processes. The present study is the first to evaluate the proteome and gene expressions in the reproductive tract of Brazilian Somalis rams. Such pieces of information bring significant cointribution for the understanding of the reproductive physiology of locally-adapted livestock.
Collapse
Affiliation(s)
| | - Mariana B Silva
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Carlos H Lobo
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Fábio R Vasconcelos
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marina D Lobo
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - Renato A Moreira
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - José R Figueiredo
- School of Veterinary Medicine, CearaState University, Fortaleza, Ceara, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
39
|
Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Babich J, Figueiredo-Pereira ME. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflammation 2018; 15:272. [PMID: 30236122 PMCID: PMC6146649 DOI: 10.1186/s12974-018-1305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostaglandins are products of the cyclooxygenase pathway, which is implicated in Parkinson's disease (PD). Limited knowledge is available on mechanisms by which prostaglandins contribute to PD neurodegeneration. To address this gap, we focused on the prostaglandin PGD2/J2 signaling pathway, because PGD2 is the most abundant prostaglandin in the brain, and the one that increases the most under pathological conditions. Moreover, PGJ2 is spontaneously derived from PGD2. METHODS In this study, we determined in rats the impact of unilateral nigral PGJ2-microinfusions on COX-2, lipocalin-type PGD2 synthase (L-PGDS), PGD2/J2 receptor 2 (DP2), and 15 hydroxyprostaglandin dehydrogenase (15-PGDH). Nigral dopaminergic (DA) and microglial distribution and expression levels of these key factors of the prostaglandin D2/J2 pathway were evaluated by immunohistochemistry. PGJ2-induced motor deficits were assessed with the cylinder test. We also determined whether oral treatment with ibuprofen improved the PD-like pathology induced by PGJ2. RESULTS PGJ2 treatment induced progressive PD-like pathology in the rats. Concomitant with DA neuronal loss in the substantia nigra pars compacta (SNpc), PGJ2-treated rats exhibited microglia and astrocyte activation and motor deficits. In DA neurons, COX-2, L-PGDS, and 15-PGDH levels increased significantly in PGJ2-treated rats compared to controls, while DP2 receptor levels were unchanged. In microglia, DP2 receptors were basically non-detectable, while COX-2 and L-PGDS levels increased upon PGJ2-treatment, and 15-PGDH remained unchanged. 15-PGDH was also detected in oligodendrocytes. Notably, ibuprofen prevented most PGJ2-induced PD-like pathology. CONCLUSIONS The PGJ2-induced rat model develops progressive PD pathology, which is a hard-to-mimic aspect of this disorder. Moreover, prevention of most PGJ2-induced PD-like pathology with ibuprofen suggests a positive feedback mechanism between PGJ2 and COX-2 that could lead to chronic neuroinflammation. Notably, this is the first study that analyzes the nigral dopaminergic and microglial distribution and levels of factors of the PGD2/J2 signaling pathway in rodents. Our findings support the notions that upregulation of COX-2 and L-PGDS may be important in the PGJ2 evoked PD-like pathology, and that neuronal DP2 receptor antagonists and L-PGDS inhibitors may be novel pharmacotherapeutics to relieve neuroinflammation-mediated neurodegeneration in PD, circumventing the adverse side effects of cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Chuhyon Corwin
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Allen L Pan
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Mariela Nunez-Santos
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA.
| |
Collapse
|
40
|
den Bakker E, Gemke R, Pottel H, van Wijk JAE, Hubeek I, Stoffel-Wagner B, Bökenkamp A. Estimation of GFR in children using rescaled beta-trace protein. Clin Chim Acta 2018; 486:259-264. [PMID: 30121167 DOI: 10.1016/j.cca.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Beta-trace protein (BTP) is a low molecular weight protein, produced mainly in the cerebrospinal fluid. It has been proposed as a marker for kidney function. Recently, a new method for GFR estimation using mean normal values to rescale GFR marker concentrations has been described for creatinine and cystatin C, two commonly used endogenous markers for kidney function. The aim of this study is to apply this approach to BTP in children. METHOD We retrospectively analyzed serum concentrations of creatinine, cystatin C and BTP measured during inulin clearance tests in children. BTP was measured using a particle-enhanced immunonephelometric assay (Siemens Healthcare). A novel BTP-based eGFR equation was developed using published normal values for children: eGFRBTP[ml/min/1.73m2] = 107.3/BTP/QBTP with QBTP = 0.69. Performance of this equation was compared to the established creatinine-based full age spectrum equation FASage and the cystatin C-based FAScys equations as well as the BTP-based Benlamri equation in terms of bias, % prediction error and P30 and P10 accuracy rates. RESULTS 322 inulin clearance tests were studied. Overall, our novel equation performed comparably to the creatinine-based FASage and the BTP-based Benlamri equations but was less accurate than FAScys (P30: 79.2 vs 86.3%, p = .008). Combining markers significantly enhanced performance compared to the single marker equations, with the exception of FAScys. CONCLUSION Rescaled BTP concentrations are a simple method for estimating GFR in children. However, the additional value of BTP for the estimation of GFR compared to rescaled creatinine and cystatin C still remains to be demonstrated.
Collapse
Affiliation(s)
- Emil den Bakker
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Reinoud Gemke
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
| | - Joanna A E van Wijk
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Isabelle Hubeek
- Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Clinics, Bonn, Germany
| | - Arend Bökenkamp
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Hernandez-Carretero A, Weber N, La Frano MR, Ying W, Rodriguez JL, Sears DD, Wallenius V, Börgeson E, Newman JW, Osborn O. Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes (Lond) 2018; 42:728-736. [PMID: 29089614 PMCID: PMC6055936 DOI: 10.1038/ijo.2017.266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Obesity induces significant changes in lipid mediators, however, the extent to which these changes persist after weight loss has not been investigated. SUBJECTS/METHODS We fed C57BL6 mice a high-fat diet to generate obesity and then switched the diet to a lower-fat diet to induce weight loss. We performed a comprehensive metabolic profiling of lipid mediators including oxylipins, endocannabinoids, sphingosines and ceramides in key metabolic tissues (including adipose, liver, muscle and hypothalamus) and plasma. RESULTS We found that changes induced by obesity were largely reversible in most metabolic tissues but the adipose tissue retained a persistent obese metabolic signature. Prostaglandin signaling was perturbed in the obese state and lasting increases in PGD2, and downstream metabolites 15-deoxy PGJ2 and delta-12-PGJ2 were observed after weight loss. Furthermore expression of the enzyme responsible for PGD2 synthesis (hematopoietic prostaglandin D synthase, HPGDS) was increased in obese adipose tissues and remained high after weight loss. We found that inhibition of HPGDS over the course of 5 days resulted in decreased food intake in mice. Increased HPGDS expression was also observed in human adipose tissues obtained from obese compared with lean individuals. We then measured circulating levels of PGD2 in obese patients before and after weight loss and found that while elevated relative to lean subjects, levels of this metabolite did not decrease after significant weight loss. CONCLUSIONS These results suggest that lasting changes in lipid mediators induced by obesity, still present after weight loss, may play a role in the biological drive to regain weight.
Collapse
Affiliation(s)
| | - Natalie Weber
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael R. La Frano
- Department of Nutrition, University of California, Davis, CA, USA
- NIH West Coast Metabolomics Center, Davis, CA, USA
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Juan Lantero Rodriguez
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dorothy D. Sears
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Börgeson
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA, USA
- NIH West Coast Metabolomics Center, Davis, CA, USA
- Obesity and Metabolism Research Unit, USDA-ARS-Western Human Nutrition Research Center, Davis, CA, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
42
|
den Bakker E, Gemke RJBJ, Bökenkamp A. Endogenous markers for kidney function in children: a review. Crit Rev Clin Lab Sci 2018; 55:163-183. [DOI: 10.1080/10408363.2018.1427041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emil den Bakker
- Department of Pediatric Nephrology, VU Medical Centre, Amsterdam, The Netherlands
| | | | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Motawi TK, Shehata NI, ElNokeety MM, El-Emady YF. Potential serum biomarkers for early detection of diabetic nephropathy. Diabetes Res Clin Pract 2018; 136:150-158. [PMID: 29253627 DOI: 10.1016/j.diabres.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/09/2022]
Abstract
AIM Diabetic nephropathy (DN) is considered as one of the diabetic complications affecting up to 40% of patients with type 1 or type 2 diabetes. In clinical practice, the frequently used markers of renal disease and progression are serum creatinine, estimated glomerular filtration rate (eGFR) and albuminuria. The aim of this study is to determine new biomarkers in human serum which are promising for early detection of DN. METHODS This study included 50 patients with type 2 diabetes mellitus (T2DM) and 25 clinically healthy individuals. The patients were divided into two groups; group I included 25 T2DM patients with normoalbuminuria, and group II consisted of 25 T2DM patients with microalbuminuria. In all groups, neutrophil gelatinase-associated lipocalin (NGAL), β-trace protein (βTP) and microRNA- 130b (miR-130b) were estimated. RESULTS The serum levels of NGAL and βTP were significantly elevated in T2DM patients with microalbuminuria (group II) compared with T2DM patients with normoalbuminuria (group I) and control subjects but there was no significant difference between group I and control subjects. Serum miR-130b level was significantly decreased in patients with T2DM (groups I and II) compared with healthy control subjects, with a higher decrease in their levels in group II compared with group I. CONCLUSION Our results suggest that serum NGAL and βTP as tubular and glomerular markers respectively, together with serum miR-130b may be independent and reliable biomarkers for early detection of DN in patients with T2DM.
Collapse
Affiliation(s)
- Tarek Kamal Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, St. Cairo 11562, Egypt
| | - Nagwa Ibrahim Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, St. Cairo 11562, Egypt
| | - Mahmoud Mohamed ElNokeety
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Kasr Al Ainy, St. Cairo 11562, Egypt
| | - Yasmin Farid El-Emady
- The Holding Company for Biological Products & Vaccines (VACSERA), 51 Wezaret ElZeraa St., Agouza, Giza 12622, Egypt.
| |
Collapse
|
44
|
Santos RB, Pires AS, Abranches R. Addition of a histone deacetylase inhibitor increases recombinant protein expression in Medicago truncatula cell cultures. Sci Rep 2017; 7:16756. [PMID: 29196720 PMCID: PMC5711867 DOI: 10.1038/s41598-017-17006-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Plant cell cultures are an attractive platform for the production of recombinant proteins. A major drawback, hindering the establishment of plant cell suspensions as an industrial platform, is the low product yield obtained thus far. Histone acetylation is associated with increased transcription levels, therefore it is expected that the use of histone deacetylase inhibitors would result in an increase in mRNA and protein levels. Here, this hypothesis was tested by adding a histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), to a cell line of the model legume Medicago truncatula expressing a recombinant human protein. Histone deacetylase inhibition by SAHA and histone acetylation levels were studied, and the effect of SAHA on gene expression and recombinant protein levels was assessed by digital PCR. SAHA addition effectively inhibited histone deacetylase activity resulting in increased histone acetylation. Higher levels of transgene expression and accumulation of the associated protein were observed. This is the first report describing histone deacetylase inhibitors as inducers of recombinant protein expression in plant cell suspensions as well as the use of digital PCR in these biological systems. This study paves the way for employing epigenetic strategies to improve the final yields of recombinant proteins produced by plant cell cultures.
Collapse
Affiliation(s)
- Rita B Santos
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av República, 2780-157, Oeiras, Portugal
| | - Ana Sofia Pires
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av República, 2780-157, Oeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
45
|
Teraoka Y, Kume S, Lin Y, Atsuji S, Inui T. Comprehensive Evaluation of the Binding of Lipocalin-Type Prostaglandin D Synthase to Poorly Water-Soluble Drugs. Mol Pharm 2017; 14:3558-3567. [PMID: 28829147 DOI: 10.1021/acs.molpharmaceut.7b00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low water solubility of candidate drug compounds is a major problem in pharmaceutical research and development. We developed a novel drug delivery system (DDS) for poorly water-soluble drugs using lipocalin-type prostaglandin D synthase (L-PGDS), which belongs to the lipocalin superfamily and binds a large variety of hydrophobic molecules. In this study, we comprehensively evaluated the capability of L-PGDS to bind and solubilize various poorly water-soluble drugs using structure-based docking. Docking simulations of 2892 commercially available approved drugs indicated that L-PGDS shows higher binding affinities for various drugs compared with 2-hydroxypropyl-β-cyclodextrin. Five drugs selected from the top 100 with the highest binding affinities for L-PGDS exhibited very low solubility in PBS (pH 7.4). However, in the presence of 1 mM L-PGDS, the apparent solubility of all drugs improved markedly, from 19.5- to 166-fold. Calorimetric experiments on two drugs, telmisartan and imatinib, revealed that L-PGDS forms a 1:2 complex with each drug, with dissociation constants of 0.4-40.0 μM. Kinetic simulations of drug dissolution with L-PGDS indicated that the difference in free energy change (ΔΔG) between the insoluble state and the L-PGDS-bound state are within the range from -10 to +5 kJ mol-1. The ΔΔG value is a critical factor in evaluating whether a poorly water-soluble drug can be solubilized by L-PGDS. Collectively, these results demonstrate that in silico docking is a promising approach for identifying drug molecules suitable for the L-PGDS-based DDS.
Collapse
Affiliation(s)
- Yoshiaki Teraoka
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Research Fellow of the Japan Society for the Promotion of Science , 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Satoshi Kume
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies , 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Health Metrics Development Team, Integrated Research Group, RIKEN Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub , 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuxi Lin
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies , 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shogo Atsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
46
|
Tsutsumi S, Ogino I, Miyajima M, Nonaka S, Ito M, Yasumoto Y, Arai H. Role of cathepsin K in the development of chronic subdural hematoma. J Clin Neurosci 2017; 45:343-347. [PMID: 28887075 DOI: 10.1016/j.jocn.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 10/18/2022]
Abstract
Despite extensive investigations, the process of development of chronic subdural hematoma (CSDH) is not known. The present study aims to investigate CSDH by measuring biomarkers in it, gas analysis, and immunohistochemical examination. A total of 42 patients with symptomatic CSDH who underwent burr-hole drainage were enrolled. Intraoperatively, hematoma fluid and peripheral venous blood (PVCSDH) were simultaneously collected. As controls, peripheral venous blood (PVControl) and intracranial cerebrospinal fluid (CSF) were collected from other subjects during other surgeries. CatK, lipocalin-type prostaglandin D synthase (PGDS), and cystatin C (CysC) present in these specimens were measured using enzyme-linked immunosorbent assay. Data obtained were statistically analyzed after age correction. In 15 patients, gas analysis was performed for CSDH and PVCSDH. Furthermore, immunohistochemical examination for the outer membrane was performed for four patients. CatK, PGDS, and CysC levels were markedly elevated in the CSF and CSDH. CatK levels in PVCSDH were significantly higher than in PVControl (P<0.0001). In contrast, CysC levels in PVCSDH were significantly lower than in PVControl (P=0.004). The gas analysis revealed that the internal environment of CSDH is characterized by marked hypoxia, hypoglycemia, and lactic acidosis. Furthermore, the outer membrane consistently showed a diffuse staining for CatK. Based on these, CatK was thought to play a role in the development of CSDH, with the levels in peripheral venous blood elevated in patients with CSDH.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Japan.
| | - Ikuko Ogino
- Department of Neurological Surgery, Juntendo University School of Medicine, Japan
| | - Masakazu Miyajima
- Department of Neurological Surgery, Juntendo University School of Medicine, Japan
| | - Senshu Nonaka
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Japan
| | - Masanori Ito
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Japan
| | - Yukimasa Yasumoto
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Japan
| | - Hajime Arai
- Department of Neurological Surgery, Juntendo University School of Medicine, Japan
| |
Collapse
|
47
|
|
48
|
Baranyi A, Amouzadeh-Ghadikolai O, Lewinski DV, Breitenecker RJ, Stojakovic T, März W, Robier C, Rothenhäusler HB, Mangge H, Meinitzer A. Beta-trace Protein as a new non-invasive immunological Marker for Quinolinic Acid-induced impaired Blood-Brain Barrier Integrity. Sci Rep 2017; 7:43642. [PMID: 28276430 PMCID: PMC5343478 DOI: 10.1038/srep43642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/26/2017] [Indexed: 12/27/2022] Open
Abstract
Quinolinic acid, a macrophage/microglia-derived excitotoxin fulfills a plethora of functions such as neurotoxin, gliotoxin, and proinflammatory mediator, and it alters the integrity and cohesion of the blood-brain barrier in several pathophysiological states. Beta-trace protein (BTP), a monomeric glycoprotein, is known to indicate cerebrospinal fluid leakage. Thus, the prior aim of this study was to investigate whether BTP might non-invasively indicate quinolinic acid-induced impaired blood-brain barrier integrity. The research hypotheses were tested in three subsamples with different states of immune activation (patients with HCV-infection and interferon-α, patients with major depression, and healthy controls). BTP has also been described as a sensitive marker in detecting impaired renal function. Thus, the renal function has been considered. Our study results revealed highest quinolinic acid and highest BTP- levels in the subsample of patients with HCV in comparison with the other subsamples with lower or no immune activation (quinolinic acid: F = 21.027, p < 0.001 [ANOVA]; BTP: F = 6.792, p < 0.01 [ANOVA]). In addition, a two-step hierarchical linear regression model showed that significant predictors of BTP levels are quinolinic acid, glomerular filtration rate and age. The neurotoxin quinolinic acid may impair blood-brain barrier integrity. BTP might be a new non-invasive biomarker to indicate quinolinic acid-induced impaired blood-brain barrier integrity.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria.,Institute for International Management Practice, ARU Cambridge, Cambridge, UK
| | | | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert J Breitenecker
- Department of Innovation Management and Entrepreneurship, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Synlab Services LLC, Mannheim, Germany.,Medical Clinic V (Nephrology, Hypertensiology, Endocrinology), Medical Faculty Mannheim, Ruperto Carola University Heidelberg, Mannheim, Germany
| | - Christoph Robier
- Hospital of the Brothers of St. John of God, Graz, Austria.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Serum protein changes in a rat model of chronic pain show a correlation between animal and humans. Sci Rep 2017; 7:41723. [PMID: 28145509 PMCID: PMC5286399 DOI: 10.1038/srep41723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023] Open
Abstract
In previous works we showed the overexpression of some proteins in biological fluids from patients suffering chronic pain. In this proteomic study we analysed serum from a rat model of neuropathic pain obtained by the chronic constriction injury (CCI) of sciatic nerve, at two time intervals, 2 and 5 weeks after the insult, to find proteins involved in the expression or mediation of pain. Sham-operated and CCI rats were treated with saline or indomethacin. Two weeks after ligation, we identified three serum proteins overexpressed in CCI rats, two of which, alpha-1-macroglobulin and vitamin D-binding protein (VDBP), remained increased 5 weeks post-surgery; at this time interval, we found increased levels of further proteins, namely apolipoprotein A-I (APOA1), apolipoprotein E (APOE), prostaglandin-H2 D-isomerase (PTGDS) and transthyretin (TTR), that overlap the overexpressed proteins found in humans. Indomethacin treatment reversed the effects of ligation. The qPCR analysis showed that transcript levels of APOA1, APOE, PTGDS and VDBP were overexpressed in the lumbar spinal cord (origin of sciatic nerve), but not in the striatum (an unrelated brain region), of CCI rats treated with saline 5 weeks after surgery, demonstrating that the lumbar spinal cord is a possible source of these proteins.
Collapse
|
50
|
Smith EMD, Jorgensen AL, Midgley A, Oni L, Goilav B, Putterman C, Wahezi D, Rubinstein T, Ekdawy D, Corkhill R, Jones CA, Marks SD, Newland P, Pilkington C, Tullus K, Beresford MW. International validation of a urinary biomarker panel for identification of active lupus nephritis in children. Pediatr Nephrol 2017; 32:283-295. [PMID: 27590021 PMCID: PMC5203828 DOI: 10.1007/s00467-016-3485-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Conventional markers of juvenile-onset systemic lupus erythematosus (JSLE) disease activity fail to adequately identify lupus nephritis (LN). While individual novel urine biomarkers are good at detecting LN flares, biomarker panels may improve diagnostic accuracy. The aim of this study was to assess the performance of a biomarker panel to identify active LN in two international JSLE cohorts. METHODS Novel urinary biomarkers, namely vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1), lipocalin-like prostaglandin D synthase (LPGDS), transferrin (TF), ceruloplasmin, alpha-1-acid glycoprotein (AGP) and neutrophil gelatinase-associated lipocalin (NGAL), were quantified in a cross-sectional study that included participants of the UK JSLE Cohort Study (Cohort 1) and validated within the Einstein Lupus Cohort (Cohort 2). Binary logistic regression modelling and receiver operating characteristic curve analysis [area under the curve (AUC)] were used to identify and assess combinations of biomarkers for diagnostic accuracy. RESULTS A total of 91 JSLE patients were recruited across both cohorts, of whom 31 (34 %) had active LN and 60 (66 %) had no LN. Urinary AGP, ceruloplasmin, VCAM-1, MCP-1 and LPGDS levels were significantly higher in those patients with active LN than in non-LN patients [all corrected p values (p c) < 0.05] across both cohorts. Urinary TF also differed between patient groups in Cohort 2 (p c = 0.001). Within Cohort 1, the optimal biomarker panel included AGP, ceruloplasmin, LPGDS and TF (AUC 0.920 for active LN identification). These results were validated in Cohort 2, with the same markers resulting in the optimal urine biomarker panel (AUC 0.991). CONCLUSION In two international JSLE cohorts, urinary AGP, ceruloplasmin, LPGDS and TF demonstrate an 'excellent' ability for accurately identifying active LN in children.
Collapse
Affiliation(s)
- Eve Mary Dorothy Smith
- Department of Women's and Children's Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children's Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP, UK.
| | - Andrea Lyn Jorgensen
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Angela Midgley
- Department of Women’s and Children’s Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children’s Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP UK
| | - Louise Oni
- Department of Women’s and Children’s Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children’s Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP UK
| | - Beatrice Goilav
- Division of Nephrology, Children’s Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY USA
| | - Chaim Putterman
- Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY USA
| | - Dawn Wahezi
- Division of Pediatric Rheumatology, Children’s Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY USA
| | - Tamar Rubinstein
- Division of Pediatric Rheumatology, Children’s Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY USA
| | - Diana Ekdawy
- Department of Women’s and Children’s Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children’s Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP UK
| | - Rachel Corkhill
- Department of Women’s and Children’s Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children’s Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP UK
| | - Caroline Ann Jones
- Department of Paediatric Nephrology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Stephen David Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital, London, UK
| | - Paul Newland
- Biochemistry Department, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Clarissa Pilkington
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London, UK
| | - Kjell Tullus
- Department of Paediatric Nephrology, Great Ormond Street Hospital, London, UK
| | - Michael William Beresford
- Department of Women’s and Children’s Health, Institute of Translational Medicine, Institute of Child Health in the Park, Alder Hey Children’s Hospital and University of Liverpool, Eaton Road, Liverpool, L12 2AP UK ,Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| |
Collapse
|