1
|
Fujikawa T, Sasamoto T, Zhao F, Yamagishi A, Akanuma S. Comparative analysis of reconstructed ancestral proteins with their extant counterparts suggests primitive life had an alkaline habitat. Sci Rep 2024; 14:398. [PMID: 38172176 PMCID: PMC10764835 DOI: 10.1038/s41598-023-50828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
To understand the origin and early evolution of life it is crucial to establish characteristics of the primordial environment that facilitated the emergence and evolution of life. One important environmental factor is the pH of the primordial environment. Here, we assessed the pH-dependent thermal stabilities of previously reconstructed ancestral nucleoside diphosphate kinases and ribosomal protein uS8s. The selected proteins were likely to be present in ancient organisms such as the last common ancestor of bacteria and that of archaea. We also assessed the thermal stability of homologous proteins from extant acidophilic, neutralophilic, and alkaliphilic microorganisms as a function of pH. Our results indicate that the reconstructed ancestral proteins are more akin to those of extant alkaliphilic bacteria, which display greater stability under alkaline conditions. These findings suggest that the common ancestors of bacterial and archaeal species thrived in an alkaline environment. Moreover, we demonstrate the reconstruction method employed in this study is a valuable technique for generating alkali-tolerant proteins that can be used in a variety of biotechnological and environmental applications.
Collapse
Affiliation(s)
- Takayuki Fujikawa
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Takahiro Sasamoto
- Department of Applied Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Fangzheng Zhao
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
2
|
Arco JD, Pérez E, Naitow H, Matsuura Y, Kunishima N, Fernández-Lucas J. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5'-monophospate analogues. BIORESOURCE TECHNOLOGY 2019; 276:244-252. [PMID: 30640018 DOI: 10.1016/j.biortech.2018.12.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from Thermus thermophilus HB8 (TtAPRT2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric TtAPRT2 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at pH 8.5 to encourage the immobilization process by N-termini (MTtAPRT2A, MTtAPRT2B, MTtAPRT2C) or b) an enzyme immobilization at pH 10.0 to encourage the immobilization process through surface exposed lysine residues (MTtAPRT2D, MTtAPRT2E, MTtAPRT2F). According to catalyst load experiments, MTtAPRT2B (activity: 480 IU g-1biocatalyst, activity recovery: 52%) and MTtAPRT2F (activity: 507 IU g-1biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of TtAPRT2. Moreover, the potential reusability of MTtAPRT2B and MTtAPRT2F was also tested. Finally, MTtAPRT2F was employed in the synthesis of nucleoside-5'-monophosphate analogues.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Spain
| | - Elena Pérez
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Spain
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
3
|
Mathur S, Park JD, Kim DH, Hartmann RW. A Method for Screening Enzyme Inhibitors Using Size Exclusion Chromatography and ESI-LC-MS/MS. ACTA ACUST UNITED AC 2016; 10:30-5. [PMID: 15695341 DOI: 10.1177/1087057104270270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A pilot study was performed for the development of a method to screen compound libraries using an electrospray mass spectrometer interfaced with liquid chromatography (LC). The mixture of compounds was obtained by combining low-molecular weight inhibitors of carboxypeptidase A (CPA), a representative zinc-containing proteolytic enzyme. After the incubation of the mixture with CPA, the enzyme-bound compounds were separated by size exclusion chromatography (SEC) from unbound compounds. The separation of compounds was affected by LC. Three compounds were identified, which represent the tight binding inhibitors of the library. These compounds were quantitated using an automatic switching valve to avoid the interference of buffer salts with the detection of analytes. The quantitated amounts of the compounds were found to be in good accordance with the Ki values. ( Journal of Biomolecular Screening 2005:30-35)
Collapse
Affiliation(s)
- Sonal Mathur
- FR 8.5, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | | | | | | |
Collapse
|
4
|
Saxena R, Singh R. MALDI-TOF MS and CD spectral analysis for identification and structure prediction of a purified, novel, organic solvent stable, fibrinolytic metalloprotease from Bacillus cereus B80. BIOMED RESEARCH INTERNATIONAL 2015; 2015:527015. [PMID: 25802851 PMCID: PMC4352737 DOI: 10.1155/2015/527015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
The ability to predict protein function from structure is becoming increasingly important; hence, elucidation and determination of protein structure become the major steps in proteomics. The present study was undertaken for identification of metalloprotease produced by Bacillus cereus B80 and recognition of characteristics that can be industrially exploited. The enzyme was purified in three steps combining precipitation and chromatographic methods resulting in 33.5% recovery with 13.1-fold purification of enzyme which was detected as a single band with a molecular mass of 26 kDa approximately in SDS-PAGE and zymogram. The MALDI-TOF MS showed that the enzyme exhibited 70-93% similarity with zinc metalloproteases from various strains Bacillus sp. specifically from Bacillus cereus group. The sequence alignment revealed the presence of zinc-binding region VVVHEMCHMV in the most conserved C terminus region. Secondary structure of the enzyme was obtained by CD spectra and I-TASSER. The enzyme kinetics revealed a Michaelis constant (Km) of 0.140 μmol/ml and Vmax of 2.11 μmol/min. The application studies showed that the enzyme was able to hydrolyze various proteins with highest affinity towards casein followed by BSA and gelatin. The enzyme exhibited strong fibrinolytic, collagenolytic, and gelatinolytic properties and stability in various organic solvents.
Collapse
Affiliation(s)
- Rajshree Saxena
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
5
|
Zhao Q. A thermodynamic and theoretical view for enzyme regulation. BIOCHEMISTRY (MOSCOW) 2015; 80:1-7. [DOI: 10.1134/s0006297915010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kasper JR, Park C. Ligand binding to a high-energy partially unfolded protein. Protein Sci 2014; 24:129-37. [PMID: 25367157 DOI: 10.1002/pro.2596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/05/2022]
Abstract
The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP(+) as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP(+) and found that NADP(+) binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP(+) is diminished upon partial unfolding. Based on known crystallographic structures of NADP(+) -bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine-binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP(+) . Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high-energy non-native forms.
Collapse
Affiliation(s)
- Joseph R Kasper
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| | | |
Collapse
|
7
|
Kasper JR, Liu PF, Park C. Structure of a partially unfolded form of Escherichia coli dihydrofolate reductase provides insight into its folding pathway. Protein Sci 2014; 23:1728-37. [PMID: 25252157 DOI: 10.1002/pro.2555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/07/2022]
Abstract
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high-energy conformation susceptible to proteolysis (cleavable form) using native-state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m-value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F-G and Met-20 loops on one face of the central β-sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near-native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F-G and Met-20 loops, which is coupled with compaction of the rest of the protein.
Collapse
Affiliation(s)
- Joseph R Kasper
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| | | | | |
Collapse
|
8
|
Samukange V, Kamo M, Yasukawa K, Inouye K. Effects of salts on the interaction of 8-anilinonaphthalene 1-sulphonate and thermolysin. Biosci Biotechnol Biochem 2014; 78:1522-8. [PMID: 25209499 DOI: 10.1080/09168451.2014.923299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neutral salts activate and stabilize thermolysin. In this study, to explore the mechanism, we analyzed the interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and thermolysin by ANS fluorescence. At pH 7.5, the fluorescence of ANS increased and blue-shifted with increasing concentrations (0-2.0 μM) of thermolysin, indicating that the anilinonaphthalene group of ANS binds with thermolysin through hydrophobic interaction. ANS did not alter thermolysin activity. The dissociation constants (Kd) of the complex between ANS and thermolysin was 33 ± 2 μM at 0 M NaCl at pH 7.5, decreased with increasing NaCl concentrations, and reached 9 ± 3 μM at 4 M NaCl. The Kd values were not varied (31-34 μM) in a pH range of 5.5-8.5. This suggests that at high NaCl concentrations, Na(+) and/or Cl(-) ions bind with thermolysin and affect the binding of ANS with thermolysin. Our results also suggest that the activation and stabilization of thermolysin by NaCl are partially brought about by the binding of Na(+) and/or Cl(-) ions with thermolysin.
Collapse
Affiliation(s)
- Vimbai Samukange
- a Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Sakyo-ku , Japan
| | | | | | | |
Collapse
|
9
|
Sinha R, Khare SK. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 2014; 5:165. [PMID: 24782853 PMCID: PMC3988381 DOI: 10.3389/fmicb.2014.00165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/27/2014] [Indexed: 11/23/2022] Open
Abstract
Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants.
Collapse
Affiliation(s)
- Rajeshwari Sinha
- Department of Chemistry, Indian Institute of Technology Delhi Delhi, India
| | - Sunil K Khare
- Department of Chemistry, Indian Institute of Technology Delhi Delhi, India
| |
Collapse
|
10
|
Chemical modification of wheat β-amylase by trinitrobenzenesulfonic acid, methoxypolyethylene glycol, and glutaraldehyde to improve its thermal stability and activity. Enzyme Microb Technol 2013; 53:420-6. [DOI: 10.1016/j.enzmictec.2013.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022]
|
11
|
Suhanovsky MM, Teschke CM. An intramolecular chaperone inserted in bacteriophage P22 coat protein mediates its chaperonin-independent folding. J Biol Chem 2013; 288:33772-33783. [PMID: 24126914 DOI: 10.1074/jbc.m113.515312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269; Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
12
|
Longo LM, Lee J, Blaber M. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc Natl Acad Sci U S A 2013; 110:2135-9. [PMID: 23341608 PMCID: PMC3568330 DOI: 10.1073/pnas.1219530110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 "prebiotic" α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a "foldable set"--that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two "primitive" versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment.
Collapse
Affiliation(s)
- Liam M. Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300
| | | | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300
| |
Collapse
|
13
|
Daba T, Kojima K, Inouye K. Characterization and solvent engineering of wheat β-amylase for enhancing its activity and stability. Enzyme Microb Technol 2012; 51:245-51. [DOI: 10.1016/j.enzmictec.2012.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/07/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
|
14
|
CHAVES IZABELLARODRIGUES, DE SOUZA FERREIRA EDERLAN, DA SILVA MARAIZAAPARECIDA, NEVES VALDIRAUGUSTO. POLYPHENOLOXIDASE FROM ATEMOYA FRUIT (ANNONA CHERIMOLA MILL. × ANNONA SQUAMOSA L.). J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00508.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kusano M, Yasukawa K, Inouye K. Synthesis of N-carbobenzoxy-l-aspartyl-l-phenylalanine methyl ester catalyzed by thermolysin variants with improved activity. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Abstract
Investigation of protein unfolding kinetics of proteins in crude samples may provide many exciting opportunities to study protein energetics under unconventional conditions. As an effort to develop a method with this capability, we employed "pulse proteolysis" to investigate protein unfolding kinetics. Pulse proteolysis has been shown to be an effective and facile method to determine global stability of proteins by exploiting the difference in proteolytic susceptibilities between folded and unfolded proteins. Electrophoretic separation after proteolysis allows monitoring protein unfolding without protein purification. We employed pulse proteolysis to determine unfolding kinetics of E. coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H). The unfolding kinetic constants determined by pulse proteolysis are in good agreement with those determined by circular dichroism. We then determined an unfolding kinetic constant of overexpressed MBP in a cell lysate. An accurate unfolding kinetic constant was successfully determined with the unpurified MBP. Also, we investigated the effect of ligand binding on unfolding kinetics of MBP using pulse proteolysis. On the basis of a kinetic model for unfolding of MBP*maltose complex, we have determined the dissociation equilibrium constant (K(d)) of the complex from unfolding kinetic constants, which is also in good agreement with known K(d) values of the complex. These results clearly demonstrate the feasibility and the accuracy of pulse proteolysis as a quantitative probe to investigate protein unfolding kinetics.
Collapse
Affiliation(s)
- Yu-Ran Na
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
17
|
Kusano M, Yasukawa K, Inouye K. Insights into the Catalytic Roles of the Polypeptide Regions in the Active Site of Thermolysin and Generation of the Thermolysin Variants with High Activity and Stability. J Biochem 2008; 145:103-13. [DOI: 10.1093/jb/mvn140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Evaluation of the pH- and thermal stability of the recombinant green fluorescent protein (GFP) in the presence of sodium chloride. Appl Biochem Biotechnol 2008; 137-140:555-71. [PMID: 18478416 DOI: 10.1007/s12010-007-9079-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95 degrees C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84+/-0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94+/-0.60) was half that observed in phosphate buffer (pH 6.08+/-0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80 degrees C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65+/-0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80 degrees C. GFP pH- and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.
Collapse
|
19
|
Park C, Marqusee S. Quantitative determination of protein stability and ligand binding by pulse proteolysis. ACTA ACUST UNITED AC 2008; Chapter 20:20.11.1-20.11.14. [PMID: 18429306 DOI: 10.1002/0471140864.ps2011s46] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulse proteolysis exploits the difference in proteolytic susceptibility between folded and unfolded proteins for facile but quantitative determination of protein stability. The method requires only common biochemistry and molecular biology lab equipment. Pulse proteolysis also can be used to determine the affinity of a ligand to its protein target by monitoring the change in protein stability upon ligand binding. The Basic Protocol describes the detailed procedure for determining protein stability using pulse proteolysis. For pulse proteolysis to be used for determining a protein's stability, the protein should not be digested significantly by pulse proteolysis when it is in the folded conformation. The Support Protocol describes a procedure for determining whether a protein satisfies this requirement. The principles of protein stability determination using denaturant and pulse proteolysis are also discussed.
Collapse
|
20
|
Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:481-8. [DOI: 10.1016/j.bbapap.2007.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/12/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
|
21
|
Yasukawa K, Inouye K. Improving the activity and stability of thermolysin by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1281-8. [PMID: 17869197 DOI: 10.1016/j.bbapap.2007.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/11/2007] [Accepted: 08/06/2007] [Indexed: 10/23/2022]
Abstract
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
22
|
|
23
|
Morimoto K, Furuta E, Hashimoto H, Inouye K. Effects of High Concentration of Salts on the Esterase Activity and Structure of a Kiwifruit Peptidase, Actinidain. ACTA ACUST UNITED AC 2006; 139:1065-71. [PMID: 16788057 DOI: 10.1093/jb/mvj106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of salts on the activity and stability of actinidain were examined. With increasing salt concentration up to 0.5 M, the activity (kcat/Km) for N-alpha-Cbz-L-lysine p-nitrophenyl ester decreased to 40% of that in the absence of salt. The inhibitor constant Ki of LiCl, NaCl, and KCl was 0.16-0.43 M. With 3 M KCl and NaCl, the specificity constant kcat/Km recovered to 110 and 75%, respectively. No re-activation was observed with LiCl. The inhibition and re-activation were dependent on the changes in both Km and kcat, whereas no CD change was observed. The tryptophan fluorescence of actinidain was not affected by 0-0.5 M salt, but a considerable decrease in its intensity was observed with increasing salt concentration from 0.5 to 3.0 M. These results suggest that the inhibition observed with the lower salt concentration (<0.5 M) is due to attenuation of the electrostatic interaction between the enzyme and substrate, and the higher concentration (0.5-3.0 M) induces structural change in the states of tryptophan residues, which is associated with the re-activation. Actinidain keeps considerably high activity and stability even in the presence of 3 M salts.
Collapse
Affiliation(s)
- Koichi Morimoto
- Department of Biotechnological Science, Kinki University, Nishimitani, Kinokawa, Wakayama 649-6493
| | | | | | | |
Collapse
|
24
|
Kusano M, Yasukawa K, Hashida Y, Inouye K. Engineering of the pH-Dependence of Thermolysin Activity as Examined by Site-Directed Mutagenesis of Asn112 Located at the Active Site of Thermolysin. ACTA ACUST UNITED AC 2006; 139:1017-23. [PMID: 16788052 DOI: 10.1093/jb/mvj112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Asn112 is located at the active site of thermolysin, 5-8 A from the catalytic Zn2+ and catalytic residues Glu143 and His231. When Asn112 was replaced with Ala, Asp, Glu, Lys, His, and Arg by site-directed mutagenesis, the mutant enzymes N112D and N112E, in which Asn112 is replaced with Asp and Glu, respectively, were secreted as an active form into Escherichia coli culture medium, while the other four were not. In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide, the kcat/Km values of N112D and N112E exhibited bell-shaped pH-dependence, as did the wild-type thermolysin (WT). The acidic pKa of N112D was 5.7 +/- 0.1, higher by 0.4 +/- 0.2 units than that of WT, suggesting that the introduced negative charge suppressed the protonation of Glu143 or Zn2+-OH. In the hydrolysis of a negatively charged substrate, N-carbobenzoxy-l-Asp-l-Phe methyl ester (ZDFM), the pH-dependence of kcat/Km of the mutants decreased with increase in pH from 5.5 to 8.5, while that of WT was bell-shaped. This difference might be explained by the electrostatic repulsion between the introduced Asp/Glu and ZDFM, suggesting that introducing ionizing residues into the active site of thermolysin might be an effective means of modifying its pH-activity profile.
Collapse
Affiliation(s)
- Masayuki Kusano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | | | | | | |
Collapse
|
25
|
Kooi C, Corbett CR, Sokol PA. Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. J Bacteriol 2005; 187:4421-9. [PMID: 15968051 PMCID: PMC1151788 DOI: 10.1128/jb.187.13.4421-4429.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia ZmpA is expressed as a preproenzyme typical of thermolysin-like proteases such as Pseudomonas aeruginosa LasB and Bacillus thermoproteolyticus thermolysin. The zmpA gene was expressed using the pPRO-EXHTa His(6) tag expression system, which incorporates a six-His tag at the N-terminal end of the protein, and recombinant ZmpA was purified using Ni-nitrilotriacetic acid affinity chromatography. Upon refolding of the recombinant His(6)-pre-pro-ZmpA (62 kDa), the fusion protein was autoproteolytically cleaved into 36-kDa (mature ZmpA) and 27-kDa peptides. Site-directed mutagenesis was employed to infer the identity of the active site residues of ZmpA and to confirm that the enzyme undergoes autoproteolytic cleavage. Oligonucleotide mutagenesis was used to replace H(465) with G(465) or A(465), E(377) with A(377) or D(377), or H(380) with P(380) or A(380). Mutagenesis of H(465), E(377), or H(380) resulted in the loss of both autocatalytic activity and proteolytic activity. ZmpA with either substitution in H(380) was not detectable in B. cenocepacia cell extracts. The activity of the recombinant ZmpA was inhibited by EDTA and 1,10 phenanthroline, indicating that it is a zinc metalloprotease. ZmpA, however, was not inhibited by phosphoramidon, a classical inhibitor of the thermolysin-like proteases. The refolded mature ZmpA enzyme was proteolytically active against various substrates including hide powder azure, type IV collagen, fibronectin, neutrophil alpha-1 proteinase inhibitor, alpha(2)-macroglobulin, and gamma interferon, suggesting that B. cenocepacia ZmpA may cause direct tissue damage to the host or damage to host tissues through a modulation of the host's immune system.
Collapse
Affiliation(s)
- C Kooi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
26
|
Joo HS, Chang CS. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J Appl Microbiol 2005; 98:491-7. [PMID: 15659203 DOI: 10.1111/j.1365-2672.2004.02464.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS An investigation was carried out on the enhancement of protease production and simple purification of an oxidant and SDS-stable alkaline protease produced by Bacillus clausii I-52 of industrial significance. METHODS AND RESULTS The supplementation with 0.4% (w/v) NaCl and 0.05% (w/v) FeSO4.7H2O in a culture medium caused an increase in the protease production. The enzyme was purified to homogeneity with overall recovery of 79% and 10-fold purification from culture supernatant using Diaion HPA75, phenyl-Sepharose and DEAE-Sepharose column chromatographies. The protease was a halo-tolerant enzyme with apparent molecular mass of 28 kDa, and the Km and kcat values for N-Succinyl-Ala-Ala-Pro-Phe-pNA at 45 degrees C and pH 11.0 were determined to be 83.9 micromol l(-1) and 238.6 s(-1) respectively. CONCLUSIONS Bacillus clausii I-52 was identified as a halo-tolerant bacterium, and the extracellular alkaline protease produced by B. clausii I-52 also showed extreme halo-tolerance. The enzyme stability towards SDS and H2O2 could be increased by adding NaCl or propylene glycol to the enzyme solution. SIGNIFICANCE AND IMPACT OF THE STUDY The alkaline protease secreted by B. clausii I-52 is significant from an industrial perspective because of its stability against surfactants and oxidants as well as its tolerance towards high salinity. These enzymatic properties suggest its suitable application for industrial purposes.
Collapse
Affiliation(s)
- H-S Joo
- Department of Biochemistry, College of Medicine, Inha University, Chung-Ku, Inchon, Korea
| | | |
Collapse
|
27
|
Matsumiya Y, Nishikawa K, Inouye K, Kubo M. Mutational effect for stability in a conserved region of thermolysin. Lett Appl Microbiol 2005; 40:329-34. [PMID: 15836734 DOI: 10.1111/j.1472-765x.2005.01677.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the mutational effect for the stability of thermolysin (TLN) in conserved regions. METHODS AND RESULTS Mutational effects for stability at autodegradation sites of TLN in conserved region were studied. The bands of mutant TLN (34 kDa) on SDS-PAGE were decreased. However, those of mutant TLN cultivated with CaCl2 recovered to the same level as WT TLN. Dialysis study shows that these mutant TLN require more calcium ions than WT TLN. CONCLUSIONS From these results, calcium affinity of mutant TLN in the conserved regions seem to become weak, subsequently mutant TLN were easily autodegraded in the case of low concentration of CaCl2. SIGNIFICANCE AND IMPACT OF THE STUDY The autodegradation sites located in conserved regions of bacilli neutral proteases are important for the tertiary structure formation concerning the stability of the protein.
Collapse
Affiliation(s)
- Y Matsumiya
- Department of Bioscience and Technology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Japan
| | | | | | | |
Collapse
|
28
|
Park C, Marqusee S. Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2005; 2:207-12. [PMID: 15782190 DOI: 10.1038/nmeth740] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/31/2005] [Indexed: 11/08/2022]
Abstract
Thermodynamic stability is fundamental to the biology of proteins. Information on protein stability is essential for studying protein structure and folding and can also be used indirectly to monitor protein-ligand or protein-protein interactions. While clearly valuable, the experimental determination of a protein's stability typically requires biophysical instrumentation and substantial quantities of purified protein, which has limited the use of this technique as a general laboratory method. We report here a simple new method for determining protein stability by using pulse proteolysis with varying concentrations of denaturant. Pulse proteolysis is designed to digest only the unfolded proteins in an equilibrium mixture of folded and unfolded proteins that relaxes on a time scale longer than the proteolytic pulse. We used this method to study the stabilities of Escherichia coli ribonuclease H and its variants, both in purified form and directly from cell lysates. The DeltaG(unf) degrees values obtained by this technique were in agreement with those determined by traditional methods. We also successfully used this method to monitor the binding of maltose-binding protein to maltose, as well as to rapidly screen cognate ligands for this protein. The simplicity of pulse proteolysis suggests that it is an excellent strategy for the high-throughput determination of protein stability in protein engineering and drug discovery applications.
Collapse
Affiliation(s)
- Chiwook Park
- Department of Molecular and Cell Biology, QB3 Institute, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
29
|
Park C, Marqusee S. Probing the high energy states in proteins by proteolysis. J Mol Biol 2004; 343:1467-76. [PMID: 15491624 DOI: 10.1016/j.jmb.2004.08.085] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 11/29/2022]
Abstract
Unless the native conformation has an unstructured region, proteases cannot effectively digest a protein under native conditions. Digestion must occur from a higher energy form, when at least some part of the protein is exposed to solvent and becomes accessible by proteases. Monitoring the kinetics and denaturant dependence of proteolysis under native conditions yields insight into the mechanism of proteolysis as well as these high-energy conformations. We propose here a generalized approach to exploit proteolysis as a tool to probe high-energy states in proteins. This "native state proteolysis" experiment was carried out on Escherichia coli ribonuclease HI. Mass spectrometry and N-terminal sequencing showed that thermolysin cleaves the peptide bond between Thr92 and Ala93 in an extended loop region of the protein. By comparing the proteolysis rate of the folded protein and a peptidic substrate mimicking the sequence at the cleavage site, the energy required to reach the susceptible state (Delta G(proteolysis)) was determined. From the denaturant dependence of Delta G(proteolysis), we determined that thermolysin digests this protein through a local fluctuation, i.e. localized unfolding with minimal change in solvent assessable surface area. Proteolytic susceptibilities of proteins are discussed based on the finding of this local fluctuation mechanism for proteolysis under native conditions.
Collapse
Affiliation(s)
- Chiwook Park
- Department of Molecular and Cell Biology, QB3 Institute, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
30
|
Yoshimune K, Yamashita R, Masuo N, Wakayama M, Moriguchi M. Digestion by serine proteases enhances salt tolerance of glutaminase in the marine bacterium Micrococcus luteus K-3. Extremophiles 2004; 8:441-6. [PMID: 15290324 DOI: 10.1007/s00792-004-0407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/25/2004] [Indexed: 11/26/2022]
Abstract
Salt-tolerant glutaminase (Micrococcus glutaminase, with an apparent molecular mass of 48.3 kDa, intact glutaminase) from the marine bacterium Micrococcus luteus K-3 was digested using protease derived from M. luteus K-3. The digestion products were a large fragment (apparent molecular mass of 38.5 kDa, the glutaminase fragment) and small fragments (apparent molecular mass of 8 kDa). The digestion was inhibited by phenylmethanesulfonyl fluoride (PMSF). Digestion of intact glutaminase by serine proteases including trypsin, elastase, lysyl endopeptidase, and arginylendopeptidase also produced the glutaminase fragment. The N-terminus of the glutaminase fragment was the same as that of intact glutaminase. The N-termini of two small fragments were Ala394 and Ala396, respectively. The enzymological and kinetic properties of the glutaminase fragment were almost the same as those of intact glutaminase except for salt-tolerant behavior. The glutaminase fragment was a higher salt-tolerant enzyme than the intact glutaminase, suggesting that Micrococcus glutaminase is digested in the C-terminal region by serine protease from M. luteus K-3 to confer salt tolerance on glutaminase.
Collapse
Affiliation(s)
- Kazuaki Yoshimune
- Department of Applied Chemistry, Faculty of Engineering, Oita University, Dannoharu, Oita 870-1192, Japan
| | | | | | | | | |
Collapse
|
31
|
Characterization of polymer–enzyme complex as a novel biocatalyst for nonaqueous enzymology. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00009-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Okumura S, Akao T, Mizuki E, Ohba M, Inouye K. Screening of the Bacillus thuringiensis Cry1Ac delta-endotoxin on the artificial phospholipid monolayer incorporated with brush border membrane vesicles of Plutella xylostella by optical biosensor technology. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 47:177-88. [PMID: 11245889 DOI: 10.1016/s0165-022x(00)00134-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The binding of Cry1Ac, an insecticidal protein of Bacillus thuringiensis, to a brush border membrane (BBM) isolated from midguts of the diamondback moth Plutella xylostella was examined by surface plasmon resonance (SPR)-based biosensor. BBM was mixed with 1,3-ditetradecylglycero-2-phosphocholine (PC14), a neutral charged artificial lipid, and was reconstructed to a monolayer on a hydrophobic chip for the biosensor. The binding of Cry1Ac to the reconstructed monolayer was analyzed by a two-state binding model, and it was shown that Cry1Ac bound to the monolayer in the first step with an affinity constant (K(1)) of 508 nM, followed by the second uni-molecular step with an equilibrium constant (K(2)) of 0.472. The overall affinity constant K(d) was determined to be 240 nM. The binding was markedly inhibited by N-acetyl-D-galactosamine (K(i)=8 mM). The monolayer was shown to retain a high affinity to Cry1Ac, providing an insect-free system for rapid and large-scale screening of B. thuringiensis insecticidal proteins by the SPR-based biosensor technology.
Collapse
Affiliation(s)
- S Okumura
- Fukuoka Industrial Technology Center, 1465-5 Aikawa, Kurume, 839-0861, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
33
|
Sellek GA, Chaudhuri JB. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00075-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|