1
|
Ma Q, Piaia L, Loca D, Rubenis K, Locs J, Thiede B, Sigurjónsson ÓE, Haugen HJ. Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions. J Biomed Mater Res A 2025; 113:e37848. [PMID: 39692153 DOI: 10.1002/jbm.a.37848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection. In this study, soluble ESM proteins (SEPs) were extracted from conventional (industrial-fed) and organic (free-grounded) using an acidic 3-mercaptopropionic acid (3-MPA) extraction strategy. FTIR was employed to monitor the chemical changes in the ESM, while LC-MS/MS was used to conduct the proteomic analysis. The biocompatibility and effects of SEP cocktails on ECM synthesis were also investigated. The results indicated that the acidic 3-MPA strategy effectively altered the ESM chemical composition, thereby facilitating SEPs extraction. The SEPs from conventional and organic eggs have different protein profiles but with partial overlapping. SEPs from both sources showed similar desirable biosafety profiles and dose-dependent promotion of osteoblastic (ECM) component synthesis, suggesting that different egg sources may contribute to consistent core biological functions of protein products, they may also introduce different functional priorities.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Lya Piaia
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- The Blood Bank, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
3
|
Lien YC, Lai SJ, Lin CY, Wong KP, Chang MS, Wu SH. High-efficiency decomposition of eggshell membrane by a keratinase from Meiothermus taiwanensis. Sci Rep 2022; 12:14684. [PMID: 36038640 PMCID: PMC9424195 DOI: 10.1038/s41598-022-18474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eggshell membrane (ESM), a plentiful biological waste, consists of collagen-like proteins and glycosaminoglycans (GAGs) such as hyaluronic acid (HA). Here we used a keratinase (oeMtaker)-mediated system to decompose ESM. The best reaction condition was established by incubating the solution containing oeMtaker, sodium sulfite, and ESM with a weight ratio of 1:120:600. ESM enzymatic hydrolysate (ESM-EH) showed a high proportion of essential amino acids and type X collagen peptides with 963–2259 Da molecular weights. The amounts of GAGs and sulfated GAGs in ESM-EH were quantified as 6.4% and 0.7%, respectively. The precipitated polysaccharides with an average molecular weight of 1300–1700 kDa showed an immunomodulatory activity by stimulating pro-inflammatory cytokines (IL-6 and TNF-α) production. In addition, a microorganism-based system was established to hydrolyze ESM by Meiothermus taiwanensis WR-220. The amounts of GAGs and sulfated GAGs in the system were quantified as 0.9% and 0.1%, respectively. Based on our pre-pilot tests, the system shows great promise in developing into a low-cost and high-performance process. These results indicate that the keratinase-mediated system could hydrolyze ESM more efficiently and produce more bioactive substances than ever for therapeutical applications and dietary supplements.
Collapse
Affiliation(s)
- Ya-Chu Lien
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chai-Yi Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ken-Pei Wong
- I-MEI FOODS Company Limited, 1 F., No. 31, Sec. 2, Yanping N. Rd., Datong Dist., Taipei City, 10346, Taiwan
| | - Matt S Chang
- I-MEI FOODS Company Limited, 1 F., No. 31, Sec. 2, Yanping N. Rd., Datong Dist., Taipei City, 10346, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Likittrakulwong W, Moonsatan S, Incharoen T. Enhancement of tibia bone and eggshell hardness through the supplementation of bio-calcium derived from fish bone mixed with chelated trace minerals and vitamin D3 in laying duck diet. Vet Anim Sci 2021; 14:100204. [PMID: 34541376 PMCID: PMC8436163 DOI: 10.1016/j.vas.2021.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 10/31/2022] Open
Abstract
Cracked eggs cause great economic losses in duck egg production. The use of eggshell-related vitamins and minerals is one of the most suitable approaches for solving this problem. Therefore, this study aimed to evaluate the effects of dietary bio-calcium derived from fish bone mixed with chelated trace minerals and vitamin D3 (BCD) on egg performance, egg quality and the hardness of the tibia bone and the eggshell in laying ducks. A total of eighty 30-week-old Khaki Campbell laying ducks were assigned to 4 groups. Experimental birds were provided a basal diet supplemented with 0.0 (T1), 0.5 (T2), 1.0 (T3), or 2.0 (T4) g/kg BCD. Our results indicated that a negative impact on egg performance was not observed (P > 0.05) in any dietary BCD groups. The different BCD levels had no significant effects on yolk color, yolk ratio, albumen ratio, eggshell ratio or eggshell thickness. Similarly, the calcium and phosphorus contents of the eggshell and tibia bone were not influenced (P > 0.05) by the dietary BCD. Tibia bone weight and length did not differ (P > 0.05) among the 4 treatments. However, tibia bone (P = 0.006) and eggshell hardness (P = 0.025) significantly increased and correlated with increasing BCD levels. The strongest tibia bone and eggshell were found in the 2.0 g/kg BCD group when compared to the control group (P < 0.01). Thus, the study concluded that the inclusion of 2.0 g/kg BCD mixture in laying duck diets can be a potential approach to improve tibia bone and eggshell hardness, without detrimental effect on egg performance.
Collapse
Affiliation(s)
- Wirot Likittrakulwong
- Animal Science Program, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Sateanpong Moonsatan
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Tossaporn Incharoen
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Agricultural and Livestock Innovation, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Yamaguchi K, Itakura M, Kitazawa R, Lim SY, Nagata K, Shibata T, Akagawa M, Uchida K. Oxidative deamination of lysine residues by polyphenols generates an equilibrium of aldehyde and 2-piperidinol products. J Biol Chem 2021; 297:101035. [PMID: 34339739 PMCID: PMC8387773 DOI: 10.1016/j.jbc.2021.101035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Polyphenols, especially catechol-type polyphenols, exhibit lysyl oxidase-like activity and mediate oxidative deamination of lysine residues in proteins. Previous studies have shown that polyphenol-mediated oxidative deamination of lysine residues can be associated with altered electrical properties of proteins and increased crossreactivity with natural immunoglobulin M antibodies. This interaction suggested that oxidized proteins could act as innate antigens and elicit an innate immune response. However, the structural basis for oxidatively deaminated lysine residues remains unclear. In the present study, to establish the chemistry of lysine oxidation, we characterized oxidation products obtained via incubation of the lysine analog N-biotinyl-5-aminopentylamine with eggshell membranes containing lysyl oxidase and identified a unique six-membered ring 2-piperidinol derivative equilibrated with a ring-open product (aldehyde) as the major product. By monitoring these aldehyde-2-piperidinol products, we evaluated the lysyl oxidase-like activity of polyphenols. We also observed that this reaction was mediated by some polyphenols, especially o-diphenolic-type polyphenols, in the presence of copper ions. Interestingly, the natural immunoglobulin M monoclonal antibody recognized these aldehyde-2-piperidinol products as an innate epitope. These findings establish the existence of a dynamic equilibrium of oxidized lysine and provide important insights into the chemopreventive function of dietary polyphenols for chronic diseases.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masanori Itakura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Roma Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
6
|
Qiu JL, Zhou Q, Zhu JM, Lu XT, Liu B, Yu DY, Lin G, Ao T, Xu JM. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poult Sci 2019; 99:1483-1490. [PMID: 32115033 PMCID: PMC7587740 DOI: 10.1016/j.psj.2019.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the effects of low inclusion levels of organic trace minerals (iron, copper, manganese, and zinc) on performance, eggshell quality, serum hormone levels, and enzyme activities of laying hens during the late laying period. A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic trace minerals at commercial levels (CON), a basal diet supplemented with inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet supplemented with proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted 56 D (8 wk). Compared with the CON group, the ITM group showed decrease in (P < 0.05) egg production, eggshell strength, eggshell palisade layer, palisade layer ratio, serum estrogen, luteinizing hormone, glycosaminoglycan concentration, and carbonic anhydrase activity and increase in (P < 0.05) egg loss and mammillary layer ratio. However, the TRT group almost kept all the indices close to the CON group (P > 0.05). Furthermore, hens fed with low inclusion levels of organic trace minerals had smaller mammillary knobs (P < 0.05) than those in the CON and ITM groups. In conclusion, hens fed with low inclusion levels of proteinated trace minerals had better performance and eggshell strength than those fed with identical levels of inorganic compounds; organic trace minerals improved eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period.
Collapse
Affiliation(s)
- J L Qiu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Q Zhou
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J M Zhu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X T Lu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - B Liu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - D Y Yu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - G Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - T Ao
- Center for Applied Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA
| | - J M Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Arias JL, Fernandez MS. Role of extracellular matrix molecules in shell formation and structure. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20010024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J. L. Arias
- Faculty of Veterinary and Animal Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials (CIMAT), Santiago, Chile
| | - M. S. Fernandez
- Faculty of Veterinary and Animal Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials (CIMAT), Santiago, Chile
| |
Collapse
|
8
|
Berwanger E, Vieira SL, Angel CR, Kindlein L, Mayer AN, Ebbing MA, Lopes M. Copper requirements of broiler breeder hens. Poult Sci 2018; 97:2785-2797. [PMID: 29767800 DOI: 10.3382/ps/pex437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One-hundred-twenty Cobb 500 hens, 20 wk of age, were randomly allocated into individual cages with the objective of estimating Cu requirements. After being fed a Cu deficient diet for 4 wk, hens were fed diets with graded increments of supplemental Cu (0.0; 3.5; 7.0; 10.5; 14; and 17.5 ppm) from Cu sulfate (CuSO4 5H2O), totaling 2.67; 5.82; 9.38; 12.92; 16.83; and 20.19 ppm analyzed Cu in feeds for 20 weeks. Estimations of Cu requirements were done using exponential asymptotic (EA), broken line quadratic (BLQ), and quadratic polynomial (QP) models. Obtained Cu requirements for hen d egg production and total settable eggs per hen were 6.2, 7.3, and 12.9 ppm and 8.1, 9.0, and 13.4 ppm, respectively, using EA, BLQ, and QP models. The QP model was the only one having a fit for total eggs per hen with 13.1 ppm Cu as a requirement. Hemoglobin, hematocrit, and serum Cu from hens had requirements estimated as 13.9, 11.3, and 18.5, ppm; 14.6, 13.0, and 19.0 ppm; and 16.2, 14.6, and 14.2 ppm, respectively, for EA, BLQ, and QP models. Hatching chick hemoglobin was not affected by dietary Cu, whereas requirements estimated for hatching chick hematocrit and body weight and length were 10.2, 12.3, and 13.3 ppm using EA, BLQ, and QP models; and 6.8 and 7.1 ppm, and 12.9 and 13.9 ppm Cu using EA and BLQ models, respectively. Maximum responses for egg weight, yolk Cu content, and eggshell membrane thickness were 14.9, 12.7, and 15.1 ppm; 15.0, 16.3, and 15.7 ppm; and 7.3, 7.8, and 14.0 ppm Cu, respectively, for EA, BLQ, and QP models. Yolk and albumen percentage were adjusted only with the QP model and had requirements estimated at 11.0 ppm and 11.3 ppm, respectively, whereas eggshell mammillary layer was maximized with 10.6, 10.1, and 14.4 ppm Cu using EA, BLQ, and QP models, respectively. The average of all Cu requirement estimates obtained in the present study was 12.5 ppm Cu.
Collapse
Affiliation(s)
- E Berwanger
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - S L Vieira
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - C R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - L Kindlein
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 8834, Porto Alegre, RS, Brazil, 91540-000
| | - A N Mayer
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - M A Ebbing
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - M Lopes
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| |
Collapse
|
9
|
Ahmed TAE, Suso HP, Hincke MT. In-depth comparative analysis of the chicken eggshell membrane proteome. J Proteomics 2017; 155:49-62. [PMID: 28087451 DOI: 10.1016/j.jprot.2017.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
The avian eggshell membrane (ESM) is stabilized by extensive cross-linkages, making the identification of its protein constituents technically challenging. Herein, we applied various extraction/solubilization conditions followed by proteomic analysis to characterize the protein constituents of ESM derived from the unfertilized chicken eggs. The egg white and eggshell proteomes (including previous published work) were determined and compared to ESM to identify proteins that are relatively or highly specific to ESM. Merging the results from different extraction/solubilization conditions with various proteomes allowed the identification of 472, 225, and 488 proteins in the ESM, egg white, and eggshell proteomes, respectively. Of these, 163 and 124 proteins were relatively or highly specific to ESM, respectively. GO term analysis of the common proteins and ESM unique proteins generated 8 and 9 significantly enriched functional groups, respectively. Different families of proteins that were identified as ESM-specific included collagens, CREMPs, histones, AvBDs, lysyl oxidase-like 2 (LOXL2), and ovocalyxin-36 (OCX36). These proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. Overall, our results highlight the structural nature of the ESM constituents that are relevant to various biomedical applications, such as wound healing. BIOLOGICAL SIGNIFICANCE The eggshell membranes (ESM) are a highly resilient double-layered fibrous meshwork that is secreted while the forming egg transits a specialized oviduct segment, the white isthmus. The ESM protects against pathogen invasion and provides a platform for nucleation of the calcitic eggshell (ES). ESM is greatly stabilized by the extensive desmosine, isodesmosine and disulfide cross-linkages which make the identification of its protein constituents by standard proteomic approaches technically challenging. Comparative proteomic analyses of ESM, egg white, and ES proteins showed proteins groups that are relatively or highly specific to ESM. These groups of proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. These features are essential for eggshell quality and for the prevention of pathogen invasion which reinforce food safety of the table egg.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
11
|
Du J, Hincke MT, Rose-Martel M, Hennequet-Antier C, Brionne A, Cogburn LA, Nys Y, Gautron J. Identifying specific proteins involved in eggshell membrane formation using gene expression analysis and bioinformatics. BMC Genomics 2015; 16:792. [PMID: 26470705 PMCID: PMC4608100 DOI: 10.1186/s12864-015-2013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022] Open
Abstract
Background The avian eggshell membranes surround the egg white and provide a structural foundation for calcification of the eggshell which is essential for avian reproduction; moreover, it is also a natural biomaterial with many potential industrial and biomedical applications. Due to the insoluble and stable nature of the eggshell membrane fibres, their formation and protein constituents remain poorly characterized. The purpose of this study was to identify genes encoding eggshell membrane proteins, particularly those responsible for its structural features, by analyzing the transcriptome of the white isthmus segment of the oviduct, which is the specialized region responsible for the fabrication of the membrane fibres. Results The Del-Mar 14 K chicken microarray was used to investigate up-regulated expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Ma) and uterine (Ut) segments of the hen oviduct. Analysis revealed 135 clones hybridizing to over-expressed transcripts (WI/Ma + WI/Ut), and corresponding to 107 NCBI annotated non-redundant Gallus gallus gene IDs. This combined analysis revealed that the structural proteins highly over-expressed in the white isthmus include collagen X (COL10A1), fibrillin-1 (FBN1) and cysteine rich eggshell membrane protein (CREMP). These results validate previous proteomics studies which have identified collagen X (α-1) and CREMP in soluble eggshell extracts. Genes encoding collagen-processing enzymes such as lysyl oxidase homologs 1, 2 and 3 (LOXL1, LOXL2 and LOXL3), prolyl 4 hydroxylase subunit α-2 and beta polypeptide (P4HA2 and P4HB) as well as peptidyl-prolyl cis-trans isomerase C (PPIC) were also over-expressed. Additionally, genes encoding proteins known to regulate disulfide cross-linking, including sulfhydryl oxidase (QSOX1) and thioredoxin (TXN), were identified which suggests that coordinated up-regulation of genes in the white isthmus is associated with eggshell membrane fibre formation. Conclusions The present study has identified genes associated with the processing of collagen, other structural proteins, and disulfide-mediated cross-linking during eggshell membrane formation in the white isthmus. Identification of these genes will provide new insight into eggshell membrane structure and mechanisms of formation that will assist in the development of selection strategies to improve eggshell quality and food safety of the table egg. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2013-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwen Du
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | - Megan Rose-Martel
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | | | | | - Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19717, USA.
| | - Yves Nys
- INRA, UR83 Recherches Avicoles, F-37380, Nouzilly, France.
| | - Joel Gautron
- INRA, UR83 Recherches Avicoles, F-37380, Nouzilly, France.
| |
Collapse
|
12
|
Marie P, Labas V, Brionne A, Harichaux G, Hennequet-Antier C, Rodriguez-Navarro AB, Nys Y, Gautron J. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralisation and the active calcification phase. J Proteomics 2015; 126:140-54. [PMID: 26049031 DOI: 10.1016/j.jprot.2015.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/11/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
Eggshell is a bioceramic composed of 95% calcium carbonate mineral and 3.5% organic matrix. Its structural organisation is controlled by its organic matrix. We have used quantitative proteomics to study four key stages of shell mineralisation: 1) widespread deposition of amorphous calcium carbonate (ACC), 2) ACC transformation into crystalline calcite aggregates, 3) formation of larger calcite crystal units and 4) development of a columnar structure with preferential calcite crystal orientation. This approach explored the distribution of 216 shell matrix proteins found at the four stages. Variations in abundance according to these calcification events were observed for 175 proteins. A putative function related to the mineralisation process was predicted by bioinformatics for 77 of them and was further characterised. We confirmed the important role of lysozyme, ovotransferrin, ovocleidin-17 and ovocleidin-116 for shell calcification process, characterised major calcium binding proteins (EDIL3, ALB, MFGE8, NUCB2), and described novel proteoglycans core proteins (GPC4, HAPLN3). We suggest that OVAL and OC-17 play a role in the stabilisation of ACC. Finally, we report proteins involved in the regulation of proteins driving the mineralisation. They correspond to numerous molecular chaperones including CLU, PPIB and OCX21, protease and protease inhibitors including OVM and CST3, and regulators of phosphorylation.
Collapse
Affiliation(s)
- Pauline Marie
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Valérie Labas
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Aurélien Brionne
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Grégoire Harichaux
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | | | | | - Yves Nys
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Joël Gautron
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France.
| |
Collapse
|
13
|
Transcriptional profiling in rats and an ex vivo analysis implicate novel beneficial function of egg shell membrane in liver fibrosis. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Afiuni-Zadeh S, Guo X, Azimi G, Lankmayr E. Optimization and application of microwave-assisted acid hydrolysis for rapid quantification of protein oxidation markers using LC-MS. Talanta 2011; 85:1835-41. [PMID: 21872027 DOI: 10.1016/j.talanta.2011.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/10/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Simple and efficient microwave-assisted acid hydrolysis (MAAH) of proteins was used for rapid quantification of α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) as major protein oxidation markers. The precursor amino acid residues corresponding to AAS and GGS in oxidized proteins were derivatized by reductive amination with sodium cyanoborohydride (NaCNBH(3)) and p-aminobenzoic acid (ABA) followed by MAAH to generate the marker derivatives AAS-ABA and GGS-ABA. The quantification was performed using electrospray ionization liquid chromatography-mass spectrometry (ESI LC-MS). The important parameters for hydrolysis were optimized, which include the temperature, the reaction time, the acid concentration and volume as well as the microwave power. Compared to the conventional acid hydrolysis of 18-24h using 6-12 M HCl at 110°C applied commonly in the literature and also in this work, MAAH of proteins can be completed as fast as in only 2-10 min and, additionally, with a 3-5 times higher yield of the final derivatization products. Furthermore, a better agreement between the ratio of the detected derivatization products and the theoretical yields from the studied protein has also been achieved, which indicates that MAAH may serve as a more reliable method of acid hydrolysis for this purpose than that with conventional thermal heating. The MAAH method is demonstrated to be a time-saving, reproducible and efficient technique for studying AAS and GGS as protein oxidation markers using LC-MS.
Collapse
Affiliation(s)
- Somaieh Afiuni-Zadeh
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | | | | | | |
Collapse
|
15
|
Ruff KJ, Winkler A, Jackson RW, DeVore DP, Ritz BW. Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study. Clin Rheumatol 2009; 28:907-14. [PMID: 19340512 PMCID: PMC2711914 DOI: 10.1007/s10067-009-1173-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
Abstract
Natural Eggshell Membrane (NEM(R)) is a new novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy articular cartilage and the surrounding synovium. The randomized, multicenter, double-blind, placebo-controlled Osteoarthritis Pain Treatment Incorporating NEM(R) clinical study was conducted to evaluate the efficacy and safety of NEM(R) as a treatment for pain and stiffness associated with osteoarthritis of the knee. Sixty-seven patients were randomly assigned to receive either oral NEM(R) 500 mg (n = 34) or placebo (n = 33) daily for 8 weeks. The primary endpoint was the change in overall Western Ontario and McMasters Universities (WOMAC) Osteoarthritis Index as well as pain, stiffness, and function WOMAC subscales measured at 10, 30, and 60 days. The clinical assessment was performed on the intent-to-treat population. Supplementation with NEM(R) produced an absolute rate of response that was statistically significant (up to 26.6%) versus placebo at all time points for both pain and stiffness, but was not significantly improved for function and overall WOMAC scores, although trending toward improvement. Rapid responses were seen for mean pain subscores (15.9% reduction, P = 0.036) and mean stiffness subscores (12.8% reduction, P = 0.024) occurring after only 10 days of supplementation. There were no serious adverse events reported during the study and the treatment was reported to be well tolerated by study participants. Natural Eggshell Membrane (NEM(R)) is an effective and safe option for the treatment of pain and stiffness associated with knee osteoarthritis. Supplementation with NEM(R), 500 mg taken once daily, significantly reduced both joint pain and stiffness compared to placebo at 10, 30, and 60 days.
Collapse
Affiliation(s)
- Kevin J. Ruff
- ESM Technologies, LLC, 2213 Missouri Street, Carthage, MO 64836 USA
| | - Anne Winkler
- St. John’s Clinic—Rheumatology, 3231 S. National Avenue, Springfield, MO 65807 USA
| | - Robert W. Jackson
- Regional Specialty Clinic, 1008 East Patterson Street, Kirksville, MO 63501 USA
| | - Dale P. DeVore
- Membrell, LLC, 5335 S. Garrison Avenue, Carthage, MO 64836 USA
| | - Barry W. Ritz
- Department of Bioscience & Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Ruff KJ, DeVore DP, Leu MD, Robinson MA. Eggshell membrane: a possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies. Clin Interv Aging 2009; 4:235-40. [PMID: 19554094 PMCID: PMC2697588 DOI: 10.2147/cia.s5797] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
Background: Natural Eggshell Membrane (NEM®) is a novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy joint and connective tissues. Two single center, open-label human clinical studies were conducted to evaluate the efficacy and safety of NEM® as a treatment for pain and inflexibility associated with joint and connective tissue disorders. Methods: Eleven (single-arm trial) and 28 (double-arm trial) patients received oral NEM® 500 mg once daily for four weeks. The primary outcome measure was to evaluate the change in general pain associated with the treatment joints/areas (both studies). In the single-arm trial, range of motion (ROM) and related ROM-associated pain was also evaluated. The primary treatment response endpoints were at seven and 30 days. Both clinical assessments were performed on the intent-to-treat (ITT) population within each study. Results: Single-arm trial: Supplementation with NEM® produced a significant treatment response at seven days for flexibility (27.8% increase; P = 0.038) and at 30 days for general pain (72.5% reduction; P = 0.007), flexibility (43.7% increase; P = 0.006), and ROM-associated pain (75.9% reduction; P = 0.021). Double-arm trial: Supplementation with NEM® produced a significant treatment response for pain at seven days for both treatment arms (X: 18.4% reduction; P = 0.021. Y: 31.3% reduction; P = 0.014). There was no clinically meaningful difference between treatment arms at seven days, so the Y arm crossed over to the X formulation for the remainder of the study. The significant treatment response continued through 30 days for pain (30.2% reduction; P = 0.0001). There were no adverse events reported during either study and the treatment was reported to be well tolerated by study participants. Conclusions: Natural Eggshell Membrane (NEM®) is a possible new effective and safe therapeutic option for the treatment of pain and inflexibility associated with joint and connective tissue (JCT) disorders. Supplementation with NEM®, 500 mg taken once daily, significantly reduced pain, both rapidly (seven days) and continuously (30 days). It also showed clinically meaningful results from a brief responder analysis, demonstrating that significant proportions of treated patients may be helped considerably from NEM® supplementation. The Clinical Trial Registration numbers for these trials are: NCT00750230 and NCT00750854.
Collapse
|
17
|
Akagawa M, Suyama K, Uchida K. Fluorescent detection of alpha-aminoadipic and gamma-glutamic semialdehydes in oxidized proteins. Free Radic Biol Med 2009; 46:701-6. [PMID: 19135526 DOI: 10.1016/j.freeradbiomed.2008.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/29/2022]
Abstract
The oxidative modification of proteins is believed to play a critical role in the etiology and/or progression of several diseases. alpha-Aminoadipic semialdehyde (AAS) and gamma-glutamic semialdehyde (GGS) residues represent major oxidized amino acids generated in oxidized proteins. This paper describes a novel procedure for the specific and sensitive determination of AAS and GGS after their reductive amination with sodium cyanoborohydride and p-aminobenzoic acid, a fluorescence reagent, to their corresponding derivatives, followed by a high-performance liquid chromatography (HPLC) analysis. This fluorescent labeling of protein-associated aldehyde moieties is a simple and accurate technique that may be widely used to reveal increased levels of oxidatively modified proteins with reactive oxygen species during aging and disease.
Collapse
Affiliation(s)
- Mitsugu Akagawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | |
Collapse
|
18
|
Akagawa M, Sasaki D, Ishii Y, Kurota Y, Yotsu-Yamashita M, Uchida K, Suyama K. New method for the quantitative determination of major protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes: investigation of the formation mechanism and chemical nature in vitro and in vivo. Chem Res Toxicol 2006; 19:1059-65. [PMID: 16918245 DOI: 10.1021/tx060026p] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-aminoadipic semialdehyde (AAS) and gamma-glutamic semialdehyde (GGS) are identified as the major carbonyl products in oxidized proteins. To elucidate the formation pathway of AAS and GGS in vivo, we developed and validated a new quantification method. AAS and GGS in proteins were derivatized by reductive amination with NaCNBH(3) and p-aminobenzoic acid, a fluorescent reagent, followed by acid hydrolysis. It is noteworthy that the fluorescent derivatives were completely stable during acid hydrolysis. The present method permitted the specific, accurate, and sensitive quantification of both semialdehydes by fluorometric high-performance liquid chromatography. Analysis of proteins oxidized by various oxidation systems revealed that AAS and GGS are notably generated by the reaction of proteins with (*)OH, which is produced by metal-catalyzed oxidation (MCO). Furthermore, exposure of transferrin and human plasma to ascorbic acid and H(2)O(2) significantly promoted the formation of AAS and GGS in vitro, suggesting that both semialdehydes can be generated by MCO in vivo. We also demonstrated their generation through oxidative stress induced by acute iron overload in vivo. In this paper, we describe this analytical technique for simple and precise measurement of AAS and GGS and discuss their formation mechanism in vivo.
Collapse
Affiliation(s)
- Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Akagawa M, Sasaki D, Kurota Y, Suyama K. Formation of alpha-aminoadipic and gamma-glutamic semialdehydes in proteins by the maillard reaction. Ann N Y Acad Sci 2005; 1043:129-34. [PMID: 16037231 DOI: 10.1196/annals.1333.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent research has demonstrated that nonenzymatic glycation (the Maillard reaction) lead to the formation of carbonyl groups and advanced glycation end products (AGEs) in proteins. Such oxidative modifications are a major contributing factor to diabetic complications and aging. alpha-Aminoadipic semialdehyde (AAS) and gamma-glutamic semialdehyde (GGS) have been identified as the major carbonyl products in oxidized proteins both in vitro and in vivo. AAS is an oxidative deamination product of lysine residue, while GGS originates from arginine and proline residues. To evaluate oxidative damage to proteins by the Maillard reaction, we developed a method of detecting AAS and GGS by high-performance liquid chromatography (HPLC). The aldehydic residues in proteins were derivatized by reductive amination with NaCNBH3 and p-aminobenzoic acid (ABA), a fluorescence regent. After acid hydrolysis of the ABA-derivatized protein, ABA-AAS and ABA-GGS were measured by fluorometric HPLC. Thus, AAS and GGS could be detected in various proteins such as human plasma protein using the present method. Accumulation of both aldehydic residues was observed in oxidized proteins by reactive oxygen species. Furthermore, AAS and GGS were markedly formed in the incubation of BSA with ascorbic acid. The formation of both aldehydic residues was also observed in the incubation of BSA with 100 mM glucose or 1.0 mM methylglyoxal in the absence and presence of 100 microM Fe3+ for 2 weeks. These results suggest that the Maillard reaction can contribute to the formation of AAS and GGS in vivo.
Collapse
Affiliation(s)
- Mitsugu Akagawa
- Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | | | | | | |
Collapse
|
20
|
Januszewski AS, Alderson NL, Jenkins AJ, Thorpe SR, Baynes JW. Chemical modification of proteins during peroxidation of phospholipids. J Lipid Res 2005; 46:1440-9. [PMID: 15805546 DOI: 10.1194/jlr.m400442-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemical modification of proteins by advanced glycation and lipoxidation end products is implicated in the pathogenesis of macrovascular disease in aging and diabetes. To identify biomarkers of the lipoxidative modification of protein, we studied the oxidation of phospholipids in the presence of the model protein RNase A and compared protein-bound products formed in these reactions with those formed during oxidation of plasma proteins. Metal-catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylcholine or 1-palmitoyl-2-linoleoyl-phosphatidylcholine in the presence of RNase led to the loss of amino groups in RNase and the incorporation of phosphate, hexanoate, pentanedioate, nonanedioate, and palmitate into protein. Protein-bound palmitate and phosphate correlated strongly with one another, and protein-bound pentanedioate and nonanedioate, derived from arachidonate and linoleate, respectively, accounted for approximately 20% of the cross-linking of lipid phosphorus to protein. Similar results were obtained on oxidation of total plasma or isolated LDL. We conclude that alkanedioic acids are quantitatively important linkers of oxidized phospholipids to proteins and that measurement of protein-bound phosphate and long-chain fatty acids may be useful for assessing long-term lipid peroxidative damage to proteins in vivo. Analyses of plasma proteins from control and diabetic patients indicated significant increases in lipoxidative modification of protein in diabetic compared with control subjects.
Collapse
Affiliation(s)
- Andrzej S Januszewski
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
21
|
Wu B, Zhang G, Zhang Y, Shuang S, Choi MMF. Measurement of glucose concentrations in human plasma using a glucose biosensor. Anal Biochem 2005; 340:181-3. [PMID: 15802146 DOI: 10.1016/j.ab.2005.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Indexed: 11/28/2022]
Affiliation(s)
- Baoli Wu
- Institute of Advanced Chemistry, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | | | | | | | | |
Collapse
|
22
|
Wang X, Ford BC, Praul CA, Leach RM. Collagen X expression in oviduct tissue during the different stages of the egg laying cycle. Poult Sci 2002; 81:805-8. [PMID: 12079047 DOI: 10.1093/ps/81.6.805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this investigation was to study the expression of type X collagen in the hen's oviduct. Type X collagen is a short-chain collagen that is present in the fibers of eggshell membranes, and there is evidence to suggest that it contributes to structural integrity. In situ hybridization and Northern blot analysis were used to study the expression of this important matrix constituent. The results demonstrated that gene expression was predominantly in the tubular gland cells of the isthmus segment of the oviduct. In contrast to observations with other matrix proteins, such as parathyroid hormone-related peptide and osteopontin, gene expression did not fluctuate with the position of the egg in the oviduct.
Collapse
Affiliation(s)
- X Wang
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802-3501, USA
| | | | | | | |
Collapse
|
23
|
Akagawa M, Suyama K. Characterization of a model compound for the lysine tyrosylquinone cofactor of lysyl oxidase. Biochem Biophys Res Commun 2001; 281:193-9. [PMID: 11178979 DOI: 10.1006/bbrc.2001.4315] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterized a model compound for the lysine tyrosylquinone (LTQ) cofactor of lysyl oxidase which is one of the mammalian copper-dependent amine oxidases. The model compound, 4-butylamino-5-methyl-o-quinone, was prepared from n-butylamine and 4-methylcatechol by the oxidation with sodium iodate and characterized by spectroscopic analyses. The absorption maximum at 494 nm is consistent with that of lysyl oxidase. The model compound was capable of deaminating benzylamine to benzaldehyde at 37 degrees C in buffered aqueous acetonitrile. The aldehyde production was markedly elevated in the presence of the Cu(II)-EDTA complex but inhibited by free Cu(II). The catalytic cycle was observed at pH 10 in the presence of Cu(II), and the pH activity profile showed a broad optimum at about pH 9.0. In the presence of beta-aminopropionitrile and upon deoxygenation with N2 aldelyde, production was decreased. The important features of the reaction were consistent with the enzymatic reaction.
Collapse
Affiliation(s)
- M Akagawa
- Department of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai, 981-8555, Japan
| | | |
Collapse
|
24
|
Soledad Fernandez M, Moya A, Lopez L, Arias JL. Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 2001; 19:793-803. [PMID: 11223339 DOI: 10.1016/s0945-053x(00)00128-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The chicken eggshell is a composite bioceramic containing organic and inorganic phases. The organic phase contains, among other constituents, type X collagen and proteoglycans (mammillan, a keratan sulfate proteoglycan, and ovoglycan, a dermatan sulfate proteoglycan), whose localization depends on a topographically defined and temporally regulated deposition. Although the distribution of these macromolecules in the eggshell has been well established, little is known about their precise localization within eggshell substructures and oviduct cells or their pattern of production and function during eggshell formation. By using immunofluorescent and immuno-ultrastructural analyses, we examined the distribution of these macromolecules in oviduct cells at different post-oviposition times. To understand the role of proteoglycan sulfation on eggshell formation, we studied the effects of inhibition of proteoglycan sulfation by treatment with sodium chlorate. We showed that these macromolecules are produced by particular oviduct cell populations and at precise post-oviposition times. Based on the precise ultrastructural localization of these macromolecules in eggshell substructures, the timing of the secretion of these macromolecules by oviduct cells and the effects on eggshell formation caused by the inhibition of proteoglycan sulfation, the putative role of mammillan is in the nucleation of the first calcite crystals, while that of ovoglycan is to regulate the growth and orientation of the later forming crystals of the chicken eggshell.
Collapse
Affiliation(s)
- M Soledad Fernandez
- Faculty of Veterinary and Animal Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials (CIMA), Santiago, Chile.
| | | | | | | |
Collapse
|