1
|
Telenson AM, Hsieh RR, Cowen GJ, Sode EP, Kwon JM, Vo AH, Hadhazy M, Page PG, Rao NR, Pesce L, Demonbreun AR, Puckelwartz MJ, Savas JN, McNally EM. A novel, rapidly progressive ataxia due to a spontaneous Myo5a mutation in mice impairs transport proteins and alters mitochondria. FASEB J 2025; 39:e70423. [PMID: 40022605 DOI: 10.1096/fj.202402274r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/01/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Spontaneous mouse mutants have helped define genetic contributions to many phenotypes. Here we report a spontaneous Novel Ataxic Phenotype in mice. Ataxia findings were evident at post-natal day 11 in NAP mice and rapidly worsened, resulting in preweaning lethality. Using genome sequencing and genome-wide mapping, we identified a 3' donor splice variant in exon 14 of Myo5a, encoding an actin-based motor protein. The variant in Myo5a (c.1752g>a) excises exon 14 and ablates MYO5A protein expression, which is implicated in intracellular transport and Griscelli syndrome type I in humans. NAP mice displayed expansion of PAX6-positive cells in the external granule layer of the cerebellum, and mass spectrometry analysis of cerebellar extracts uncovered differentially abundant proteins involved in short-range organelle transport, and specifically proteins implicated with early endosomes. Using cerebellar lysates and primary neurons, we provide evidence for an interaction between MYO5A and ANKFY1, a known effector for the endosomal protein, RAB5A. We also found neurons from NAP mice had elongated mitochondria, linking MYO5A to mitochondrial homeostasis. This allele provides new insight into Myo5a function in developmental neuropathology.
Collapse
Affiliation(s)
- Alexander M Telenson
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan R Hsieh
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gabrielle J Cowen
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eoin P Sode
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason M Kwon
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andy H Vo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Patrick G Page
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nalini R Rao
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorenzo Pesce
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Chelius X, Rausch N, Bartosch V, Klecker M, Klecker T, Westermann B. A protein interaction map of the myosin Myo2 reveals a role for Alo1 in mitochondrial inheritance in yeast. J Cell Sci 2025; 138:JCS263678. [PMID: 39775849 DOI: 10.1242/jcs.263678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, and, at the same time, some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes. To search for novel components involved in this process, we performed a protein fragment complementation screen using the cargo-binding domain of Myo2, the major organelle transporter in yeast, as bait and a genome-wide strain collection expressing yeast proteins as prey. One robust hit was Alo1, a poorly characterized D-arabinono-1,4-lactone oxidase located in the mitochondrial outer membrane. We found that mutants lacking Alo1 exhibited defects in mitochondrial morphology and inheritance. During oxidative stress, dysfunctional mitochondria are immobilized in the mother in wild-type cells. Intriguingly, overexpression of ALO1 restored bud-directed transport of mitochondria under these conditions. We propose that Alo1 supports the recruitment of Myo2 to mitochondria and its activity is particularly important under oxidative stress.
Collapse
Affiliation(s)
- Xenia Chelius
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | - Maria Klecker
- Pflanzenphysiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
3
|
Yang L, Yin H, Bai L, Yao W, Tao T, Zhao Q, Gao Y, Teng J, Xu Z, Lin Q, Diao S, Pan Z, Guan D, Li B, Zhou H, Zhou Z, Zhao F, Wang Q, Pan Y, Zhang Z, Li K, Fang L, Liu GE. Mapping and functional characterization of structural variation in 1060 pig genomes. Genome Biol 2024; 25:116. [PMID: 38715020 PMCID: PMC11075355 DOI: 10.1186/s13059-024-03253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Hongwei Yin
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lijing Bai
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenye Yao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Tan Tao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Qianyi Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhangyuan Pan
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Dailu Guan
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Bingjie Li
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Huaijun Zhou
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Zhongyin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kui Li
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Yao LL, Hou WD, Liang Y, Li XD, Ji HH. Spire2 and Rab11a synergistically activate myosin-5b motor function. Biochem Biophys Res Commun 2024; 703:149653. [PMID: 38364682 DOI: 10.1016/j.bbrc.2024.149653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown. In this study, we expressed and purified Myo5b, Spire2, and Rab11a proteins, and performed ATPase activity measurements, pulldown and single-molecule motility assays. Our results demonstrate that both Spire2 and Rab11a are required to activate Myo5b motor activity under physiological ionic conditions. The GTBM fragment of Spire2 stimulates the ATPase activity of Myo5b, while Rab11a enhances this activation. This activation occurs by disrupting the head-tail interaction of Myo5b. Furthermore, at the single-molecule level, we observed that the GTBM fragment of Spire2 and Rab11a coordinate to stimulate the Myo5b motility activity. Based on our results, we propose that upon association with the vesicle membrane, Myo5b, Spire2 and Rab11a form a ternary complex, and the inhibited Myo5b is synergistically activated by Spire2 and Rab11a, thereby triggering the long-distance transport of vesicles.
Collapse
Affiliation(s)
- Lin-Lin Yao
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Wei-Dong Hou
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yi Liang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan-Hong Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
5
|
Kengyel A, Palarz PM, Krohn J, Marquardt A, Greve JN, Heiringhoff R, Jörns A, Manstein DJ. Motor properties of Myosin 5c are modulated by tropomyosin isoforms and inhibited by pentabromopseudilin. Front Physiol 2024; 15:1394040. [PMID: 38606007 PMCID: PMC11008601 DOI: 10.3389/fphys.2024.1394040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Myosin 5c (Myo5c) is a motor protein that is produced in epithelial and glandular tissues, where it plays an important role in secretory processes. Myo5c is composed of two heavy chains, each containing a generic motor domain, an elongated neck domain consisting of a single α-helix with six IQ motifs, each of which binds to a calmodulin (CaM) or a myosin light chain from the EF-hand protein family, a coiled-coil dimer-forming region and a carboxyl-terminal globular tail domain. Although Myo5c is a low duty cycle motor, when two or more Myo5c-heavy meromyosin (HMM) molecules are linked together, they move processively along actin filaments. We describe the purification and functional characterization of human Myo5c-HMM co-produced either with CaM alone or with CaM and the essential and regulatory light chains Myl6 and Myl12b. We describe the extent to which cofilaments of actin and Tpm1.6, Tpm1.8 or Tpm3.1 alter the maximum actin-activated ATPase and motile activity of the recombinant Myo5c constructs. The small allosteric effector pentabromopseudilin (PBP), which is predicted to bind in a groove close to the actin and nucleotide binding site with a calculated ΔG of -18.44 kcal/mol, inhibits the motor function of Myo5c with a half-maximal concentration of 280 nM. Using immunohistochemical staining, we determined the distribution and exact localization of Myo5c in endothelial and endocrine cells from rat and human tissue. Particular high levels of Myo5c were observed in insulin-producing β-cells located within the pancreatic islets of Langerhans.
Collapse
Affiliation(s)
- András Kengyel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Philip M. Palarz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jacqueline Krohn
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Rudolf R. Myosin Va: Capturing cAMP for synaptic plasticity. Front Physiol 2024; 14:1342994. [PMID: 38239886 PMCID: PMC10794446 DOI: 10.3389/fphys.2023.1342994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The plus-end directed actin-dependent motor protein, myosin Va, is of particular relevance for outward vesicular protein trafficking and for restraining specific cargo vesicles within the actin cortex. The latter is a preferred site of cAMP production, and the specificity of cAMP signaling is largely mediated through the formation of microdomains that spatially couple localized metabotropic receptor activity and cAMP production to selected effectors and downstream targets. This review summarizes the core literature on the role of myosin Va for the creation of such a cAMP microdomain at the mammalian nerve-muscle synapse that serves the activity-dependent recycling of nicotinic acetylcholine receptors (nAChRs)-a principal ligand-gated ion channel which is imperative for voluntary muscle contraction. It is discussed that i) the nerve-muscle synapse is a site with a unique actin-dependent microstructure, ii) myosin Va and protein kinase A regulatory subunit Iα as well as nAChR and its constitutive binding partner, rapsyn, colocalize in endocytic/recycling vesicles near the postsynaptic membrane, and iii) impairment of myosin Va or displacement of protein kinase A regulatory subunit Iα leads to the loss of nAChR stability. Regulation of this signaling process and underlying basic pieces of machinery were covered in previous articles, to which the present review refers.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
8
|
Niu F, Liu Y, Sun K, Xu S, Dong J, Yu C, Yan K, Wei Z. Autoinhibition and activation mechanisms revealed by the triangular-shaped structure of myosin Va. SCIENCE ADVANCES 2022; 8:eadd4187. [PMID: 36490350 PMCID: PMC9733927 DOI: 10.1126/sciadv.add4187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the prototype of unconventional myosin motor family, myosin Va (MyoVa) transport cellular cargos along actin filaments in diverse cellular processes. The off-duty MyoVa adopts a closed and autoinhibited state, which can be relieved by cargo binding. The molecular mechanisms governing the autoinhibition and activation of MyoVa remain unclear. Here, we report the cryo-electron microscopy structure of the two full-length, closed MyoVa heavy chains in complex with 12 calmodulin light chains at 4.78-Å resolution. The MyoVa adopts a triangular structure with multiple intra- and interpolypeptide chain interactions in establishing the closed state with cargo binding and adenosine triphosphatase activity inhibited. Structural, biochemical, and cellular analyses uncover an asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two MyoVa heavy chains are differently protected. Thus, specific and efficient MyoVa activation requires coincident binding of multiple cargo adaptors, revealing an intricate and elegant activity regulation of the motor in response to cargos.
Collapse
Affiliation(s)
- Fengfeng Niu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- SUSTech-HIT Joint PhD Program, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Kang Sun
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shun Xu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Dong
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Kaige Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Liu Y, Li L, Yu C, Zeng F, Niu F, Wei Z. Cargo Recognition Mechanisms of Yeast Myo2 Revealed by AlphaFold2-Powered Protein Complex Prediction. Biomolecules 2022; 12:biom12081032. [PMID: 35892342 PMCID: PMC9330073 DOI: 10.3390/biom12081032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Myo2, a yeast class V myosin, transports a broad range of organelles and plays important roles in various cellular processes, including cell division in budding yeast. Despite the fact that several structures of Myo2/cargo adaptor complexes have been determined, the understanding of the versatile cargo-binding modes of Myo2 is still very limited, given the large number of cargo adaptors identified for Myo2. Here, we used ColabFold, an AlphaFold2-powered and easy-to-use tool, to predict the complex structures of Myo2-GTD and its several cargo adaptors. After benchmarking the prediction strategy with three Myo2/cargo adaptor complexes that have been determined previously, we successfully predicted the atomic structures of Myo2-GTD in complex with another three cargo adaptors, Vac17, Kar9 and Pea2, which were confirmed by our biochemical characterizations. By systematically comparing the interaction details of the six complexes of Myo2 and its cargo adaptors, we summarized the cargo-binding modes on the three conserved sites of Myo2-GTD, providing an overall picture of the versatile cargo-recognition mechanisms of Myo2. In addition, our study demonstrates an efficient and effective solution to study protein-protein interactions in the future via the AlphaFold2-powered prediction.
Collapse
Affiliation(s)
- Yong Liu
- SUSTech-HIT Joint PhD Program, Harbin Institute of Technology, Harbin 150001, China;
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingxuan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fuxing Zeng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
| | - Fengfeng Niu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (F.N.); (Z.W.)
| | - Zhiyi Wei
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; (L.L.); (C.Y.); (F.Z.)
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (F.N.); (Z.W.)
| |
Collapse
|
10
|
Xie P. Effect of varying load in moving period of a step on dynamics of molecular motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:28. [PMID: 35318549 DOI: 10.1140/epje/s10189-022-00181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
During the processive stepping of a molecular motor on its polar track, a step consists of a long dwell period and a very short moving period. In single molecule optical trapping experiments to determine the load dependence of the motor dynamics, although the motor experiences a constant load during the dwell period, it experiences a varying load during the moving period. However, in previous theoretical studies to explain the single molecule optical trapping data, it was simply assumed that the motor experiences a constant load during both the dwell period and the following moving period. Thus, an important but unclear issue is whether the assumption is appropriate in the theoretical studies. Here, we take kinesin and myosin-V as examples to study theoretically the motor dynamics with the consideration of the varying load during the moving period and compare with that with the assumption of the constant load. The studies show that in the optical trapping experiments employed in the literature, for the kinesin with a small step size of about 8 nm it is a good approximation to make the theoretical studies by assuming that the motor experiences the constant load during the moving period. For the myosin-V with a large step size of about 36 nm, there are small but noticeable deviations of the results obtained by considering that the motor experiences the varying load during the moving period from those by assuming that the motor experiences the constant load. .
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
11
|
Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H. The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 2021; 14:691363. [PMID: 34421537 PMCID: PMC8375295 DOI: 10.3389/fnmol.2021.691363] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Exocytosis is a Ca2+-regulated process that requires the participation of Ca2+ sensors. In the 1980s, two classes of Ca2+-binding proteins were proposed as putative Ca2+ sensors: EF-hand protein calmodulin, and the C2 domain protein synaptotagmin. In the next few decades, numerous studies determined that in the final stage of membrane fusion triggered by a micromolar boost in the level of Ca2+, the low affinity Ca2+-binding protein synaptotagmin, especially synaptotagmin 1 and 2, acts as the primary Ca2+ sensor, whereas calmodulin is unlikely to be functional due to its high Ca2+ affinity. However, in the meantime emerging evidence has revealed that calmodulin is involved in the earlier exocytotic steps prior to fusion, such as vesicle trafficking, docking and priming by acting as a high affinity Ca2+ sensor activated at submicromolar level of Ca2+. Calmodulin directly interacts with multiple regulatory proteins involved in the regulation of exocytosis, including VAMP, myosin V, Munc13, synapsin, GAP43 and Rab3, and switches on key kinases, such as type II Ca2+/calmodulin-dependent protein kinase, to phosphorylate a series of exocytosis regulators, including syntaxin, synapsin, RIM and Ca2+ channels. Moreover, calmodulin interacts with synaptotagmin through either direct binding or indirect phosphorylation. In summary, calmodulin and synaptotagmin are Ca2+ sensors that play complementary roles throughout the process of exocytosis. In this review, we discuss the complementary roles that calmodulin and synaptotagmin play as Ca2+ sensors during exocytosis.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiaxiang Yin
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jingyao Xia
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
12
|
Niu F, Sun K, Wei W, Yu C, Wei Z. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis. SCIENCE ADVANCES 2020; 6:6/45/eabb1307. [PMID: 33158857 PMCID: PMC7673715 DOI: 10.1126/sciadv.abb1307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Motor-mediated intracellular trafficking requires motors to position cargoes at proper locations. Myosin Va (MyoVa), an actin-based motor, is a classic model for studying cargo transport. However, the molecular basis underlying cargo unloading in MyoVa-mediated transport has remained enigmatic. We have identified MICAL1, an F-actin disassembly regulator, as a binding partner of MyoVa and shown that MICAL1-MyoVa interaction is critical for localization of MyoVa at the midbody. By binding to MICAL1, MyoVa-mediated transport is terminated, resulting in vesicle unloading at the midbody for efficient cytokinesis. The MyoVa/MICAL1 complex structure reveals that MICAL1 and F-actin assembly factors, Spires, share an overlapped binding surface on MyoVa, suggesting a regulatory role of F-actin dynamics in cargo unloading. Down-regulating F-actin disassembly by a MICAL1 mutant significantly reduces MyoVa and vesicles accumulating at the midbody. Collectively, our findings demonstrate that MyoVa binds to MICAL1 at the midbody destination and triggers F-actin disassembly to unload the vesicle cargo.
Collapse
Affiliation(s)
- Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Wenjie Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Renshaw H, Juvvadi PR, Cole DC, Steinbach WJ. The class V myosin interactome of the human pathogen Aspergillus fumigatus reveals novel interactions with COPII vesicle transport proteins. Biochem Biophys Res Commun 2020; 527:232-237. [PMID: 32446373 PMCID: PMC7248123 DOI: 10.1016/j.bbrc.2020.04.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022]
Abstract
The human fungal pathogen Aspergillus fumigatus causes life-threatening invasive aspergillosis in immunocompromised individuals. Adaptation to the host environment is integral to survival of A. fumigatus and requires the coordination of short- and long-distance vesicular transport to move essential components throughout the fungus. We previously reported the importance of MyoE, the only class V myosin, for hyphal growth and virulence of A. fumigatus. Class V myosins are actin-based, cargo-carrying motor proteins that contain unique binding sites for specific cargo. Specific cargo carried by myosin V has not been identified in any fungus, and previous studies have only identified single components that interact with class V myosins. Here we utilized a mass spectrometry-based whole proteomic approach to identify MyoE interacting proteins in A. fumigatus for the first time. Several proteins previously shown to interact with myosin V through physical and genetic approaches were confirmed, validating our proteomic analysis. Importantly, we identified novel MyoE-interacting proteins, including members of the cytoskeleton network, cell wall synthesis, calcium signaling and a group of coat protein complex II (COPII) proteins involved in the endoplasmic reticulum (ER) to Golgi transport. Furthermore, we analyzed the localization patterns of the COPII proteins, UsoA (Uso1), SrgE (Sec31), and SrgF (Sec23), which suggested a potential role for MyoE in ER to Golgi trafficking.
Collapse
Affiliation(s)
- Hilary Renshaw
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Praveen R Juvvadi
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA.
| | - D Christopher Cole
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - William J Steinbach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
15
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
16
|
Klecker T, Westermann B. Asymmetric inheritance of mitochondria in yeast. Biol Chem 2020; 401:779-791. [DOI: 10.1515/hsz-2019-0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/27/2023]
Abstract
AbstractMitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
17
|
Xie P. Dynamics of ATP-dependent and ATP-independent steppings of myosin-V on actin: catch-bond characteristics. J R Soc Interface 2020; 17:20200029. [PMID: 32259459 PMCID: PMC7211485 DOI: 10.1098/rsif.2020.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022] Open
Abstract
An analytical theory is presented for the dynamics of myosin-V molecular motor, where both ATP-dependent and ATP-independent steppings are taken into account. Specifically, the dependences of velocity, run length and unbinding rate upon both forward and backward loads and ATP concentration are studied, explaining quantitatively the diverse available single-molecule data and providing predicted results. The results show that the unbinding rate increases with the increase of ATP concentration and levels off at both low and high ATP concentrations. More interestingly, at an ATP concentration that is not very low, the unbinding rate exhibits characteristics of a catch-slip bond under backward load, with the unbinding rate decreasing rapidly with the increase of the backward load in the range smaller than about 2.5 pN and then increasing slowly with the further increase of the backward load. By contrast, under forward load the unbinding rate exhibits a slip-bond characteristic.
Collapse
Affiliation(s)
- Ping Xie
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
18
|
Hathcock D, Tehver R, Hinczewski M, Thirumalai D. Myosin V executes steps of variable length via structurally constrained diffusion. eLife 2020; 9:51569. [PMID: 31939739 PMCID: PMC7054003 DOI: 10.7554/elife.51569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
The molecular motor myosin V transports cargo by stepping on actin filaments, executing a random diffusive search for actin binding sites at each step. A recent experiment suggests that the joint between the myosin lever arms may not rotate freely, as assumed in earlier studies, but instead has a preferred angle giving rise to structurally constrained diffusion. We address this controversy through comprehensive analytical and numerical modeling of myosin V diffusion and stepping. When the joint is constrained, our model reproduces the experimentally observed diffusion, allowing us to estimate bounds on the constraint energy. We also test the consistency between the constrained diffusion model and previous measurements of step size distributions and the load dependence of various observable quantities. The theory lets us address the biological significance of the constrained joint and provides testable predictions of new myosin behaviors, including the stomp distribution and the run length under off-axis force.
Collapse
Affiliation(s)
- David Hathcock
- Department of Physics, Cornell University, Ithaca, United States
| | - Riina Tehver
- Department of Physics and Astronomy, Denison University, Granville, United States
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, United States
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, United States
| |
Collapse
|
19
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
20
|
Zhang JP, Liu Y, Sun W, Zhao XY, Ta L, Guo WS. Characteristics of Myosin V Processivity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1302-1308. [PMID: 28212094 DOI: 10.1109/tcbb.2017.2669311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Myosin V is a processive doubled-headed biomolecular motor involved in many intracellular organelle and vesicle transport. The unidirectional movement is coupled with the adenosine triphosphate (ATP) hydrolysis and product release cycle. With the progress of experimental techniques and the enhancement of measuring directness, detailed knowledge of the motility of myosin V has been obtained. Following the ATPase cycle, the 4-state mechanochemical model of the myosin V's processive movement is used. The transitions between various states take place in a stochastic manner. We can use the master equation to analyze and calculate quantitatively. Meanwhile, the effect of the reverse reaction is taken fully into account. We fit the mean velocity, the mean dwell time, the mean run length, and the ratio of forward/backward steps as a functionof ATP, ADP, and Pi concertration. The theoretical curves are generally in line with the experimental data. This work provides a new insight for the characteristic of myosin V.
Collapse
|
21
|
Myosin Va and spermine synthase: partners in exosome transport. Biosci Rep 2019; 39:BSR20190326. [PMID: 30967493 PMCID: PMC6488853 DOI: 10.1042/bsr20190326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
A recent paper in Bioscience Reports (BSR20182189) describes the discovery of an
interaction between the motor protein myosin Va and the metabolic enzyme
spermine synthase. Myosin Va is a molecular motor which plays a key role in
vesicle transport. Mutations in the gene which encodes this protein are
associated with Griscelli syndrome type 1 and the ‘dilute’
phenotype in animals. Spermine synthase catalyzes the conversion of spermidine
to spermine. This largely cytoplasmic enzyme can also be localized to the
soluble fraction in exosomes. Mutations in the spermine synthase gene are
associated with Snyder Robinson mental retardation syndrome. The interaction
between the two proteins was detected using the yeast two hybrid method and
verified by microscale thermophoresis of recombinant proteins. Knockdown of the
MYO5A gene reduced the expression of mRNA coding for
spermine synthase. The amount of this transcript was also reduced in cells
derived from a patient with Griscelli syndrome type 1. This suggests that, in
addition to a direct physical interaction between the two proteins, myosin Va
also modulates the transcription of the spermine synthase gene. The mechanism
for this modulation is currently unknown. These findings have implications for
Griscelli syndrome type 1 and Snyder Robinson mental retardation syndrome. They
also suggest that interactions between myosin Va and soluble exosome proteins
such as spermine synthase may be important in the mechanism of exosome
transport.
Collapse
|
22
|
Ramírez-Del Villar A, Roberson RW, Callejas-Negrete OA, Mouriño-Pérez RR. The actin motor MYO-5 effect in the intracellular organization of Neurospora crassa. Fungal Genet Biol 2019; 125:13-27. [PMID: 30615944 DOI: 10.1016/j.fgb.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023]
Abstract
In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.
Collapse
Affiliation(s)
- Arianne Ramírez-Del Villar
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Olga A Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico.
| |
Collapse
|
23
|
Xie P. A model for the chemomechanical coupling of myosin-V molecular motors. RSC Adv 2019; 9:26734-26747. [PMID: 35528596 PMCID: PMC9070430 DOI: 10.1039/c9ra05072h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
Herein, a model for the chemomechanical coupling of dimeric myosin-V motors is presented. Based on this model and the proposal that the rate constants of the ATPase activity of the two heads are independent of an external force in a range smaller than the stall force, we analytically studied the dynamics of the motor, such as the stepping ratio, dwell time between two mechanical steps, and velocity, under varying force and ATP concentrations. The theoretical results well reproduce the diverse available single-molecule experimental data. In particular, the experimental data showing that at a low ATP concentration, the dwell time and velocity have less force dependency than at a high ATP concentration is explained quantitatively. Moreover, the dependency of the chemomechanical coupling ratio on the force and ATP concentration was studied. The paper presents a model of chemomechanical coupling of myosin-V motor, explaining the dynamics under varying force and ATP concentrations.![]()
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
24
|
Zhang N, Yao LL, Li XD. Regulation of class V myosin. Cell Mol Life Sci 2018; 75:261-273. [PMID: 28730277 PMCID: PMC11105390 DOI: 10.1007/s00018-017-2599-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.
Collapse
Affiliation(s)
- Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Sumi T. Myosin V: Chemomechanical-coupling ratchet with load-induced mechanical slip. Sci Rep 2017; 7:13489. [PMID: 29044145 PMCID: PMC5647391 DOI: 10.1038/s41598-017-13661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022] Open
Abstract
A chemomechanical-network model for myosin V is presented on the basis of both the nucleotide-dependent binding affinity of the head to an actin filament (AF) and asymmetries and similarity relations among the chemical transitions due to an intramolecular strain of the leading and trailing heads. The model allows for branched chemomechanical cycles and takes into account not only two different force-generating mechanical transitions between states wherein the leading head is strongly bound and the trailing head is weakly bound to the AF but also load-induced mechanical-slip transitions between states in which both heads are strongly bound. The latter is supported by the fact that ATP-independent high-speed backward stepping has been observed for myosin V, although such motility has never been for kinesin. The network model appears as follows: (1) the high chemomechanical-coupling ratio between forward step and ATP hydrolysis is achieved even at low ATP concentrations by the dual mechanical transitions; (2) the forward stepping at high ATP concentrations is explained by the front head-gating mechanism wherein the power stroke is triggered by the inorganic-phosphate (Pi) release from the leading head; (3) the ATP-binding or hydrolyzed ADP.Pi-binding leading head produces a stable binding to the AF, especially against backward loading.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan. .,Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
26
|
Yoshizumi Y, Suzuki H. Self-Propelled Metal-Polymer Hybrid Micromachines with Bending and Rotational Motions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21355-21361. [PMID: 28581704 DOI: 10.1021/acsami.7b03656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two self-propelled micromachines were fabricated with gold/platinum micromotors that exhibit simple translational motion in a fuel solution. In each one, two micromotors were connected with a joint of polymer tube formed by stacking cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) using a layer-by-layer technique. A bent structure was created by making one longitudinal side of the joint more swellable with alkaline treatment. The joint containing fewer PAA/PAH bilayers was flexible and allowed a larger range of Brownian angular fluctuation. In the fuel solution, bending and stable rotation were observed for the micromotors tethered with soft and rigid angled joints, respectively. The radius and angular velocity of the rotation depended on the angle of the joint. Such tethered micromotors can be used to realize sophisticated micro/nanomachines for microscale surgery and drug delivery.
Collapse
Affiliation(s)
- Yoshitaka Yoshizumi
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
27
|
Li YR, Zhong A, Dong H, Ni LH, Tan FQ, Yang WX. Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget 2017; 8:54654-54671. [PMID: 28903372 PMCID: PMC5589611 DOI: 10.18632/oncotarget.17920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin Va, a member of Class V myosin, functions in organelle motility, spindle formation, nuclear morphogenesis and cell motility. The purpose of this study is to explore the expression and localization of myosin Va in testicular cancer and prostate cancer, and its specific roles in tumor progression including cell division, migration and proliferation. We detected myosin Va in testicular and prostate tumor tissues using sqRT-PCR, western blot, and immunofluorescence. Tumor samples showed an increased expression of myosin Va, abnormal actin and myosin Va distribution. Immunofluorescence images during the cell cycle showed that myosin Va tended to gather at cytoplasm during anaphase but co-localized with nucleus during other phases, suggesting the roles of myosin Va in disassembly of spindle microtubule, movement of chromosomes and normal cytokinesis. In addition, multi-nucleation and aberrant nuclear morphology were observed in myosin Va-knockdown cells. Wounding assay and CCK-8-based cell counting were conducted to explore myosin Va roles in cell migration, viability and proliferation. Our results suggest that myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability, and these properties are the hallmark of tumor progression and metastasis development. Therefore, an increased understanding of myosin Va expression and function will assist in the development of future oncodiagnosis and -therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ai Zhong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Han Dong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lu-Han Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Peñalva MA, Zhang J, Xiang X, Pantazopoulou A. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 2017; 28:947-961. [PMID: 28209731 PMCID: PMC5385943 DOI: 10.1091/mbc.e16-08-0566] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/02/2022] Open
Abstract
In Aspergillus nidulans, the distribution of exocytic carriers involves interplay between kinesin-1, myosin-5, and dynein. Engagement of the dynein complex to these carriers requires dynactin p25, but, unlike that of early endosomes, it does not require the Hook complex. Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| |
Collapse
|
29
|
Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, Lopez-Fernandez L, Torres-Martínez S, Garre V, Ruiz-Vázquez RM, Nicolás FE. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathog 2017; 13:e1006150. [PMID: 28107502 PMCID: PMC5287474 DOI: 10.1371/journal.ppat.1006150] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/01/2017] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies. Mucormycosis is an infectious disease caused by organisms of the order Mucorales. It is a lethal infection that is raising the alarm in the medical and scientific community due to its high mortality rates, unusual antifungal drug resistance and its emerging character. Among the reasons explaining the nescience about this disease is the lack of knowledge on the biology of the organisms that cause mucormycosis, which is encouraged by the reluctance of these species to genetic studies. In this work, we have developed an RNAi-based functional genomic platform to study virulence in Mucorales. It is a powerful tool available for the scientific community that will contribute to solve the reluctance of Mucorales to genetic studies and will help to understand the genetic basis of virulence in these organisms. Secondly, and as a proof of concept, we have used this genetic tool to identify two new virulence determinants in Mucor circinelloides. Lack of function of these determinants delays germination and growth of spores, conceding time to macrophages for the inactivation of the pathogen. The two genes identified, mcplD and mcmyo5, represent promising targets for future development of new antifungal therapies against mucormycosis.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | | | - Carlos Pérez-Arques
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | | | | | | | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | | | - Francisco E. Nicolás
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
- * E-mail:
| |
Collapse
|
30
|
Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proc Natl Acad Sci U S A 2016; 113:E5812-E5820. [PMID: 27647889 DOI: 10.1073/pnas.1607702113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals.
Collapse
|
31
|
Myosin Va and Endoplasmic Reticulum Calcium Channel Complex Regulates Membrane Export during Axon Guidance. Cell Rep 2016; 15:1329-44. [DOI: 10.1016/j.celrep.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
|
32
|
Zimmermann D, Santos A, Kovar DR, Rock RS. Actin age orchestrates myosin-5 and myosin-6 run lengths. Curr Biol 2015; 25:2057-62. [PMID: 26190073 DOI: 10.1016/j.cub.2015.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
Abstract
Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies in which motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1-3]. Myosin-5 walks toward the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks toward the pointed end of F-actin [5], traveling toward the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3- to 1.5-fold longer runs on ADP•Pi (young) F-actin, whereas myosin-6 takes 1.7- to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Alicja Santos
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Lu Q, Li J, Zhang M. Cargo recognition and cargo-mediated regulation of unconventional myosins. Acc Chem Res 2014; 47:3061-70. [PMID: 25230296 DOI: 10.1021/ar500216z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by cellular chemical fuels in the form of nucleotide triphosphate. Biological systems have designed a group of nanoscale engines, known as molecular motors, to convert cellular chemical fuels into mechanical energy. Molecular motors come in various forms including cytoskeleton motors (myosin, kinesin, and dynein), nucleic-acid-based motors, cellular membrane-based rotary motors, and so on. The main focus of this Account is one subfamily of actin filament-based motors called unconventional myosins (other than muscle myosin II, the remaining myosins are collectively referred to as unconventional myosins). In general, myosins can use ATP to fuel two types of mechanomotions: dynamic tethering actin filaments with various cellular compartments or structures and actin filament-based intracellular transport. In contrast to rich knowledge accumulated over many decades on ATP hydrolyzing motor heads and their interactions with actin filaments, how various myosins recognize their specific cargoes and whether and how cargoes can in return regulate functions of motors are less understood. Nonetheless, a series of biochemical and structural investigations in the past few years, including works from our own laboratory, begin to shed lights on these latter questions. Some myosins (e.g., myosin-VI) can function both as cellular transporters and as mechanical tethers. To function as a processive transporter, myosins need to form dimers or multimers. To be a mechanical tether, a monomeric myosin is sufficient. It has been shown for myosin-VI that its cellular cargo proteins can play critical roles in determining the motor properties. Dab2, an adaptor protein linking endocytic vesicles with actin-filament-bound myosin-VI, can induce the motor to form a transport competent dimer. Such a cargo-mediated dimerization mechanism has also been observed in other myosins including myosin-V and myosin-VIIa. The tail domains of myosins are very diverse both in their lengths and protein domain compositions and thus enable motors to engage a broad range of different cellular cargoes. Remarkably, the cargo binding tail of one myosin alone often can bind to multiple distinct target proteins. A series of atomic structures of myosin-V/cargo complexes solved recently reveals that the globular cargo binding tail of the motor contains a number of nonoverlapping target recognition sites for binding to its cargoes including melanophilin, vesicle adaptors RILPL2, and vesicle-bound GTPase Rab11. The structures of the MyTH4-FERM tandems from myosin-VIIa and myosin-X in complex with their respective targets reveal that MyTH4 and FERM domains extensively interact with each other forming structural and functional supramodules in both motors and demonstrate that the structurally similar MyTH4-FERM tandems of the two motors display totally different target binding modes. These structural studies have also shed light on why numerous mutations found in these myosins can cause devastating human diseases such as deafness and blindness, intellectual disabilities, immune disorders, and diabetes.
Collapse
Affiliation(s)
- Qing Lu
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jianchao Li
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center of Systems Biology and Human Health, School of
Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
34
|
Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 2014; 6:237-260. [PMID: 25505494 PMCID: PMC4256461 DOI: 10.1007/s12551-014-0141-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
The quest for understanding the mechanism of myosin-based motility started with studies on muscle contraction. From numerous studies, the basic frameworks for this mechanism were constructed and brilliant hypotheses were put forward. However, the argument about the most crucial issue of how the actin-myosin interaction generates contractile force and shortening has not been definitive. To increase the "directness of measurement", in vitro motility assays and single-molecule optical techniques were created and used. Consequently, detailed knowledge of the motility of muscle myosin evolved, which resulted in provoking more arguments to a higher level. In parallel with technical progress, advances in cell biology led to the discovery of many classes of myosins. Myosin V was discovered to be a processive motor, unlike myosin II. The processivity reduced experimental difficulties because it allowed continuous tracing of the motor action of single myosin V molecules. Extensive studies of myosin V were expected to resolve arguments and build a consensus but did not necessarily do so. The directness of measurement was further enhanced by the recent advent of high-speed atomic force microscopy capable of directly visualizing biological molecules in action at high spatiotemporal resolution. This microscopy clearly visualized myosin V molecules walking on actin filaments and at last provided irrefutable evidence for the swinging lever-arm motion propelling the molecules. However, a peculiar foot stomp behavior also appeared in the AFM movie, raising new questions of the chemo-mechanical coupling in this motor and myosin motors in general. This article reviews these changes in the research of myosin motility and proposes new ideas to resolve the newly raised questions.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- PREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| |
Collapse
|
35
|
Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 2014; 6:99. [PMID: 24904412 PMCID: PMC4033055 DOI: 10.3389/fnagi.2014.00099] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022] Open
Abstract
Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Consequently, NMJs are good indicators of motor health on a systemic level. Indeed, upon sarcopenia and dystrophy, NMJs morphologically deteriorate and exhibit altered characteristics of primary signaling molecules, such as nicotinic acetylcholine receptor and agrin. Since a remarkable reversibility of these changes can be observed by exercise, there is significant interest in understanding the molecular mechanisms underlying synaptic deterioration upon aging and dystrophy and how synapses are reset by the aforementioned treatments. Here, we review the literature that describes the phenomena observed at the NMJ in sarcopenic and dystrophic muscle as well as to how these alterations can be reversed and to what extent. In a second part, the current information about molecular machineries underlying these processes is reported.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Siegfried Labeit
- Institute of Integrative Pathophysiology, University Medical Centre Mannheim , Mannheim , Germany
| | - Michael R Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary , Williamsburg, VA , USA
| |
Collapse
|
36
|
Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci Rep 2014; 4:4907. [PMID: 24809456 PMCID: PMC4014986 DOI: 10.1038/srep04907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 11/09/2022] Open
Abstract
Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30-36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells.
Collapse
|
37
|
Fujita K, Iwaki M. Myosin V is a biological Brownian machine. Biophysics (Nagoya-shi) 2014; 10:69-75. [PMID: 27493501 PMCID: PMC4629658 DOI: 10.2142/biophysics.10.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/08/2014] [Indexed: 12/01/2022] Open
Abstract
Myosin V is a vesicle transporter that unidirectionally walks along cytoskeletal actin filaments by converting the chemical energy of ATP into mechanical work. Recently, it was found that myosin V force generation is a composition of two processes: a lever-arm swing, which involves a conformational change in the myosin molecule, and a Brownian search-and-catch, which involves a diffusive “search” by the motor domain that is followed by an asymmetric “catch” in the forward actin target such that Brownian motion is rectified. Here we developed a system that combines optical tweezers with DNA nano-material to show that the Brownian search-and-catch mechanism is the energetically dominant process at near stall force, providing 13 kBT of work compared to just 3 kBT by the lever-arm swing. Our result significantly reconsiders the lever-arm swinging model, which assumes the swing dominantly produces work (>10 kBT), and sheds light on the Brownian search-and-catch as a driving process.
Collapse
Affiliation(s)
- Keisuke Fujita
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan
| | - Mitsuhiro Iwaki
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Sarshad AA, Percipalle P. New Insight into Role of Myosin Motors for Activation of RNA Polymerases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:183-230. [DOI: 10.1016/b978-0-12-800179-0.00004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Westermann B. Mitochondrial inheritance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1039-46. [PMID: 24183694 DOI: 10.1016/j.bbabio.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
|
40
|
Abstract
The molecular motor myosin V (MyoV) exhibits a wide repertoire of pathways during the stepping process, which is intimately connected to its biological function. The best understood of these is the hand-over-hand stepping by a swinging lever arm movement toward the plus end of actin filaments. Single-molecule experiments have also shown that the motor "foot stomps," with one hand detaching and rebinding to the same site, and back-steps under sufficient load. The complete taxonomy of MyoV's load-dependent stepping pathways, and the extent to which these are constrained by motor structure and mechanochemistry, are not understood. Using a polymer model, we develop an analytical theory to describe the minimal physical properties that govern motor dynamics. We solve the first-passage problem of the head reaching the target-binding site, investigating the competing effects of backward load, strain in the leading head biasing the diffusion in the direction of the target, and the possibility of preferential binding to the forward site due to the recovery stroke. The theory reproduces a variety of experimental data, including the power stroke and slow diffusive search regimes in the mean trajectory of the detached head, and the force dependence of the forward-to-backward step ratio, run length, and velocity. We derive a stall force formula, determined by lever arm compliance and chemical cycle rates. By exploring the MyoV design space, we predict that it is a robust motor whose dynamical behavior is not compromised by reasonable perturbations to the reaction cycle and changes in the architecture of the lever arm.
Collapse
|
41
|
Myosins Are Differentially Expressed under Oxidative Stress in Chronic Streptozotocin-Induced Diabetic Rat Brains. ISRN NEUROSCIENCE 2013; 2013:423931. [PMID: 24982856 PMCID: PMC4045535 DOI: 10.1155/2013/423931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/17/2013] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a disease characterized by persistent hyperglycemia, which may lead to brain tissue damage due to oxidative stress and also contributes to neuronal death and changes in synaptic transmission. This study evaluated the effect of oxidative stress and the use of antioxidants supplementation on myosins expression levels in the brains of chronic diabetic rats induced by streptozotocin. Lipid peroxidation, antioxidant enzymes activities, and myosins-IIB and -Va expressions at transcriptional and translational levels were examined after 90 days induction. The chronic effect of the diabetes led to the upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, and the downregulation of glutathione peroxidase (GPx), but there was no statistically significant increase in the malondialdehyde (MDA) levels. These alterations were accompanied by high myosin-IIB and low myosin-Va expressions. Although the antioxidant supplementation did not interfere on MDA levels, the oxidative stress caused by chronic hyperglycemia was reduced by increasing SOD and restoring CAT and GPx activities. Interestingly, after supplementation, diabetic rats recovered only myosin-Va protein levels, without interfering on myosins mRNA levels expressed in diabetic rat brains. Our results suggest that antioxidant supplementation reduces oxidative stress and also regulates the myosins protein expression, which should be beneficial to individuals with diabetes/chronic hyperglycemia.
Collapse
|
42
|
da Costa AV, Calábria LK, Furtado FB, de Gouveia NM, Oliveira RJDS, de Oliveira VN, Beletti ME, Espindola FS. Neuroprotective effects of Pouteria ramiflora (Mart.) Radlk (Sapotaceae) extract on the brains of rats with streptozotocin-induced diabetes. Metab Brain Dis 2013; 28:411-9. [PMID: 23467904 DOI: 10.1007/s11011-013-9390-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
Diabetes mellitus is a chronic disease involving persistent hyperglycemia, which causes an imbalance between reactive oxygen species and antioxidant enzymes and results in damage to various tissues, including the brain. Many societies have traditionally employed medicinal plants to control the hyperglycemia. Pouteria ramiflora, a species occurring in the savanna biome of the Cerrado (Brazil) has been studied because of its possible ability to inhibit carbohydrate digestion. Rats with streptozotocin-induced diabetes treated with an alcoholic extract of Pouteria ramiflora show an improved glycemic level, increased glutathione peroxidase activity, decreased superoxide dismutase activity, and reduced lipid peroxidation and antioxidant status. The extract also restored myosin-Va expression and the nuclear diameters of pyramidal neurons of the CA3 subregion and that of the polymorphic cells of the hilus. We conclude that Pouteria ramiflora extract exerts a neuroprotective effect against oxidative damage and myosin-Va expression and is able to prevent hippocampal neuronal loss in the CA3 and hilus subfields of diabetic rats. However, future studies are needed to understand the mechanism of action of Pouteria ramiflora extract in acute and chronic diabetes.
Collapse
Affiliation(s)
- Alice Vieira da Costa
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Av. Pará, s/n, 38400-902, Uberlândia, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor's globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in "dilute" rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge-charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins.
Collapse
|
44
|
Abstract
Previous studies proposed that myosin-Va regulates apoptosis by sequestering pro-apoptotic Bmf to the actin cytoskeleton through dynein light chain-2 (DLC2). Adhesion loss or other cytoskeletal perturbations would unleash Bmf, allowing it to bind and inhibit pro-survival Bcl2 proteins. Here, we demonstrated that overexpression of a myosin-Va medial tail fragment (MVaf) harboring the binding site for DLC2 dramatically decreased melanoma cell viability. Morphological and molecular changes, including surface blebbing, mitochondrial outer membrane permeabilization, cytochrome-c and Smac release, as well as caspase-9/-3 activation and DNA fragmentation indicated that melanoma cells died of apoptosis. Immobilized MVaf interacted directly with DLCs, but complexed MVaf/DLCs did not interact with Bmf. Overexpression of DLC2 attenuated MVaf-induced apoptosis. Thus, we suggest that, MVaf induces apoptosis by sequestering DLC2 and DLC1, thereby unleashing the pair of sensitizer and activator BH3-only proteins Bmf and Bim. Murine embryonic fibroblasts (MEFs) lacking Bim and Bmf or Bax and Bak were less sensitive to apoptosis caused by MVaf expression than wild-type MEFs, strengthening the putative role of the intrinsic apoptotic pathway in this response. Finally, MVaf expression attenuated B16-F10 solid tumor growth in mice, suggesting that this peptide may be useful as an apoptosis-inducing tool for basic and translational studies.
Collapse
|
45
|
Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys J 2013; 104:1263-73. [PMID: 23528086 DOI: 10.1016/j.bpj.2013.01.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/23/2012] [Accepted: 01/28/2013] [Indexed: 01/07/2023] Open
Abstract
Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With the use of time-correlated single-photon counting technology, the temporal resolution of the polTIRF microscope was improved ~50-fold relative to earlier studies, and a maximum-likelihood, multitrace change-point algorithm was used to objectively determine the times when structural changes occurred. Short-lived substeps that displayed an abrupt increase in rotational mobility were detected during stepping, likely corresponding to random thermal fluctuations of the stepping head while it searched for its next actin-binding site. Thus, myosin V harnesses its fluctuating environment to extend its reach. Additional, less frequent angle changes, probably not directly associated with steps, were detected in both leading and trailing heads. The high-speed polTIRF method and change-point analysis may be applicable to single-molecule studies of other biological systems.
Collapse
|
46
|
Zhang C, Ali MY, Warshaw DM, Kad NM. A branched kinetic scheme describes the mechanochemical coupling of Myosin Va processivity in response to substrate. Biophys J 2013; 103:728-37. [PMID: 22947934 DOI: 10.1016/j.bpj.2012.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022] Open
Abstract
Myosin Va is a double-headed cargo-carrying molecular motor that moves processively along cellular actin filaments. Long processive runs are achieved through mechanical coordination between the two heads of myosin Va, which keeps their ATPase cycles out of phase, preventing both heads detaching from actin simultaneously. The biochemical kinetics underlying processivity are still uncertain. Here we attempt to define the biochemical pathways populated by myosin Va by examining the velocity, processive run-length, and individual steps of a Qdot-labeled myosin Va in various substrate conditions (i.e., changes in ATP, ADP, and P(i)) under zero load in the single-molecule total internal reflection fluorescence microscopy assay. These data were used to globally constrain a branched kinetic scheme that was necessary to fit the dependences of velocity and run-length on substrate conditions. Based on this model, myosin Va can be biased along a given pathway by changes in substrate concentrations. This has uncovered states not normally sampled by the motor, and suggests that every transition involving substrate binding and release may be strain-dependent.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
47
|
Gene expression pattern of myosin Va during spermatogenesis of Chinese mitten crab, Eriocheir sinensis. Gene 2012; 508:78-84. [DOI: 10.1016/j.gene.2012.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022]
|
48
|
Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch. Nat Commun 2012; 3:956. [PMID: 22805563 DOI: 10.1038/ncomms1934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/30/2012] [Indexed: 01/26/2023] Open
Abstract
Motor proteins are force-generating nanomachines that are highly adaptable to their ever-changing biological environments and have a high energy conversion efficiency. Here we constructed an imaging system that uses optical tweezers and a DNA handle to visualize elementary mechanical processes of a nanomachine under load. We apply our system to myosin-V, a well-known motor protein that takes 72 nm 'hand-over-hand' steps composed of a 'lever-arm swing' and a 'brownian search-and-catch'. We find that the lever-arm swing generates a large proportion of the force at low load (<0.5 pN), resulting in 3 k(B)T of work. At high load (1.9 pN), however, the contribution of the brownian search-and-catch increases to dominate, reaching 13 k(B)T of work. We believe the ability to switch between these two force-generation modes facilitates myosin-V function at high efficiency while operating in a dynamic intracellular environment.
Collapse
|
49
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
50
|
Lee JS, Jeremic A, Shin L, Cho WJ, Chen X, Jena BP. Neuronal porosome proteome: Molecular dynamics and architecture. J Proteomics 2012; 75:3952-62. [PMID: 22659300 DOI: 10.1016/j.jprot.2012.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/15/2022]
Abstract
Porosomes are the universal secretory portals at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to expel intravesicular contents to the outside during cell secretion. In the past decade, the neuronal porosome complex, a 10-15nm cup-shaped lipoprotein structure has been isolated, its partial composition and 3D contour map determined, and it has been functionally reconstituted into artificial lipid membrane. Here we further determine the composition of the neuronal porosome proteome using immunoisolation and gel filtration chromatography, followed by tandem mass spectrometry. Results from the study demonstrate nearly 40 proteins to constitute the neuronal porosome proteome. Furthermore, interaction of proteins within the porosome and their resulting arrangement is predicted. The association and dissociation of proteins at the porosome following stimulation of cell secretion demonstrate the dynamic nature of the organelle.
Collapse
Affiliation(s)
- Jin-Sook Lee
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|