1
|
Zhang H, Liu Y, Weng J, Usuda K, Fujii K, Watanabe G, Nagaoka K. Decrease of lactogenic hormones induce epithelial-mesenchymal transition via TGFβ1 and arachidonic acid during mammary gland involution. J Reprod Dev 2017; 63:325-332. [PMID: 28381667 PMCID: PMC5481636 DOI: 10.1262/jrd.2016-157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During mammary gland involution, the epithelial mesenchymal transition (EMT) process plays an important role in tissue remodelling and in the termination of milk production. Transforming growth factor β (TGFβ) has been known as a central inducer to EMT and contributor to the mammary gland involution. However, the whole mechanism has accomplished the EMT process in mammary gland is still unclear. Here, we show that arachidonic acid, one of the major products in milk, is new player to control the EMT together with TGFβ during mammary gland involution. Firstly, we observed decrease in CDH1 (epithelial marker gene) expression and increases in VIM and TWIST1 (mesenchymal marker genes), TGFB1, and PLCG2 (arachidonic acid synthesis gene) at involution. In epithelial cells culture experiments, depletion of lactogenic hormones to mimic the involution induced TGFβ1 and PLCG2 expressions. Treatment with arachidonic acid in epithelial cells increased VIM and TWIST1 expressions without decrease of CDH1 expression, while TGFβ1 decreased CDH1 and increased VIM and TWIST1; more importantly, TGFβ1 induced the expression of PLCG2, but arachidonic acid did not induce the expression of TGFB1. Finally, arachidonic acid accelerated the TGFβ1 increasing VIM and TWIST1 expressions, meanwhile arachidonic acid synthase inhibitor partially blocked the TGFβ1 increasing VIM and TWIST1 expressions. In conclusion, TGFβ1 stimulates arachidonic acid synthesis and the arachidonic acid has a function to postulate the EMT process together with TGFβ1 during mammary gland involution.
Collapse
Affiliation(s)
- Haolin Zhang
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Ji Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Kento Usuda
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuki Fujii
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Gen Watanabe
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kentaro Nagaoka
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Xie C, Liang B, Xue M, Lin ASP, Loiselle A, Schwarz EM, Guldberg RE, O'Keefe RJ, Zhang X. Rescue of impaired fracture healing in COX-2-/- mice via activation of prostaglandin E2 receptor subtype 4. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:772-85. [PMID: 19628768 DOI: 10.2353/ajpath.2009.081099] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the essential role of cyclooxygenase (COX)-2 in fracture healing is known, the targeted genes and molecular pathways remain unclear. Using prostaglandin E2 receptor (EP)2 and EP4 agonists, we examined the effects of EP receptor activation in compensation for the lack of COX-2 during fracture healing. In a fracture-healing model, COX-2(-/-) mice showed delayed initiation and impaired endochondral bone repair, accompanied by a severe angiogenesis deficiency. The EP4 agonist markedly improved the impaired healing in COX-2(-/-) mice, as evidenced by restoration of bony callus formation on day 14, a near complete reversal of bone formation, and an approximately 70% improvement of angiogenesis in the COX-2(-/-) callus. In comparison, the EP2 agonist only marginally enhanced bone formation in COX-2(-/-) mice. To determine the differential roles of EP2 and EP4 receptors on COX-2-mediated fracture repair, the effects of selective EP agonists on chondrogenesis were examined in E11.5 long-term limb bud micromass cultures. Only the EP4 agonist significantly increased cartilage nodule formation similar to that observed during prostaglandin E2 treatment. The prostaglandin E2/EP4 agonist also stimulated MMP-9 expression in bone marrow stromal cell cultures. The EP4 agonist further restored the reduction of MMP-9 expression in the COX-2(-/-) fracture callus. Taken together, our studies demonstrate that EP2 and EP4 have differential functions during endochondral bone repair. Activation of EP4, but not EP2 rescued impaired bone fracture healing in COX-2(-/-) mice.
Collapse
Affiliation(s)
- Chao Xie
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Clark CA, Li TF, Kim KO, Drissi H, Zuscik MJ, Zhang X, O'Keefe RJ. Prostaglandin E2 inhibits BMP signaling and delays chondrocyte maturation. J Orthop Res 2009; 27:785-92. [PMID: 19023895 PMCID: PMC2737521 DOI: 10.1002/jor.20805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 10/02/2008] [Indexed: 02/04/2023]
Abstract
While cyclooxygenases are important in endochondral bone formation during fracture healing, mechanisms involved in prostaglandin E2 (PGE2) regulation of chondrocyte maturation are incompletely understood. The present study was undertaken to determine if PGE2 effects on chondrocyte differentiation are related to modulation of the bone morphogenetic protein (BMP) signaling pathway. In primary murine sternal chondrocytes, PGE2 differentially regulated genes involved in differentiation. PGE2 induced type II collagen and MMP-13, had minimal effects on alkaline phosphatase, and inhibited the expression of the maturational marker, type X collagen. In BMP-2-treated cultures, PGE2 blocked the induction of type X collagen. All four EP receptors were expressed in chondrocytes and tended to be inhibited by BMP-2 treatment. RCJ3.1C5.18 chondrocytes transfected with the protein kinase A (PKA) responsive reporter, CRE-luciferase, showed luciferase induction following exposure to PGE2, consistent with activation of PKA signaling and the presence of the EP2 and EP4 receptors. Both PGE2 and the PKA agonist, dibutyryl cAMP, blocked the induction of the BMP-responsive reporter, 12XSBE, by BMP-2 in RCJ3.1C5.18 chondrocytes. In contrast, PGE2 increased the ability of TGF-beta to activate the TGF-beta-responsive reporter, 4XSBE. Finally, PGE2 down-regulated BMP-mediated phosphorylation of Smads 1, 5, and 8 in RCJ3.1C5.18 cells and in primary murine sternal chondrocytes. Altogether, the findings show that PGE2 regulates chondrocyte maturation in part by targeting BMP/Smad signaling and suggest an important role for PGE2 in endochondral bone formation.
Collapse
Affiliation(s)
- Christine A Clark
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Poleni PE, Bianchi A, Etienne S, Koufany M, Sebillaud S, Netter P, Terlain B, Jouzeau JY. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes. Osteoarthritis Cartilage 2007; 15:493-505. [PMID: 17140817 DOI: 10.1016/j.joca.2006.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 10/14/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. METHOD Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. RESULTS ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1-induced phosphorylation of Smad2/3 and ERK1/2 was reduced by ROSI over GW501516 but not by Wy14643 whereas stimulated PGE2 production was inhibited by Wy14643 over GW501516 but not by ROSI. The effect of PPAR agonists on PPAR target genes and TGF-beta1-induced aggrecan expression was reversed selectively by PPAR antagonists. CONCLUSION In chondrocytes' beads, PPAR agonists reduced the stimulating effect of TGF-beta1 on PGs by inhibiting TGF-beta1-induced aggrecan expression in an isotype-selective manner. Thus, PPAR agonists could be deleterious in situation of cartilage repair although being protective in situation of cartilage degradation.
Collapse
Affiliation(s)
- P E Poleni
- Laboratoire de Physiopathologie et Pharmacologie Articulaires (LPPA), UMR 7561 CNRS-UHP Nancy 1, Avenue de la Forêt de Haye, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Boyan BD, Wong KL, Wang L, Yao H, Guldberg RE, Drab M, Jo H, Schwartz Z. Regulation of growth plate chondrocytes by 1,25-dihydroxyvitamin D3 requires caveolae and caveolin-1. J Bone Miner Res 2006; 21:1637-47. [PMID: 16995819 DOI: 10.1359/jbmr.060713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the role of caveolae and caveolin-1 in the mechanism of 1alpha,25(OH)(2)D(3) action in growth plate chondrocytes. We found that caveolae are required for rapid 1alpha,25(OH)(2)D(3)-dependent PKC signaling, and caveolin-1 must be present based on studies using chondrocytes from Cav-1(-/-) mice. INTRODUCTION 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] regulates endochondral ossification in part through membrane-associated mechanisms, including protein kinase C (PKC) signaling activated by a membrane-associated 1alpha,25(OH)(2)D(3)-binding protein, ERp60. We tested the hypothesis that caveolae are required for 1alpha,25(OH)(2)D(3) action and play an important role in regulating chondrocyte biology and growth plate physiology. MATERIALS AND METHODS Rat costochondral chondrocytes were examined for caveolae by transmission electron microscopy of cultured cells and of cells in situ. Western blots and confocal microscopy were used to detect caveolae proteins including caveolin-1 (Cav-1) and 1alpha,25(OH)(2)D(3) receptors. Caveolae cholesterol was depleted with beta-cyclodextrin (CD) and effects of 1alpha,25(OH)(2)D(3) on PKC, DNA synthesis, alkaline phosphatase, and proteoglycan production determined. Chondrocytes from Cav-1(-/-) and C57BL/6 wildtype mice were also treated with 1alpha,25(OH)(2)D(3). Epiphyses and costochondral junctions of 8-week-old male Cav-1(-/-) and wildtype mice (N = 8) were compared by histomorphometry and microCT. Data were analyzed by ANOVA and Bonferroni for posthoc comparisons. RESULTS Growth zone chondrocytes had caveolae and Cav-1, -2, and -3. Resting zone chondrocytes, which do not exhibit a rapid 1alpha,25(OH)(2)D(3)-dependent increase in PKC activity, also had these caveolins, but caveolae were larger and fewer in number. ERp60 but not VDR co-localized with Cav-1 in plasma membranes and in lipid rafts. CD-treatment blocked 1alpha,25(OH)(2)D(3) effects on all parameters tested. The Cav-1(-/-) cells did not respond to 1alpha,25(OH)(2)D(3), although 1alpha,25(OH)(2)D(3) increased PKC, alkaline phosphatase, and [(35)S]-sulfate incorporation in wildtype C57BL/6 cells. Histology and microCT showed that Cav-1(-/-) growth plates were longer and had more hypertrophic cells in each column. Growth plate changes were reflected in the metaphysis. CONCLUSIONS The membrane-mediated effects of 1alpha,25(OH)(2)D(3) require caveolae and Cav-1, and Cav-1 deficiency results in altered growth plate physiology.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:1713-21. [PMID: 16344134 DOI: 10.1016/j.ultrasmedbio.2005.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 07/04/2005] [Accepted: 07/14/2005] [Indexed: 05/05/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been shown to accelerate fracture healing, but the precise mechanism is still unknown. We used aggregate chondrocyte culture system to analyze LIPUS-induced effects on chondrocytes. First, Northern analyses revealed that LIPUS maintained higher expression levels of type II collagen and aggrecan mRNA and delayed the appearance of type X collagen mRNA expression. We also showed that DNA content was increased and that alkaline phosphatase activity was maintained low by daily treatment. Moreover, LIPUS significantly promoted transforming growth factor (TGF)-beta1 mRNA expression and the protein production at 2 h and 12 h after the treatment, respectively. Furthermore, recombinant TGF-beta1 protein mimicked the LIPUS effect and anti-TGF-beta1 neutralizing antibody reversed all these changes induced by the LIPUS treatment. These results indicate that LIPUS promotes the proliferation and retains the differentiation state of chondrocytes in the aggregate culture and that TGF-beta1 plays an important role in mediating the LIPUS effects in chondrocytes.
Collapse
Affiliation(s)
- Shogo Mukai
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Akiho H, Deng Y, Blennerhassett P, Kanbayashi H, Collins SM. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 2005; 129:131-41. [PMID: 16012943 DOI: 10.1053/j.gastro.2005.03.049] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Acute gastroenteritis is a strong risk factor for the development of irritable bowel syndrome (IBS). We have developed an animal model in which transient acute infection leads to persistent muscle hypercontractility. Here, we investigate the mechanisms underlying the maintenance of this hypercontractility in the postinfective (PI) state. METHODS Muscle contraction and messenger RNA (mRNA) or protein expression of cytokines were examined from jejunal longitudinal muscle cells of NIH Swiss mice infected with Trichinella spiralis or incubated with or without cytokines. RESULTS During acute infection, interleukin (IL)-4 or IL-13, transforming growth factor (TGF)-beta1, and cyclooxygenase (COX)-2 were increased in the muscle layer ( P < .05). In the PI phase of the model, T helper (Th)2 cytokines returned to normal, but TGF-beta1 remained in the muscle ( P < .05). Exposure of muscle cells to IL-4 or IL-13 increased TGF-beta1 ( P < .01), COX-2 protein, and prostaglandin (PG)E 2 . Exposure of muscle cells to TGF-beta1 increased PGE 2 ( P < .05) and COX-2 protein. Incubation of tissue with IL-4, IL-13, TGF-beta1, or PGE 2 enhanced carbachol-induced muscle cell contractility ( P < .05). COX-2 inhibitor attenuated TGF-beta1-induced muscle hypercontractility ( P < .05). CONCLUSIONS These results support the hypothesis that Th2 cytokines induce muscle hypercontractility during infection by a direct action on smooth muscle. The maintenance of hypercontractility results from Th2 cytokine-induced expression of TGF-beta1 and the subsequent up-regulation of COX-2 and PGE 2 at the level of the smooth muscle cell. We propose that PI gut dysfunction reflects mediator production in the neuromuscular tissues and that this may occur in PI-IBS.
Collapse
Affiliation(s)
- Hirotada Akiho
- Intestinal Diseases Research Program, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Kinney RC, Schwartz Z, Week K, Lotz MK, Boyan BD. Human articular chondrocytes exhibit sexual dimorphism in their responses to 17beta-estradiol. Osteoarthritis Cartilage 2005; 13:330-7. [PMID: 15780646 DOI: 10.1016/j.joca.2004.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Accepted: 12/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The higher incidence of osteoarthritis in females suggests that there may be intrinsic sex-specific differences in human articular chondrocytes. 17beta-Estradiol (E2) regulates rat growth plate chondrocytes through traditional nuclear receptor mechanisms, but only female cells exhibit rapid membrane-associated effects mediated through protein kinase C (PKC) alpha. Here we demonstrate sexual dimorphism in the physiological response of human articular chondrocytes to E2. METHODS Articular chondrocytes were obtained at the time of autopsy from three male and three female donors between 16 and 39 years of age. Second passage cultures were treated with E2 for 24 h to assess the effects of the hormone on [3H]-thymidine incorporation, [35S]-sulfate incorporation, and alkaline phosphatase specific activity. In addition, the chondrocytes were treated for 3, 9, 90 or 270 min and PKC specific activity was determined. RESULTS All chondrocytes were positive for aggrecan and estrogen receptor alpha mRNAs but were negative for type II collagen mRNA. Only cells from female donors responded to E2. DNA synthesis, sulfate incorporation and alkaline phosphatase activity were increased. E2 caused a rapid increase in PKC activity in the female cells within 9 min that was maximal at 90 min. Treatment with the PKC inhibitor chelerythrine blocked these effects. CONCLUSIONS These results provide the first definitive evidence that normal human cells exhibit an intrinsic sex-specific response to E2 and suggest that sexual dimorphism may be an important variable in assessing the pathways that modulate cell behavior.
Collapse
Affiliation(s)
- R C Kinney
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
9
|
Schwartz Z, Carney DH, Crowther RS, Ryaby JT, Boyan BD. Thrombin peptide (TP508) treatment of rat growth plate cartilage cells promotes proliferation and retention of the chondrocytic phenotype while blocking terminal endochondral differentiation. J Cell Physiol 2005; 202:336-43. [PMID: 15534863 DOI: 10.1002/jcp.20145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A synthetic peptide representing the receptor-binding domain of human thrombin (TP508, also known as Chrysalin) accelerates fracture repair in rats via endochondral ossification and promotes repair of rabbit cartilage defects. To understand how this peptide might stimulate cartilage and bone formation, we employed an established in vitro model of growth plate cartilage regulation. Rat costochondral cartilage resting zone and growth zone chondrocytes were treated with 0, 0.07, 0.7, or 7 microg/ml TP508 or a scrambled peptide, TP508-SP. Proliferation ([3H]-thymidine incorporation) was examined in pre-confluent cultures; effects on cell number, alkaline phosphatase activity, [35S]-sulfate incorporation, and responsiveness to vitamin D metabolites were tested using confluent cultures. TP508 did not affect proliferation of resting zone cells but it caused a dose-dependent increase in cell number and DNA synthesis of growth zone cells. Alkaline phosphatase specific activity of resting zone cells was reduced by TP508, whereas [35S]-sulfate incorporation was increased. Neither parameter was affected in growth zone cell cultures. TP508 treatment for 24 h did not induce resting zone cells to respond to 1alpha,25(OH)2D3, either with respect to alkaline phosphatase activity or proteoglycan production. In contrast, TP508 treatment reduced the stimulatory effect of 24R,25(OH)2D3 on alkaline phosphatase but it did not alter the stimulatory effect of 24R,25(OH)2D3 on [35S]-sulfate incorporation. In cultures treated for 48, 72, or 140 h with TP508, 1alpha,25(OH)2D3 restored alkaline phosphatase activity to control levels but did not stimulate activity over levels observed in untreated control cultures. The stimulatory effect of TP508 on [35S]-sulfate incorporation was evident up to 48 h post-confluence but at later time points, proteoglycan production was comparable to that seen in control cultures, control cultures challenged with 1alpha,25(OH)2D3, and cultures treated with TP508 followed by 1alpha,25(OH)2D3. TP508-SP had no effect on any of the parameters tested. These results indicate that TP508 exerts maturation specific effects on chondrocytes in the endochondral lineage, promoting cartilage extracellular matrix synthesis over endochondral differentiation in resting zone cells and proliferation over differentiation of growth zone cells.
Collapse
Affiliation(s)
- Z Schwartz
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
10
|
Chen KH, Hsu WM, Chiang CC, Li YS. Transforming growth factor-beta2 inhibition of corneal endothelial proliferation mediated by prostaglandin. Curr Eye Res 2003; 26:363-70. [PMID: 12868017 DOI: 10.1076/ceyr.26.5.363.15442] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine the influence of Prostaglandin (PG) E2 on transforming growth factor (TGF)-beta2-mediated inhibitory effects on the proliferation of corneal endothelial cells (CE). METHODS The PGE2 and cell proliferation assays were performed using cultured rabbit corneal endothelium. A PGE2-specific enzyme immunoassay was used to check PGE2 synthesis in supernatants of cells cultured with and without added TGF-beta2 and/or indomethacin. To evaluate the inhibitory effects of PGE2 and TGF-beta2 on CE proliferation, the number of cells grown with exogenous PGE2, or TGF-beta2 with or without indomethacin pretreatment was determined. RESULTS TGF-beta2, 0.5 to 50 ng/ml, increased the PGE2 secretion of CE dose-dependently in a time-dependent manner. Indomethacin (> or =0.1 microg/ml) inhibited this PGE2 secretion to a low level (around 5-10 ng/ml) in the presence or absence of exogenous TGF-beta2. Both exogenous TGF-beta2 and PGE2 inhibited CE proliferation dose-dependently over a wide range of concentrations. Indomethacin reversed the inhibitory effects of TGF-beta2 but not those of exogenous PGE2. In the medium supplemented with indomethacin, even in the presence of 50 ng/ml of TGF-beta2, CE growth did not differ from control cultures. CONCLUSIONS TGF-beta2 stimulates PGE2 synthesis in CE and inhibits CE proliferation in a dose-dependent manner. Indomethacin extinguishes the inhibitory effects of TGF-beta2 on CE proliferation but not the effect of exogenous PGE2. These data suggest that the antiproliferative effects of TGF-beta2 on CE may be possibly due to TGF-beta2-induced synthesis of PG, most likely PGE2. SUMMARY Inhibition of endogenous prostaglandins synthesis by indomethacin extinguished the inhibitory effects of Transforming Growth Factor-beta2 on corneal endothelium proliferation but not exogenous prostaglandin E2. It suggesting that TGF-beta2-induced autocrine synthesis of PGs, most likely PGE2, may be responsible for the anti-proliferative effects of TGF-beta2 on corneal endothelium.
Collapse
Affiliation(s)
- Ko-Hua Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, #201 Shih-Pai Road, Section II, Taipei, 11217 Taiwan.
| | | | | | | |
Collapse
|
11
|
Di Nino DL, Crochiere ML, Linsenmayer TF. Multiple mechanisms of perichondrial regulation of cartilage growth. Dev Dyn 2002; 225:250-9. [PMID: 12412007 DOI: 10.1002/dvdy.10160] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously observed that the perichondrium (PC) and the periosteum (PO) negatively regulate endochondral cartilage growth through secreted factors. Conditioned medium from cultures of PC and PO cells when mixed (PC/PO-conditioned medium) and tested on organ cultures of embryonic chicken tibiotarsi from which the PC and PO have been removed (PC/PO-free cultures) effect negative regulation of growth. Of potential importance, this regulation compensates precisely for removal of the PC and PO, thus mimicking the regulation effected by these tissues in vivo. We have now examined whether two known negative regulators of cartilage growth (retinoic acid [RA] and transforming growth factor-beta1 [TGF-beta1]) act in a manner consistent with this PC/PO-mediated regulation. The results suggest that RA and TGF-beta1, per se, are not the regulators in the PC/PO-conditioned medium. Instead, they show that these two factors each act in regulating cartilage growth through an additional, previously undescribed, negative regulatory mechanism(s) involving the perichondrium. When cultures of perichondrial cells (but not periosteal cells) are treated with either agent, they secrete secondary regulatory factors into their conditioned medium, the action of which is to effect precise negative regulation of cartilage growth when tested on the PC/PO-free organ cultures. This negative regulation through the perichondrium is the only activity detected with TGF-beta1. Whereas, RA shows additional regulation on the cartilage itself. However, this regulation by RA is not "precise" in that it produces abnormally shortened cartilages. Overall, the precise regulation of cartilage growth effected by the action of the perichondrial-derived factor(s) elicited from the perichondrial cells by treatment with either RA or TGF-beta1, when combined with our previous results showing similar--yet clearly different--"precise" regulation by the PC/PO-conditioned medium suggests the existence of multiple mechanisms involving the perichondrium, possibly interrelated or redundant, to ensure the proper growth of endochondral skeletal elements.
Collapse
Affiliation(s)
- Dana L Di Nino
- Department of Anatomy and Cellular Biology, Tufts University Medical School, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
12
|
Rosado E, Schwartz Z, Sylvia VL, Dean DD, Boyan BD. Transforming growth factor-beta1 regulation of growth zone chondrocytes is mediated by multiple interacting pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:1-15. [PMID: 12063164 DOI: 10.1016/s0167-4889(02)00194-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta 1 (TGF-beta1) affects growth plate chondrocytes through Smad-mediated mechanisms and has been shown to increase protein kinase C (PKC). This study determined if PKC mediates the physiological response of rat costochondral growth zone (GC) chondrocytes to TGF-beta1; if the physiological response occurs via type II or type III TGF-beta receptors, and, if so, which receptor mediates the increase in PKC; and the signal transduction pathways involved. Treatment of confluent GC cells with TGF-beta1 stimulated [(3)H]thymidine and [(35)S]sulfate incorporation as well as alkaline phosphatase (ALPase) and PKC specific activities. Inhibition of PKC with chelerythrine, staurosporine, or H-7 caused a dose-dependent decrease in these parameters, indicating that PKC signaling was involved. TGF-beta1-dependent PKC and the physiological response of GC cells to TGF-beta1 was reversed by anti-type II TGF-beta receptor antibody and soluble type II TGF-beta receptor, showing that TGF-beta1 mediates these effects through the type II receptor. The increase in [3H]thymidine incorporation and ALPase specific activity were also regulated by protein kinase A (PKA) signaling, since the effects of TGF-beta1 were partially blocked by the PKA inhibitor H-8. The mechanism of TGF-beta1 activation of PKC is through phospholipase A(2) (PLA(2)) and not through phospholipase C (PLC). Arachidonic acid increased PKC in control cultures and was additive with TGF-beta1. Prostanoids are required, as indomethacin blocked the effect of TGF-beta1, and Cox-1, but not Cox-2, is involved. TGF-beta1 stimulates prostaglandin E(2) (PGE(2)) production and exogenous PGE(2) stimulates PKC, but not as much as TGF-beta1, suggesting that PGE(2) is not sufficient for all of the prostaglandin effect. In contrast, TGF-beta1 was not regulated by diacylglycerol; neither dioctanoylglycerol (DOG) nor inhibition of diacylglycerol kinase with R59022 had an effect. G-proteins mediate TGF-beta1 signaling at different levels in the cascade. TGF-beta1-dependent increases in PGE(2) levels and PKC were augmented by the G protein activator GTP gamma S, whereas inhibition of G-protein activity via GDP beta S, pertussis toxin, or cholera toxin blocked stimulation of PKC by TGF-beta1, indicating that both G(i) and G(s) are involved. Inhibition of PKA with H-8 partially blocked TGF-beta1-dependent PKC, suggesting that PKA inhibition on the physiological response was via PKA regulation of PKC signaling. This indicates that multiple interacting signaling pathways are involved: TGF-beta1 stimulates PLA(2) and prostaglandin release via the action of Cox-1 on arachidonic acid. PGE(2) activates the EP2 receptor, leading to G-protein-dependent activation of PKA. PKA signaling results in increased PKC activity and PKC signaling regulates proliferation, differentiation, and matrix synthesis.
Collapse
Affiliation(s)
- Enrique Rosado
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
13
|
Grimaud E, Heymann D, Rédini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002; 13:241-57. [PMID: 12486877 DOI: 10.1016/s1359-6101(02)00004-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches to treat osteoarthritis are required and progress in understanding the biology of cartilage disorders has led to the use of genes whose products stimulate cartilage repair or inhibit breakdown of the cartilaginous matrix. Among them, transforming growth factor-beta (TGF-beta) plays a significant role in promoting chondrocyte anabolism in vitro (enhancing matrix production, cell proliferation, osteochondrogenic differentiation) and in vivo (short-term intra-articular injections lead to increased bone formation and subsequent cartilage formation, beneficial effects on osteochondrogenesis). In vivo induction of the expression of TGF-beta and the use of gene transfer may provide a new approach for treatment of osteoarthritic lesions.
Collapse
Affiliation(s)
- Eva Grimaud
- Laboratoire de Physiopathologie de la Résorption Osseuse EE 99-01, Faculté de Médecine, University of Nantes, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | |
Collapse
|
14
|
Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2002; 83:1-54. [PMID: 11665716 DOI: 10.1016/s0065-230x(01)83001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated in oncogenesis since the time of its discovery almost 20 years ago. The complex, multifunctional activities of TGF-beta endow it with both tumor suppressor and tumor promoting activities, depending on the stage of carcinogenesis and the responsivity of the tumor cell. Dysregulation or alteration of TGF-beta signaling in tumorigenesis can occur at many different levels, including activation of the ligand, mutation or transcriptional suppression of the receptors, or alteration of downstream signal transduction pathways resulting from mutation or changes in expression patterns of signaling intermediates or from changes in expression of other proteins which modulate signaling. New insights into signaling from the TGF-beta receptors, including the identification of Smad signaling pathways and their interaction with mitogen-activated protein (MAP) kinase pathways, are providing an understanding of the changes involved in the change from tumor suppressor to tumor promoting activities of TGF-beta. It is now appreciated that loss of sensitivity to inhibition of growth by TGF-beta by most tumor cells is not synonymous with complete loss of TGF-beta signaling but rather suggests that tumor cells gain advantage by selective inactivation of the tumor suppressor activities of TGF-beta with retention of its tumor promoting activities, especially those dependent on cross talk with MAP kinase pathways and AP-1.
Collapse
Affiliation(s)
- E Piek
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-8395, USA
| | | |
Collapse
|
15
|
Islam S, Kermode T, Sultana D, Moskowitz RW, Mukhtar H, Malemud CJ, Goldberg VM, Haqqi TM. Expression profile of protein tyrosine kinase genes in human osteoarthritis chondrocytes. Osteoarthritis Cartilage 2001; 9:684-93. [PMID: 11795987 DOI: 10.1053/joca.2001.0465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the expression profile of protein kinase (PK) and protein tyrosine kinase (PTK) genes in human primary osteoarthritis (OA) chondrocytes and to compare it with that of immortalized human chondrocytes T/C 28a4 with a view to learning whether T/C 28a4 cells can be used for elucidating signal transduction pathways in human chondrocytes. DESIGN We used the Atlas Human cDNA Array and a method based on PCR with degenerate primers to analyse the expression profile of protein kinase genes in primary human OA chondrocytes and compared it with that of immortalized human chondrocyte cell line T/C 28a4 using RT-PCR and Western blotting. RESULTS A total of 21 PTK genes were identified and several of these have never been shown to be expressed in human OA chondrocytes. Comparative expression analysis of some selected kinase genes showed that the mRNA expression pattern of many protein kinase genes in OA chondrocytes was identical to that of T/C 28a4 cells. However, there were differences in the level of protein expression of selected protein kinases in these cells. For example, mRNA expression of the novel kinase HCK was detected in OA chondrocytes and in the cell lines analysed but by Western blotting HCK protein was not detected in OA chondrocytes. In these studies, we also identified a novel mutant form of the discoidin domain receptor 2 (DDR2) transcript from chondrocyte-like cell line HTB-94. CONCLUSIONS Our results provide novel information about protein kinase gene expression in OA chondrocytes and indicate that the transformed chondrocyte cell line T/C 28a4 may be suitable for elucidating signal transduction pathways in chondrocytes and to investigate how they regulate chondrocyte function in inflammatory and degenerative joint diseases.
Collapse
Affiliation(s)
- S Islam
- Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|