1
|
Zhang K, Li J, Li Y, Zhang W, Liang G, Zhang T. A self-catalytic UCNP-based nanomachine activated by duplex DNA for highly sensitive detection of CTCs. Biosens Bioelectron 2025; 282:117483. [PMID: 40262443 DOI: 10.1016/j.bios.2025.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Detection of circulating tumor cells (CTCs) has proven to be a crucial approach for early diagnosis, prognosis, and monitoring of cancer treatment. However, due to the low abundance of CTCs in blood, achieving accurate detection in the presence of a large number of blood cells remains challenging. In this study, we present a novel self-catalytic nanomachine for quantitative detection of CTCs, which includes a dual aptamer-triggered Catalytic Hairpin Assembly (CHA) reaction and subsequent UCNP-DNA-based biosensing. The dual-aptamer recognition, the two-step CHA reaction and the UCNP ratiometric sensing luminescence provide the assay with high specificity and sensitivity. Using MDA-MB-231 cells as model targets, the proposed detection system affords a wide linear detection range and a detection limit as low as 3 cells. Our system offers sensitive detection of CTCs without the need for enzymatic involvement, indicating its substantial potential for early cancer diagnosis and treatment based on CTCs.
Collapse
Affiliation(s)
- Kemeng Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiajun Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ye Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wen Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
2
|
Burnside M, Tang J, Baker JL, Merritt J, Kreth J. Shining Light on Oral Biofilm Fluorescence In Situ Hybridization (FISH): Probing the Accuracy of In Situ Biogeography Studies. Mol Oral Microbiol 2025. [PMID: 40304704 DOI: 10.1111/omi.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
The oral biofilm has been instrumental in advancing microbial research and enhancing our understanding of oral health and disease. Recent developments in next-generation sequencing have provided detailed insights into the microbial composition of the oral microbiome, enabling species-level analyses of biofilm interactions. Fluorescence in situ hybridization (FISH) has been especially valuable for studying the spatial organization of these microbes, revealing intricate arrangements such as "corncob" structures that highlight close bacterial interactions. As more genetic sequence data become available, the specificity and accuracy of existing FISH probes used in biogeographical studies require reevaluation. This study examines the performance of commonly used species-specific FISH probes, designed to differentiate oral microbes within in situ oral biofilms, when applied in vitro to an expanded set of bacterial strains. Our findings reveal that the specificity of several FISH probes is compromised, with cross-species hybridization being more common than previously assumed. Notably, we demonstrate that biogeographical associations within in situ oral biofilms, particularly involving Streptococcus and Corynebacterium, may need to be reassessed to align with the latest metagenomic data.
Collapse
Affiliation(s)
- Molly Burnside
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonah Tang
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonathon L Baker
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
3
|
Kim S, Hyun H, Im JK, Lee MS, Koh H, Kang D, Nho SH, Kang JH, Kwon T, Kim H. Fast and accurate multi-bacterial identification using cleavable and FRET-based peptide nucleic acid probes. Biosens Bioelectron 2025; 271:116950. [PMID: 39631211 DOI: 10.1016/j.bios.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Fast and accurate identification of pathogenic microbes in patient samples is crucial for the timely treatment of acute infectious diseases such as sepsis. The fluorescence in situ hybridization (FISH) technique allows the rapid detection and identification of microbes based on their variation in genomic sequence without time-consuming culturing or sequencing. However, the recent explosion of microbial genomic data has made it challenging to design an appropriate set of probes for microbial mixtures. We developed a novel set of peptide nucleic acid (PNA)-based FISH probes with optimal target specificity by analyzing the variations in 16S ribosomal RNA sequence across all bacterial species. Owing to their superior penetration into bacteria and higher mismatch sensitivity, the PNA probes distinguished seven bacterial species commonly observed in bacteremia with 96-99.9% accuracy using our optimized FISH procedure. Detection based on Förster resonance energy transfer (FRET) between pairs of adjacent binding PNA probes eliminated crosstalk between species. Rapid sequential species identification was implemented, using chemically cleavable fluorophores, without compromising detection accuracy. Owing to their outstanding accuracy and enhanced speed, this set of techniques shows great potential for clinical use.
Collapse
Affiliation(s)
- Sungho Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hwi Hyun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hwasoo Koh
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Donghoon Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Shidore T, Buhr DL, Morano J, Dhlakama T, Baxter M, Lum J, Barton JT, Ritch MD, Westgate B, Moscato ZM, Fiandaca MJ, Sevostyanova A, Kiebler C, Zwilling MF, Copley C, Kiss MM. Detection of necrotic enteritis risk through non-invasive monitoring of Clostridium perfringens in feces. Poult Sci 2025; 104:104809. [PMID: 39823843 PMCID: PMC11786763 DOI: 10.1016/j.psj.2025.104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotic enteritis (NE), caused by the gram-positive, anaerobic bacterium, Clostridium perfringens, results in an estimated $6 billion in annual economic losses to the global poultry industry. C. perfringens is part of the normal microflora of the poultry gastrointestinal tract, but damage to the intestinal epithelium can lead to increased cell proliferation and production of toxins which gives rise to disease. Conventional methods to diagnose NE are invasive and are typically performed after the disease has manifested. In a pen trial using a necrotic enteritis model, we demonstrate that non-invasive monitoring in feces can detect an increase in average C. perfringens counts that correlates with higher lesion scores and reduced body weight gain in birds with NE. This was achieved using a C. perfringens-specific fluorescence in situ hybridization (FISH) probe and a high throughput platform (PIPERTM) for concentrating, imaging, and automated counting of labeled cells. The assay detects all tested strains of C. perfringens while excluding closely related bacteria, including other Clostridium species commonly found in poultry feces. The counts by the PIPER assay show a linear log-log relationship with the counts obtained by conventional plating of spiked fecal samples. Furthermore, fecal samples can be stored for up to 72 h without a dramatic loss in C. perfringens detection on this platform using the recommended sample collection and storage conditions. This non-invasive assay could open new opportunities for early identification of NE risk as well as for quantifying intervention efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob Lum
- Ozark Avian Research (OAR), Gravette, AR 72736, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cho JE, Lim DK. Surface-enhanced Raman scattering for HSP 70A mRNA detection in live cells using silica nanoparticles and DNA-modified gold nanoparticles. J Mater Chem B 2025; 13:562-567. [PMID: 39564888 DOI: 10.1039/d4tb01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Real-time monitoring of mRNA in living cells is crucial for understanding dynamic biological processes. Traditional methods such as northern blotting, PCR, and sequencing require cell lysis and do not allow for continuous observation. Fluorescence-based techniques have advanced this field, but they are limited by photobleaching, which hinders long-term monitoring. In this study, we designed a dual-probe system combining fluorescence and surface-enhanced Raman scattering (SERS) signals to monitor mRNA in living cells. Our system uses silica nanoparticles (SiNPs) with DNA sequences which are hybridized with fluorescent DNA sequences and DNA-modified gold nanoparticles (AuNPs) to detect heat shock protein 70A mRNA, which can be induced by photothermal damage from laser exposure. Following nanoparticle uptake and induction of heat shock, we observed a time-dependent decrease in fluorescence intensity and increase in SERS intensity, indicating successful mRNA monitoring in living cells. These findings suggest that our dual-probe system with SiNPs and AuNPs is a promising nanotechnological platform for sensitive, long-term monitoring of gene expression in living cells, offering significant potential for future biological and medical research.
Collapse
Affiliation(s)
- Ju Eun Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Groben G, Salgado-Salazar C, Crouch JA. Fluorescence In Situ Hybridization Protocol for Visualization of Oomycetes In Vitro and In Planta. Methods Mol Biol 2025; 2892:83-91. [PMID: 39729270 DOI: 10.1007/978-1-0716-4330-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step. The protocol was used to visualize impatiens downy mildew Plasmopara destructor sporangiophores colonizing an Impatiens walleriana leaf.
Collapse
Affiliation(s)
- Glen Groben
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, USA
| | - Catalina Salgado-Salazar
- United States Department of Agriculture, Agriculture Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, USA
| | - Jo Anne Crouch
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.
| |
Collapse
|
7
|
Abo Dena AS, Nejmedine Machraoui A, Mizaikoff B. Intelligent Microcontroller-Based Infrared Attenuated Total Reflection Spectroscopy for High-Throughput Screening and Discrimination of Foodborne Fungi. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124936. [PMID: 39142262 DOI: 10.1016/j.saa.2024.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Food safety became one of the most critical issues owing to the large expansion of international trading and emission of various pollutants in air, water and soil. Fungal contamination of food and feed has attracted most of the attention in the last decade because of the emerging analytical tools that facilitate the detection and discrimination of fungal species in imported foodstuff, seeds, grains, plants, meats …etc. In this work, we give an insight on the application of integrated attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and artificial-intelligence algorithms to the determination and discrimination of fungal species/strains which potentially infect plants, seeds and grains. The proposed method is based on a microcontroller which allows the PC to analyze a large number of samples via serial connection with an UART module. Penicillium chrysogenum, Aspergillus niger, Aspergillus fumigatus, Aspergillus solani, Aspergillus flavus and two different strains of Fusarium oxysporum were used as model microorganisms. The use of artificial-intelligence algorithms herein provides the advantage of automation enabling high throughput screening of large numbers of food samples in less than 5 s. In addition, the classification accuracy is enhanced by applying these machine-learning classification techniques. Principle component analysis (PCA) was used in order to extract the spectral discriminative features from the recorded fungal FTIR spectra. Three intelligent methods of classification; namely, artificial neural network (ANN), support-vector machine (SVM) and k-nearest neighbor (KNN), were used in this study in order to prove that integration of spectroscopic measurements with varying machine-learning methods give a simple analytical tool for detection and classification of foodborne pathogens. All the utilized classifiers gave an accuracy of 100 % and were able to discriminate different species and/or strains of the investigated fungi in few milliseconds.
Collapse
Affiliation(s)
- Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), P.O. Box 29, Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt, New Cairo, Egypt; Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany
| | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; Hahn-Schickard, 89077 Ulm, Germany.
| |
Collapse
|
8
|
Schwarz MCR, Moskaluk AE, Daniels JB, VandeWoude S, Reynolds MM. Current Analytical Methods and Challenges for the Clinical Diagnosis of Invasive Pulmonary Aspergillosis Infection. J Fungi (Basel) 2024; 10:829. [PMID: 39728325 DOI: 10.3390/jof10120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
In the last decade, pulmonary fungal infections such as invasive pulmonary aspergillosis (IPA) have increased in incidence due to the increased number of immunocompromised individuals. This increase is especially problematic when considering mortality rates associated with IPA are upwards of 70%. This high mortality rate is due to, in part, the length of time it takes to diagnose a patient with IPA. When diagnosed early, mortality rates of IPA decrease by as much as 30%. In this review, we discuss current technologies employed in both medical and research laboratories to diagnose IPA, including culture, imaging, polymerase chain reaction, peptide nucleic acid-fluorescence in situ hybridization, enzyme-linked immunosorbent assay, lateral flow assay, and liquid chromatography mass spectrometry. For each technique, we discuss both promising results and potential areas for improvement that would lead to decreased diagnosis time for patients suspected of contracting IPA. Further study into methods that offer increased speed and both analytical and clinical sensitivity to decrease diagnosis time for IPA is warranted.
Collapse
Affiliation(s)
- Madeline C R Schwarz
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alex E Moskaluk
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Joshua B Daniels
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Liu L, Lian ZH, Lv AP, Salam N, Zhang JC, Li MM, Sun WM, Tan S, Luo ZH, Gao L, Yuan Y, Ming YZ, OuYang YT, Li YX, Liu ZT, Hu CJ, Chen Y, Hua ZS, Shu WS, Hedlund BP, Li WJ, Jiao JY. Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein Sysuimicrobiota. Natl Sci Rev 2024; 11:nwae378. [PMID: 39611041 PMCID: PMC11604079 DOI: 10.1093/nsr/nwae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Candidate bacterial phylum CSP1-3 has not been cultivated and is poorly understood. Here, we analyzed 112 CSP1-3 metagenome-assembled genomes and showed they are likely facultative anaerobes, with 3 of 5 families encoding autotrophy through the reductive glycine pathway (RGP), Wood-Ljungdahl pathway (WLP) or Calvin-Benson-Bassham (CBB), with hydrogen or sulfide as electron donors. Chemoautotrophic enrichments from hot spring sediments and fluorescence in situ hybridization revealed enrichment of six CSP1-3 genera, and both transcribed genes and DNA-stable isotope probing were consistent with proposed chemoautotrophic metabolisms. Ancestral state reconstructions showed that the ancestors of phylum CSP1-3 may have been acetogens that were autotrophic via the RGP, whereas the WLP and CBB were acquired by horizontal gene transfer. Our results reveal that CSP1-3 is a widely distributed phylum with the potential to contribute to the cycling of carbon, sulfur and nitrogen. The name Sysuimicrobiota phy. nov. is proposed.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Jian-Chao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Min Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
11
|
Neurauter M, Vinzelj JM, Strobl SFA, Kappacher C, Schlappack T, Badzoka J, Rainer M, Huck CW, Podmirseg SM. Exploring near-infrared spectroscopy and hyperspectral imaging as novel characterization methods for anaerobic gut fungi. FEMS MICROBES 2024; 5:xtae025. [PMID: 39301047 PMCID: PMC11412074 DOI: 10.1093/femsmc/xtae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Neocallimastigomycota are a phylum of anaerobic gut fungi (AGF) that inhabit the gastrointestinal tract of herbivores and play a pivotal role in plant matter degradation. Their identification and characterization with marker gene regions has long been hampered due to the high inter- and intraspecies length variability in the commonly used fungal marker gene region internal transcribed spacer (ITS). While recent research has improved methodology (i.e. switch to LSU D2 as marker region), molecular methods will always introduce bias through nucleic acid extraction or PCR amplification. Here, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are introduced as two nucleic acid sequence-independent tools for the characterization and identification of AGF strains. We present a proof-of-concept for both, achieving an independent prediction accuracy of above 95% for models based on discriminant analysis trained with samples of three different genera. We further demonstrated the robustness of the NIRS model by testing it on cultures of different growth times. Overall, NIRS provides a simple, reliable, and nondestructive approach for AGF classification, independent of molecular approaches. The HSI method provides further advantages by requiring less biomass and adding spatial information, a valuable feature if this method is extended to mixed cultures or environmental samples in the future.
Collapse
Affiliation(s)
- Markus Neurauter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Julia M Vinzelj
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sophia F A Strobl
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Tobias Schlappack
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sabine M Podmirseg
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Kawai M, Oda H, Mimura H, Osaki T, Takeuchi S. Open-source and low-cost miniature microscope for on-site fluorescence detection. HARDWAREX 2024; 19:e00545. [PMID: 39006472 PMCID: PMC11239704 DOI: 10.1016/j.ohx.2024.e00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
The development of a compact and affordable fluorescence microscope can be a formidable challenge for growing needs in on-site testing and detection of fluorescent labeled biological systems, especially for those who specialize in biology rather than in engineering. In response to such a situation, we present an open-source miniature fluorescence microscope using Raspberry Pi. Our fluorescence microscope, with dimensions of 19.2 × 13.6 × 8.2 cm3 (including the display, computer, light-blocking case, and other operational requirements), not only offers cost-effectiveness (costing less than $500) but is also highly customizable to meet specific application needs. The 12.3-megapixel Raspberry Pi HQ Camera captures high-resolution imagery, while the equipped wide-angle lens provides a field of view measuring 21 × 15 mm2. The integrated wireless LAN in the Raspberry Pi, along with software-controllable high-powered fluorescence LEDs, holds potential for a wide range of applications. This open-source fluorescence microscope offers biohybrid sensor developers a versatile tool to streamline unfamiliar mechanical design tasks and open new opportunities for on-site fluorescence detections.
Collapse
Affiliation(s)
- Michio Kawai
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| |
Collapse
|
13
|
Taguer M, Xiao J, Crawford R, Shi H, Cheng MP, Citron M, Hannigan GD, Kasper SH. Spatial recovery of the murine gut microbiota after antibiotics perturbation. mBio 2024; 15:e0070724. [PMID: 38832780 PMCID: PMC11253616 DOI: 10.1128/mbio.00707-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 06/05/2024] Open
Abstract
Bacterial communities are highly complex, with interaction networks dictating ecosystem function. Bacterial interactions are constrained by the spatial organization of these microbial communities, yet studying the spatial organization of microbial communities at the single-cell level has been technically challenging. Here, we use the recently developed high-phylogenetic-resolution microbiota mapping by fluorescence in situ hybridization technology to image the gut microbiota at the species and single-cell level. We simultaneously image 63 different bacterial species to spatially characterize the perturbation and recovery of the gut microbiota to ampicillin and vancomycin in the cecum and distal colon of mice. To decipher the biology in this complex imaging data, we developed an analytical framework to characterize the spatial changes of the gut microbiota to a perturbation. The three-tiered analytical approach includes image-level diversity, pairwise colocalization analysis, and hypothesis-driven neighborhood analysis. Through this workflow, we identify biogeographic and antibiotic-based differences in the spatial organization of the gut microbiota. We demonstrate that the cecal microbiota has increased micrometer-scale diversity than the colon at baseline and recovers better from perturbation. Also, we identify potential foundation and keystone species that have high baseline neighborhood richness and that are associated with recovery from antibiotics. Through this workflow, we add a spatial layer to the characterization of bacterial communities and progress toward a better understanding of bacterial interactions leading to improved microbiome modulation strategies. IMPORTANCE Antibiotics have broad off-target effects on the gut microbiome. When the microbial community is unable to recover from antibiotics, it can lead to increased susceptibility to gastrointestinal infections and increased risk of immunological and metabolic diseases. In this study, we work to better understand how the gut microbiota recovers from antibiotics by employing a recent technology to image the entire bacterial community at once. Through this approach, we characterize the spatial changes in the gut microbiota after treatment with model antibiotics in both the cecum and colon of mice. We find antibiotic- and biogeographic-dependent spatial changes between bacterial species and that many of these spatial colocalizations do not recover to baseline levels even 35 days after antibiotic administration.
Collapse
Affiliation(s)
- M. Taguer
- Discovery Immunology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - J. Xiao
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - R. Crawford
- Informatics Technology, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - H. Shi
- Kanvas Biosciences, Inc., Monmouth Junction, New Jersey, USA
| | - M. P. Cheng
- Kanvas Biosciences, Inc., Monmouth Junction, New Jersey, USA
| | - M. Citron
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - G. D. Hannigan
- Informatics Technology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - S. H. Kasper
- Discovery Immunology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Liu H, Xu Y, Dai X. Electron-transfer-driven spatial optimisation of anaerobic consortia for efficient methanogenesis: Neglected inductive effect of conductive materials. BIORESOURCE TECHNOLOGY 2024; 403:130856. [PMID: 38763204 DOI: 10.1016/j.biortech.2024.130856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The inductive effect of conductive materials (CMs) on enhancing methanogenesis metabolism has been overlooked. Herein, we highlight role of CMs in inducing the spatial optimisation of methanogenic consortia by altering the Lewis acid-base (AB) interactions within microbial aggregates. In the presence of CMs and after their removal, the methane production and methane proportion in biogas significantly increase, with no significant difference between the two situations. Analyses of interactions between CMs and extracellular polymer substances (EPSs) with and without D2O reveal that CMs promote release and transfer potential of electron in EPSs, which induce and enhance the role of water molecules being primarily as proton acceptors in the hydrogen bonding between EPSs and water, thereby changing the electron-donor- and electron-acceptor-based AB interactions. Investigations of succession dynamics of microbial communities, co-occurrence networks, and metagenomics further indicate that electron transfer drives the microbial spatial optimisation for efficient methanogenesis through intensive interspecies interactions.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
15
|
Bransfield RC, Goud Gadila SK, Kursawe LJ, Dwork AJ, Rosoklija G, Horn EJ, Cook MJ, Embers ME. Late-stage borreliosis and substance abuse. Heliyon 2024; 10:e31159. [PMID: 38779029 PMCID: PMC11108998 DOI: 10.1016/j.heliyon.2024.e31159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background Infectious diseases can contribute to substance abuse. Here, a fatal case of borreliosis and substance abuse is reported. This patient had a history of multiple tick bites and increasing multisystem symptoms, yet diagnosis and treatment were delayed. He experimented with multiple substances including phencyclidine (PCP), an N-methyl-d-aspartate (NMDA) receptor antagonist that opposes NMDA agonism caused by Borrelia infection. During PCP withdrawal, he committed one homicide, two assaults, and suicide. Methods Brain tissue was obtained from autopsy and stained for microglial activation and quinolinic acid (QA). Immunoflouresence (IFA) and fluorescence in situ hybridization (FISH) were used to identify the presence of pathogens in autopsy tissue. Results Autopsy tissue evaluation demonstrated Borrelia in the pancreas by IFA and heart by IFA and FISH. Activated microglia and QA were found in the brain, indicating neuroinflammation. It is postulated that PCP withdrawal may exacerbate symptoms produced by Borrelia-induced biochemical imbalances in the brain. This combination may have greatly increased his acute homicidal and suicidal risk. Patient databases also demonstrated the risk of homicide or suicide in patients diagnosed with borreliosis and confirmed multiple symptoms in these patients, including chronic pain, anxiety, and anhedonia. Conclusions Late-stage borreliosis is associated with multiple symptoms that may contribute to an increased risk of substance abuse and addictive disorders. More effective diagnosis and treatment of borreliosis, and attention to substance abuse potential may help reduce associated morbidity and mortality in patients with borreliosis, particularly in endemic areas.
Collapse
Affiliation(s)
- Robert C. Bransfield
- Rutgers-RWJ Medical School, Piscataway, NJ, USA. Hackensack Meridian Health-School of Medicine, Nutley, NJ, USA
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Laura J. Kursawe
- Charité – Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin and Humboldt-Universitat zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University, New York, NY, United States. Division of Molecular Imaging and Neuropathology, New York, USA
- State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts, Skopje, Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gorazd Rosoklija
- State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | | | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| |
Collapse
|
16
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Rolfsen MP, Gammelsrud KW, Espeland A, Bråten LC, Mjønes SB, Austevoll I, Dolatowski FC, Årrestad MB, Toppe MK, Orlien IE, Holberg-Petersen M, Fagerland M, Zwart JA, Storheim K, Hellum C. Bacterial growth in patients with low back pain and Modic changes: protocol of a multicentre, case-control biopsy study. BMJ Open 2024; 14:e082244. [PMID: 38719329 PMCID: PMC11086543 DOI: 10.1136/bmjopen-2023-082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Bacterial infection and Modic changes (MCs) as causes of low back pain (LBP) are debated. Results diverged between two randomised controlled trials examining the effect of amoxicillin with and without clavulanic acid versus placebo on patients with chronic LBP (cLBP) and MCs. Previous biopsy studies have been criticised with regard to methods, few patients and controls, and insufficient measures to minimise perioperative contamination. In this study, we minimise contamination risk, include a control group and optimise statistical power. The main aim is to compare bacterial growth between patients with and without MCs. METHODS AND ANALYSIS This multicentre, case-control study examines disc and vertebral body biopsies of patients with cLBP. Cases have MCs at the level of tissue sampling, controls do not. Previously operated patients are included as a subgroup. Tissue is sampled before antibiotic prophylaxis with separate instruments. We will apply microbiological methods and histology on biopsies, and predefine criteria for significant bacterial growth, possible contamination and no growth. Microbiologists, surgeons and pathologist are blinded to allocation of case or control. Primary analysis assesses significant growth in MC1 versus controls and MC2 versus controls separately. Bacterial disc growth in previously operated patients, patients with large MCs and growth from the vertebral body in the fusion group are all considered exploratory analyses. ETHICS AND DISSEMINATION The Regional Committees for Medical and Health Research Ethics in Norway (REC South East, reference number 2015/697) has approved the study. Study participation requires written informed consent. The study is registered at ClinicalTrials.gov (NCT03406624). Results will be disseminated in peer-reviewed journals, scientific conferences and patient fora. TRIAL REGISTRATION NUMBER NCT03406624.
Collapse
Affiliation(s)
- Mads Peder Rolfsen
- Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway
| | - Karianne Wiger Gammelsrud
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo Faculty of Medicine, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen Faculty of Medicine and Dentistry, Bergen, Norway
| | | | | | - Ivar Austevoll
- Kysthospitalet in Hagavik, Orthopedic Clinic, Haukeland University Hospital, Bergen, Norway
| | | | | | | | - Ingvild Elise Orlien
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona Holberg-Petersen
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Fagerland
- Biostatistics & Epidemiology, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Kjersti Storheim
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Christian Hellum
- Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
18
|
Kumar V, Ameen F, Verma P. Unraveling the shift in bacterial communities profile grown in sediments co-contaminated with chlorolignin waste of pulp-paper mill by metagenomics approach. Front Microbiol 2024; 15:1350164. [PMID: 38529176 PMCID: PMC10961449 DOI: 10.3389/fmicb.2024.1350164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Pulp-paper mills (PPMs) are known for consistently generating a wide variety of pollutants, that are often unidentified and highly resistant to environmental degradation. The current study aims to investigate the changes in the indigenous bacterial communities profile grown in the sediment co-contaminated with organic and inorganic pollutants discharged from the PPMs. The two sediment samples, designated PPS-1 and PPS-2, were collected from two different sites. Physico-chemical characterization of PPS-1 and PPS-2 revealed the presence of heavy metals (mg kg-1) like Cu (0.009-0.01), Ni (0.005-0.002), Mn (0.078-0.056), Cr (0.015-0.009), Pb (0.008-0.006), Zn (0.225-0.086), Fe (2.124-0.764), Al (3.477-22.277), and Ti (99.792-45.012) along with high content of chlorophenol, and lignin. The comparative analysis of organic pollutants in sediment samples using gas chromatography-mass spectrometry (GC-MS) revealed the presence of major highly refractory compounds, such as stigmasterol, β-sitosterol, hexadecanoic acid, octadecanoic acid; 2,4-di-tert-butylphenol; heptacosane; dimethyl phthalate; hexachlorobenzene; 1-decanol,2-hexyl; furane 2,5-dimethyl, etc in sediment samples which are reported as a potential toxic compounds. Simultaneously, high-throughput sequencing targeting the V3-V4 hypervariable region of the 16S rRNA genes, resulted in the identification of 1,249 and 1,345 operational taxonomic units (OTUs) derived from a total of 115,665 and 119,386 sequences read, in PPS-1 and PPS-2, respectively. Analysis of rarefaction curves indicated a diversity in OTU abundance between PPS-1 (1,249 OTUs) and PPS-2 (1,345 OTUs). Furthermore, taxonomic assignment of metagenomics sequence data showed that Proteobacteria (55.40%; 56.30%), Bacteoidetes (11.30%; 12.20%), and Planctomycetes (5.40%; 4.70%) were the most abundant phyla; Alphproteobacteria (20.50%; 23.50%), Betaproteobacteria (16.00%; 12.30%), and Gammaproteobacteria were the most recorded classes in PPS-1 and PPS-2, respectively. At the genus level, Thiobacillus (7.60%; 4.50%) was the most abundant genera grown in sediment samples. The results indicate significant differences in both the diversity and relative abundance of taxa in the bacterial communities associated with PPS-2 when compared to PPS-1. This study unveils key insights into contaminant characteristics and shifts in bacterial communities within contaminated environments. It highlights the potential for developing efficient bioremediation techniques to restore ecological balance in pulp-paper mill waste-polluted areas, stressing the importance of identifying a significant percentage of unclassified genera and species to explore novel genes.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
19
|
Rolph MJ, Bolfa P, Cavanaugh SM, Rolph KE. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Vet Sci 2024; 11:52. [PMID: 38275934 PMCID: PMC10821249 DOI: 10.3390/vetsci11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
FISH techniques have been applied for the visualization and identification of intracellular bacteria in companion animal species. Most frequently, these techniques have focused on the identification of adhesive-invasive Escherichia coli in gastrointestinal disease, although various other organisms have been identified in inflammatory or neoplastic gastrointestinal disease. Previous studies have investigated a potential role of Helicobacter spp. in inflammatory gastrointestinal and hepatic conditions. Other studies evaluating the role of infectious organisms in hepatopathies have received some attention with mixed results. FISH techniques using both eubacterial and species-specific probes have been applied in inflammatory cardiovascular, urinary, and cutaneous diseases to screen for intracellular bacteria. This review summarizes the results of these studies.
Collapse
Affiliation(s)
| | | | | | - Kerry E. Rolph
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
20
|
Savicheva AM. Molecular Testing for the Diagnosis of Bacterial Vaginosis. Int J Mol Sci 2023; 25:449. [PMID: 38203620 PMCID: PMC10779368 DOI: 10.3390/ijms25010449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Previously established diagnostic approaches for the diagnosis of bacterial vaginosis (BV), such as the Amsel criteria or the Nugent scoring system, do not always correspond to modern trends in understanding the etiology and pathogenesis of polymicrobial conditions. Inter-examiner variability and interpretation of data complicate the wet mount microscopy method. Gram staining of smears does not always provide reliable information regarding bacterial taxa, biofilms, or vaginal dysbiosis. Therefore, the introduction of molecular techniques into clinical practice is extremely relevant. Molecular approaches allow not only the diagnosis of BV but also provide an assessment of microbial composition, which is especially important in the differential diagnosis of vaginal infections. The current review represents an expert opinion on BV diagnosis and is based on extensive experience in the field of vaginal infection diagnosis and treatment.
Collapse
Affiliation(s)
- Alevtina M Savicheva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg 199034, Russia
| |
Collapse
|
21
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
22
|
Huang Z, Wang D, Zhou J, He H, Wei C. The Improvement of Fluorescence In Situ Hybridization Technique Based on Explorations of Symbionts in Cicadas. Int J Mol Sci 2023; 24:15838. [PMID: 37958818 PMCID: PMC10650757 DOI: 10.3390/ijms242115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is widely used for the identification of microbes in complex samples, but it suffers from some limitations resulting in the weak or even absence of fluorescence signals of microbe(s), which may lead to the underestimation or misunderstanding of a microbial community. Herein, we explored symbionts in the bacteriomes and fat bodies of cicadas using modified FISH, aiming to improve this technique. We initially revealed that the probes of Candidatus Sulcia muelleri (Sulcia) and the yeast-like fungal symbiont (YLS) are suitable for detection of these symbionts in all cicadas and some other species of Auchenorrhyncha, whereas the probe of Candidatus Hodgkinia cicadicola (Hodgkinia) is only suitable for detection of Hodgkinia in a few cicada species. The fluorescence signal of Sulcia, Hodgkinia and YLS exhibited weak intensity without the addition of unlabeled oligonucleotides (helpers) and heat shock in some cicadas; however, it can be significantly improved by the addition of both helpers and heat shock. Results of this study suggest that heat shock denaturing rRNA and proteins of related microbe(s) together with helpers binding to the adjacent region of the probe's target sites prevent the re-establishment of the native secondary structure of rRNA; therefore, suitable probe(s) can more easily access to the probe's target sites of rRNA. Our results provide new information for the significant improvement of hybridization signal intensities of microbes in the FISH experiment, making it possible to achieve a more precise understanding of the microbial distribution, community and density in complex samples.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Jinrui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Hong He
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| |
Collapse
|
23
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
24
|
Muzny CA, Cerca N, Elnaggar JH, Taylor CM, Sobel JD, Van Der Pol B. State of the Art for Diagnosis of Bacterial Vaginosis. J Clin Microbiol 2023; 61:e0083722. [PMID: 37199636 PMCID: PMC10446871 DOI: 10.1128/jcm.00837-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common cause of vaginal discharge among reproductive-age women. It is associated with multiple adverse health outcomes, including increased risk of acquisition of HIV and other sexually transmitted infections (STIs), in addition to adverse birth outcomes. While it is known that BV is a vaginal dysbiosis characterized by a shift in the vaginal microbiota from protective Lactobacillus species to an increase in facultative and strict anaerobic bacteria, its exact etiology remains unknown. The purpose of this minireview is to provide an updated overview of the range of tests currently used for the diagnosis of BV in both clinical and research settings. This article is divided into two primary sections: traditional BV diagnostics and molecular diagnostics. Molecular diagnostic assays, particularly 16S rRNA gene sequencing, shotgun metagenomic sequencing, and fluorescence in situ hybridization (FISH), are specifically highlighted, in addition to multiplex nucleic acid amplification tests (NAATs), given their increasing use in clinical practice (NAATs) and research studies (16S rRNA gene sequencing, shotgun metagenomic sequencing, and FISH) regarding the vaginal microbiota and BV pathogenesis. We also provide a discussion of the strengths and weaknesses of current BV diagnostic tests and discuss future challenges in this field of research.
Collapse
Affiliation(s)
- Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| | - Barbara Van Der Pol
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Javed R, Narang D, Gupta K, Deshmukh S, Chandra M. Rapid detection of Mycobacterium bovis in bovine cytological smears and tissue sections by peptide nucleic acid fluorescence in-situ hybridization. Vet Immunol Immunopathol 2023; 262:110635. [PMID: 37544036 DOI: 10.1016/j.vetimm.2023.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Bovine tuberculosis is the leading cause of death in cattle and other species worldwide. Quick and precise identification of mycobacteria is critical to control the occurrence of tuberculosis in cattle. METHODS We developed a fluorescent peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) approach to detect Mycobacterium bovis and Mycobacterium avium in cytological smears and tissue sections of bovines suspected of having tuberculosis. PNA-FISH was conducted on smears of lung and lymph node tissues. Standard bovine mycobacterial cultures were used to standardize the probes using 50 % formamide for M. bovis and 30 % formamide for M. avium. M. bovis probe (MTBCcy3), which was standardized at hybridization conditions of (55 °C and 40 % formamide) concentrations, was positive in all cytological smears. RESULTS Four out of twenty five samples tested positive in tissue sections observed as a bright red fluorescence with a cy3 filter (MTBC probe). No results were observed with (MAVTAMRA) probe for M. avium which was standardized at hybridization conditions of (55 °C and 30 % formamide). No fluorescence was observed in the control tissue sections. Additionally, the results were juxtaposed with those of other commonly used detection methods such as immunohistochemistry and Polymerase Chain Reaction (PCR) by targeting the esxA gene. None of the samples tested positive for M. avium infection. CONCLUSION PNA-FISH can be used to obtain cytological impression smears and tissue sections. When compared to PCR it consumes less time in the diagnosis of bovine tuberculosis in post mortem cases.
Collapse
Affiliation(s)
- Rabyia Javed
- Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, India.
| | - Deepti Narang
- Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, India
| | - Kuldip Gupta
- Department of Veterinary Pathology, College of Veterinary Science, GADVASU, Ludhiana, India
| | - Sidartha Deshmukh
- Department of Veterinary Pathology, College of Veterinary Science, GADVASU, Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, India
| |
Collapse
|
26
|
Lapierre-Landry M, Liu Y, Bayat M, Wilson DL, Jenkins MW. Digital labeling for 3D histology: segmenting blood vessels without a vascular contrast agent using deep learning. BIOMEDICAL OPTICS EXPRESS 2023; 14:2416-2431. [PMID: 37342724 PMCID: PMC10278624 DOI: 10.1364/boe.480230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 06/23/2023]
Abstract
Recent advances in optical tissue clearing and three-dimensional (3D) fluorescence microscopy have enabled high resolution in situ imaging of intact tissues. Using simply prepared samples, we demonstrate here "digital labeling," a method to segment blood vessels in 3D volumes solely based on the autofluorescence signal and a nuclei stain (DAPI). We trained a deep-learning neural network based on the U-net architecture using a regression loss instead of a commonly used segmentation loss to achieve better detection of small vessels. We achieved high vessel detection accuracy and obtained accurate vascular morphometrics such as vessel length density and orientation. In the future, such digital labeling approach could easily be transferred to other biological structures.
Collapse
Affiliation(s)
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | - Mahdi Bayat
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, USA
- Department of Radiology, Case Western Reserve University, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, USA
- Department of Pediatrics, School of
Medicine, Case Western Reserve University, USA
| |
Collapse
|
27
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Yoshida SR, Maity BK, Chong S. Visualizing Protein Localizations in Fixed Cells: Caveats and the Underlying Mechanisms. J Phys Chem B 2023; 127:4165-4173. [PMID: 37161904 DOI: 10.1021/acs.jpcb.3c01658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluorescence microscopy techniques have been widely adopted in biology for their ability to visualize the structure and dynamics of a wide range of cellular and subcellular processes. The specificity and sensitivity that these techniques afford have made them primary tools in the characterization of protein localizations within cells. Many of the fluorescence microscopy techniques require cells to be fixed via chemical or alternative methods before being imaged. However, some fixation methods have been found to induce the redistribution of particular proteins in the cell, resulting in artifacts in the characterization of protein localizations and functions under physiological conditions. Here, we review the ability of commonly used cell fixation methods to faithfully preserve the localizations of proteins that bind to chromatin, undergo liquid-liquid phase separation (LLPS), and are involved in the formation of various membrane-bound organelles. We also review the mechanisms underlying various fixation artifacts and discuss potential alternative fixation methods to minimize the artifacts while investigating different proteins and cellular structures. Overall, fixed-cell fluorescence microscopy is a very powerful tool in biomedical research; however, each experiment demands the careful selection of an appropriate fixation method to avoid potential artifacts and may benefit from live-cell imaging validation.
Collapse
Affiliation(s)
- Shawn R Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Barun K Maity
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
Altindiş M, Kahraman Kilbaş EP. Managing Viral Emerging Infectious Diseases via Current and Future Molecular Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13081421. [PMID: 37189522 DOI: 10.3390/diagnostics13081421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Emerging viral infectious diseases have been a constant threat to global public health in recent times. In managing these diseases, molecular diagnostics has played a critical role. Molecular diagnostics involves the use of various technologies to detect the genetic material of various pathogens, including viruses, in clinical samples. One of the most commonly used molecular diagnostics technologies for detecting viruses is polymerase chain reaction (PCR). PCR amplifies specific regions of the viral genetic material in a sample, making it easier to detect and identify viruses. PCR is particularly useful for detecting viruses that are present in low concentrations in clinical samples, such as blood or saliva. Another technology that is becoming increasingly popular for viral diagnostics is next-generation sequencing (NGS). NGS can sequence the entire genome of a virus present in a clinical sample, providing a wealth of information about the virus, including its genetic makeup, virulence factors, and potential to cause an outbreak. NGS can also help identify mutations and discover new pathogens that could affect the efficacy of antiviral drugs and vaccines. In addition to PCR and NGS, there are other molecular diagnostics technologies that are being developed to manage emerging viral infectious diseases. One of these is CRISPR-Cas, a genome editing technology that can be used to detect and cut specific regions of viral genetic material. CRISPR-Cas can be used to develop highly specific and sensitive viral diagnostic tests, as well as to develop new antiviral therapies. In conclusion, molecular diagnostics tools are critical for managing emerging viral infectious diseases. PCR and NGS are currently the most commonly used technologies for viral diagnostics, but new technologies such as CRISPR-Cas are emerging. These technologies can help identify viral outbreaks early, track the spread of viruses, and develop effective antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Mustafa Altindiş
- Medical Microbiology Department, Faculty of Medicine, Sakarya University, Sakarya 54050, Türkiye
| | - Elmas Pınar Kahraman Kilbaş
- Medical Laboratory Techniques, Vocational School of Health Services, Fenerbahce University, Istanbul 34758, Türkiye
| |
Collapse
|
30
|
Jin R, Ning X, Liu X, Zhao Y, Ye G. Porphyromonas gingivalis-induced periodontitis could contribute to cognitive impairment in Sprague–Dawley rats via the P38 MAPK signaling pathway. Front Cell Neurosci 2023; 17:1141339. [PMID: 37056710 PMCID: PMC10086325 DOI: 10.3389/fncel.2023.1141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPeriodontitis is one of the most common oral diseases and has been shown to be a risk factor for systemic diseases. Our aim was to investigate the relationship between periodontitis and cognitive impairment and to explore the role of the P38 MAPK signaling pathway in this process.MethodsWe established a periodontitis model by ligating the first molars of SD rats with silk thread and injecting Porphyromonas gingivalis (P. gingivalis) or P. gingivalis plus the P38 MAPK inhibitor SB203580 at the same time for ten weeks. We assessed alveolar bone resorption and spatial learning and memory using microcomputed tomography and the Morris water maze test, respectively. We used transcriptome sequencing to explore the genetic differences between the groups. The gingival tissue, peripheral blood and hippocampal tissue were assessed for the cytokines TNF-α, IL-1β, IL-6, IL-8 and C reactive protein (CRP) with enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT–PCR). We observed the presence of P. gingivalis in the hippocampus of rats by paraffin-fluorescence in situ hybridization (FISH). We determined the activation of microglia by immunofluorescence. Finally, Western blot analysis was employed to determine the expression of amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1) and P38MAPK pathway activation.ResultsWe demonstrated that silk ligature-induced periodontitis plus injection of P. gingivalis into subgingival tissue could lead to memory and cognitive impairment. Transcriptome sequencing results suggested that there were neurodegenerative diseases in the P. gingivalis group, and the MWM test showed that periodontitis reduced the spatial learning and memory ability of mild cognitive impairment (MCI) model rats. We found high levels of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) and CRP in the gingiva, peripheral blood and hippocampus, and the expression of APP and BACE1 was upregulated, as was the P38 MAPK pathway activation. Activated microglia and the presence of P. gingivalis were also found in the hippocampus. P38 MAPK inhibitors mitigated all of these changes.ConclusionOur findings strongly suggest that topical application of P. gingivalis increases the inflammatory burden in the peripheral and central nervous systems (CNS) and that neuroinflammation induced by activation of P38 MAPK leads to impaired learning and memory in SD rats. It can also modulate APP processing. Therefore, P38 MAPK may serve as a linking pathway between periodontitis and cognitive impairment.
Collapse
Affiliation(s)
- Ru Jin
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Ning
- The First People’s Hospital of Wanzhou, Chongqing, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Guo Ye
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Guo Ye,
| |
Collapse
|
31
|
A Study on Symbiotic Systems of Cicadas Provides New Insights into Distribution of Microbial Symbionts and Improves Fluorescence In Situ Hybridization Technique. Int J Mol Sci 2023; 24:ijms24032434. [PMID: 36768757 PMCID: PMC9917331 DOI: 10.3390/ijms24032434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Nutritional symbionts of sap-sucking auchenorrhynchan insects of Hemiptera are usually confined to the bacteriomes and/or fat bodies. Knowledge is limited about the distribution of microbial symbionts in other organs. We investigated the distribution of obligate symbionts in the salivary glands, gut tissues, reproductive organs, bacteriomes, and fat bodies of two cicada species, Karenia caelatata and Tanna sp., using integrated methods, including a modified fluorescence in situ hybridization (FISH) technique, which can greatly enhance the FISH signal intensity of related symbionts. We revealed that Candidatus Sulcia muelleri (Sulcia) and a yeast-like fungal symbiont (YLS) were harbored in the bacteriomes and fat bodies, respectively. Both of Sulcia and YLS can be transmitted to the offspring via ovaries, forming a "symbiont ball" in each egg. Neither Sulcia nor YLS were harbored in the salivary glands, gut tissues and testes. Phylogenetic trees of both Sulcia and cicadas confirm that K. caelatata is a member of the tribe Dundubiini, and the tribe Leptopsaltriini that comprises Ta. sp. is not monophyletic. YLS of K. caelatata is embedded inside the lineage of YLS of Dundubiini, whereas YLS of Ta. sp. is closely related to the clade comprising both cicada-parasitizing fungi Ophiocordyceps and YLS of Mogannia conica and Meimuna mongolica, suggesting an evolutionary replacement of YLS in Ta. sp. from an Ophiocordyceps fungus to another Ophiocordyceps fungus. Our results provide new insights into the symbiosis between Cicadidae and related symbionts. Modification through the addition of helpers and heat shock greatly enhanced the FISH signal intensity of YLS, which may provide guidelines for enhancement of the hybridization signal intensity of other symbiont(s) in the FISH experiments.
Collapse
|
32
|
DETERMINATION OF SPECIFIC ENTEROPATHOGEN PRESENCE IN CAPTIVE CHEETAHS ( ACINONYX JUBATUS) FED VARIOUS DIETS USING FLUORESCENCE IN SITU HYBRIDIZATION. J Zoo Wildl Med 2023; 53:744-754. [PMID: 36640076 DOI: 10.1638/2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic enteropathies pose an important difficulty in the captive management of cheetahs (Acinonyx jubatus) because of suspected multifactorial pathogenesis and the complex nature of enteric microbiota dynamics. Enterobacteriaceae, Campylobacter spp., Clostridium perfringens, Helicobacter spp., and Salmonella spp. are enteropathogens of interest because of their zoonotic potential and suspected contribution to enteropathies. This study aimed to determine the presence of these enteropathogens of interest in fecal samples from cheetahs (N = 48) fed different diets from three different institutions and to investigate the associations between diet, fecal score, and specific enteropathogen presence. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes were used to visualize and quantify putative enteropathogens in each sample concurrent with selective culturing for Salmonella and Clostridium perfringens. From FISH counts, carcass-fed animals had greater numbers of Enterobacteriaceae compared with animals fed low-fat dog food, although this trend was not statistically significant (P = 0.088). Furthermore, no significant associations were found between fecal score and bacterial load. Abundance of Campylobacter spp., Clostridium perfringens, or Helicobacter spp. as measured by FISH were not correlated with diet or fecal score. On the basis of these data, in agreement with published literature, it is concluded that these microbes may be commensals in the cheetah gastrointestinal tract and do not appear to be a primary cause of abnormal fecal scores.
Collapse
|
33
|
Hahn RC, Hagen F, Mendes RP, Burger E, Nery AF, Siqueira NP, Guevara A, Rodrigues AM, de Camargo ZP. Paracoccidioidomycosis: Current Status and Future Trends. Clin Microbiol Rev 2022; 35:e0023321. [PMID: 36074014 PMCID: PMC9769695 DOI: 10.1128/cmr.00233-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), initially reported in 1908 in the city of São Paulo, Brazil, by Adolpho Lutz, is primarily a systemic and neglected tropical mycosis that may affect individuals with certain risk factors around Latin America, especially Brazil. Paracoccidioides brasiliensis sensu stricto, a classical thermodimorphic fungus associated with PCM, was long considered to represent a monotypic taxon. However, advances in molecular taxonomy revealed several cryptic species, including Paracoccidioides americana, P. restrepiensis, P. venezuelensis, and P. lutzii, that show a preference for skin and mucous membranes, lymph nodes, and respiratory organs but can also affect many other organs. The classical diagnosis of PCM benefits from direct microscopy culture-based, biochemical, and immunological assays in a general microbiology laboratory practice providing a generic identification of the agents. However, molecular assays should be employed to identify Paracoccidioides isolates to the species level, data that would be complemented by epidemiological investigations. From a clinical perspective, all probable and confirmed cases should be treated. The choice of treatment and its duration must be considered, along with the affected organs, process severity, history of previous treatment failure, possibility of administering oral medication, associated diseases, pregnancy, and patient compliance with the proposed treatment regimen. Nevertheless, even after appropriate treatment, there may be relapses, which generally occur 5 years after the apparent cure following treatment, and also, the mycosis may be confused with other diseases. This review provides a comprehensive and critical overview of the immunopathology, laboratory diagnosis, clinical aspects, and current treatment of PCM, highlighting current issues in the identification, treatment, and patient follow-up in light of recent Paracoccidioides species taxonomic developments.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Rinaldo Poncio Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Faculdade de Medicina, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenasgrid.411180.d (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Andreia Ferreira Nery
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Nathan Pereira Siqueira
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Armando Guevara
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
35
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
36
|
Yao Z, Zhu Y, Wu Q, Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit Rev Food Sci Nutr 2022; 64:4995-5015. [PMID: 36412251 DOI: 10.1080/10408398.2022.2147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneously fermented foods are consumed and appreciated for thousands of years although they are usually produced with fluctuated productivity and quality, potentially threatening both food safety and food security. To guarantee consistent fermentation productivity and quality, it is essential to control the complex microbiota, the most crucial factor in food fermentations. The prerequisite for the control is to comprehensively understand the structure and function of the microbiota. How to quantify the actual microbiota is of paramount importance. Among various microbial quantitative methods evolved, quantitative microbiome profiling, namely to quantify all microbial taxa by absolute abundance, is the best method to understand the complex microbiota, although it is still at its pioneering stage for food fermentations. Here, we provide an overview of microbial quantitative methods, including the development from conventional methods to the advanced quantitative microbiome profiling, and the application examples of these methods. Moreover, we address potential challenges and perspectives of quantitative microbiome profiling methods, as well as future research needs for the ultimate goal of rational and optimal control of microbiota in spontaneous food fermentations. Our review can serve as reference for the traditional food fermentation sector for stable fermentation productivity, quality and safety.
Collapse
Affiliation(s)
- Zhihao Yao
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Yao Z, Cai Z, Ma Q, Bai S, Wang Y, Zhang P, Guo Q, Gu J, Lemaitre B, Zhang H. Compartmentalized PGRP expression along the dipteran Bactrocera dorsalis gut forms a zone of protection for symbiotic bacteria. Cell Rep 2022; 41:111523. [DOI: 10.1016/j.celrep.2022.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
|
38
|
Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol 2022; 10:987669. [PMID: 36213081 PMCID: PMC9539416 DOI: 10.3389/fbioe.2022.987669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most prevalent healthcare-associated infection is the urinary tract infection (UTI), caused by opportunistic pathogens such as Candida albicans or non-albicans Candida species (NACS). Urine culture methods are routinely used for UTI diagnostics due to their specificity, sensitivity and low-cost. However, these methods are also laborious, time- and reagent-consuming. Therefore, diagnostic methods relying on nucleic acids have been suggested as alternatives. Nucleic acid-based methods can provide results within 24 h and can be adapted to point-of-care (POC) detection. Here, we propose to combine fluorescence in situ hybridization (FISH) with a microfluidic platform for the detection of Candida spp. As a case study we used C. tropicalis, which is reported as the second most common NACS urine isolate obtained from patients suspected with UTI. The microfluidic platform proposed in this study relies on hydrodynamic trapping, and uses physical barriers (e.g., microposts) for the separation of target cells from the suspension. Using a specific peptide nucleic acid (PNA) probe, the FISH procedure was applied onto previously trapped C. tropicalis cells present inside the microfluidic platform. Fluorescence signal intensity of hybridized cells was captured directly under the epifluorescence microscope. Overall, the PNA probe successfully detected C. tropicalis in pure culture and artificial urine (AU) using FISH combined with the microfluidic platform. Our findings reveal that FISH using nucleic acid mimics (PNA) in combination with microfluidics is a reliable method for the detection of microorganisms such as C. tropicalis. As such, this work provides the basis for the development of a POC detection platform in the future.
Collapse
Affiliation(s)
- Violina Baranauskaite Barbosa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Célia F. Rodrigues
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - João M. Miranda
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- CEFT–Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
39
|
Roles of Species-Specific Legumains in Pathogenicity of the Pinewood Nematode Bursaphelenchus xylophilus. Int J Mol Sci 2022; 23:ijms231810437. [PMID: 36142347 PMCID: PMC9499627 DOI: 10.3390/ijms231810437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.
Collapse
|
40
|
Nácher-Vázquez M, Barbosa A, Armelim I, Azevedo AS, Almeida GN, Pizarro C, Azevedo NF, Almeida C, Cerqueira L. Development of a Novel Peptide Nucleic Acid Probe for the Detection of Legionella spp. in Water Samples. Microorganisms 2022; 10:1409. [PMID: 35889127 PMCID: PMC9318766 DOI: 10.3390/microorganisms10071409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Legionella are opportunistic intracellular pathogens that are found throughout the environment. The Legionella contamination of water systems represents a serious social problem that can lead to severe diseases, which can manifest as both Pontiac fever and Legionnaires' disease (LD) infections. Fluorescence in situ hybridization using nucleic acid mimic probes (NAM-FISH) is a powerful and versatile technique for bacterial detection. By optimizing a peptide nucleic acid (PNA) sequence based on fluorescently selective binding to specific bacterial rRNA sequences, we established a new PNA-FISH method that has been successfully designed for the specific detection of the genus Legionella. The LEG22 PNA probe has shown great theoretical performance, presenting 99.9% specificity and 96.9% sensitivity. We also demonstrated that the PNA-FISH approach presents a good signal-to-noise ratio when applied in artificially contaminated water samples directly on filtration membranes or after cells elution. For water samples with higher turbidity (from cooling tower water systems), there is still the need for further method optimization in order to detect cellular contents and to overcome interferents' autofluorescence, which hinders probe signal visualization. Nevertheless, this work shows that the PNA-FISH approach could be a promising alternative for the rapid (3-4 h) and accurate detection of Legionella.
Collapse
Affiliation(s)
- Montserrat Nácher-Vázquez
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
| | - Ana Barbosa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Armelim
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
| | - Andreia Sofia Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Gonçalo Nieto Almeida
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
| | - Cristina Pizarro
- INSA—National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal;
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Laura Cerqueira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
41
|
An outlook on fluorescent in situ hybridization coupled to flow cytometry as a versatile technique to evaluate the effects of foods and dietary interventions on gut microbiota. Arch Microbiol 2022; 204:469. [PMID: 35821535 DOI: 10.1007/s00203-022-03090-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
The increasing interest in the effects of the gut microbiota on host health has stimulated the investigation of the composition of this microbial community and the factors affecting these microorganisms. This review discusses the recent advances and progress applications in the use of the fluorescent in situ hybridization (FISH) coupled to flow cytometry (FC) technique (FISH-FC) in studies evaluating the gut microbiota published in the last 10 years, with particular emphasis on the effects of foods and dietary interventions. These studies have shown that FISH-FC technique is capable of detecting and quantifying several groups of bacteria found as part of the gut microbiota. FISH-FC can be considered an effective, versatile, and rapid technique to evaluate alterations in gut microbiota composition caused by different foods as assessed in studies in vitro, in vivo, and in clinical trials. Some specific probes have been most used to represent the general gut microbiota, such as those specific to Lactobacillus spp./Enterococcus spp., Bacteroidaceae/Prevotellaceae, Clostridium histolyticum, and Bifidobacterium spp. FISH-FC technique could have an important opportunity for application in studies with next-generation probiotics belonging to the gut microbiota. Optimizations of FISH-FC protocols could allow more discoveries about the gut microbiota, including the development of new probes targeting microorganisms still not explored, the analysis of individual portions of the intestine, and the proposition of novel quantitative approaches.
Collapse
|
42
|
Cui D, Kong L, Wang Y, Zhu Y, Zhang C. In situ identification of environmental microorganisms with Raman spectroscopy. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100187. [PMID: 36158754 PMCID: PMC9488013 DOI: 10.1016/j.ese.2022.100187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 05/28/2023]
Abstract
Microorganisms in natural environments are crucial in maintaining the material and energy cycle and the ecological balance of the environment. However, it is challenging to delineate environmental microbes' actual metabolic pathways and intraspecific heterogeneity because most microorganisms cannot be cultivated. Raman spectroscopy is a culture-independent technique that can collect molecular vibration profiles from cells. It can reveal the physiological and biochemical information at the single-cell level rapidly and non-destructively in situ. The first part of this review introduces the principles, advantages, progress, and analytical methods of Raman spectroscopy applied in environmental microbiology. The second part summarizes the applications of Raman spectroscopy combined with stable isotope probing (SIP), fluorescence in situ hybridization (FISH), Raman-activated cell sorting and genomic sequencing, and machine learning in microbiological studies. Finally, this review discusses expectations of Raman spectroscopy and future advances to be made in identifying microorganisms, especially for uncultured microorganisms.
Collapse
Affiliation(s)
- Dongyu Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, University of Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| |
Collapse
|
43
|
Sun X, Chen J, Huang Y, Zhu S, Wang S, Xu Z, Zhang J, Sun W. Yishen Qingli Heluo Granule Ameliorates Renal Dysfunction in 5/6 Nephrectomized Rats by Targeting Gut Microbiota and Intestinal Barrier Integrity. Front Pharmacol 2022; 13:858881. [PMID: 35814258 PMCID: PMC9258868 DOI: 10.3389/fphar.2022.858881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied with imbalanced gut microbiota and impaired intestinal barrier. Hence, efforts to ameliorate renal dysfunction by manipulating gut microbial ecosystem are underway. Yishen Qingli Heluo granule (YQHG) is a representative traditional Chinese medicine (TCM) prescription for clinical treatment of CKD. However, its underlying mechanism has not been well elucidated. This study aimed to explore effects of YQHG on renal dysfunction in 5/6 nephrectomized rats by targeting gut microbiota and intestinal barrier. Here, we found that YQHG provided significant renal protection in 5/6 nephrectomized rats by reducing renal fibrosis and inflammation, reestablishing bacterial communities, and improving intestinal barrier. Our analysis showed that YQHG altered the bacterial community of 5/6 nephrectomized rats. In particular, the prescription significantly increased the relative abundance of SCFA-producing bacteria (i.e., Lactobacillaceae, Lactobacillus and Lactobacillus_gasseri), which was contributed to the improved SCFA concentration (i.e., total SCFA, acetic acid, butyric acid) and intestinal barrier (i.e., the improved permeability and microbial translocation). More critically, microbiota-transfer study showed that the protective effect of YQHG was partly attributed to the mediation of the gut microbiota, especially the SCFA-producing bacteria. Our current findings propose a microbiota-targeted intervention and indicate that YQHG may become a novel promising treatment for CKD.
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaishuai Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| |
Collapse
|
44
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
45
|
Fluorescence In Situ Hybridization (FISH) Tests for Identifying Protozoan and Bacterial Pathogens in Infectious Diseases
. Diagnostics (Basel) 2022; 12:diagnostics12051286. [PMID: 35626441 PMCID: PMC9141552 DOI: 10.3390/diagnostics12051286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Diagnosing and treating many infectious diseases depends on correctly identifying the causative pathogen. Characterization of pathogen-specific nucleic acid sequences by PCR is the most sensitive and specific method available for this purpose, although it is restricted to laboratories that have the necessary infrastructure and finance. Microscopy, rapid immunochromatographic tests for antigens, and immunoassays for detecting pathogen-specific antibodies are alternative and useful diagnostic methods with different advantages and disadvantages. Detection of ribosomal RNA molecules in the cytoplasm of bacterial and protozoan pathogens by fluorescence in-situ hybridization (FISH) using sequence-specific fluorescently labelled DNA probes, is cheaper than PCR and requires minimal equipment and infrastructure. A LED light source attached to most laboratory light microscopes can be used in place of a fluorescence microscope with a UV lamp for FISH. A FISH test hybridization can be completed in 30 min at 37 °C and the whole test in less than two hours. FISH tests can therefore be rapidly performed in both well-equipped and poorly-resourced laboratories. Highly sensitive and specific FISH tests for identifying many bacterial and protozoan pathogens that cause disease in humans, livestock and pets are reviewed, with particular reference to parasites causing malaria and babesiosis, and mycobacteria responsible for tuberculosis.
Collapse
|
46
|
Oberbach A, Schlichting N, Hagl C, Lehmann S, Kullnick Y, Friedrich M, Köhl U, Horn F, Kumbhari V, Löffler B, Schmidt F, Joskowiak D, Born F, Saha S, Bagaev E. Four decades of experience of prosthetic valve endocarditis reflect a high variety of diverse pathogens. Cardiovasc Res 2022; 119:410-428. [PMID: 35420122 DOI: 10.1093/cvr/cvac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Prosthetic valve endocarditis (PVE) remains a serious condition with a high mortality rate. Precise identification of the PVE-associated pathogen/s and their virulence is essential for successful therapy, and patient survival. The commonly described PVE-associated pathogens are staphylococci, streptococci and enterococci, with Staphylococcus aureus being the most frequently diagnosed species. Furthermore, multi-drug resistance pathogens are increasing in prevalence, and continue to pose new challenges mandating a personalized approach. Blood cultures in combination with echocardiography are the most common methods to diagnose PVE, often being the only indication, it exists. In many cases, the diagnostic strategy recommended in the clinical guidelines does not identify the precise microbial agent and to frequently, false negative blood cultures are reported. Despite the fact that blood culture findings are not always a good indicator of the actual PVE agent in the valve tissue, only a minority of re-operated prostheses are subjected to microbiological diagnostic evaluation. In this review, we focus on the diversity and the complete spectrum of PVE-associated bacterial, fungal and viral pathogens in blood, and prosthetic heart valve, their possible virulence potential, and their challenges in making a microbial diagnosis. We are curious to understand if the unacceptable high mortality of PVE is associated with the high number of negative microbial findings in connection with a possible PVE. Herein, we discuss the possibilities and limits of the diagnostic methods conventionally used and make recommendations for enhanced pathogen identification. We also show possible virulence factors of the most common PVE-associated pathogens and their clinical effects. Based on blood culture, molecular biological diagnostics, and specific valve examination, better derivations for the antibiotic therapy as well as possible preventive intervention can be established in the future.
Collapse
Affiliation(s)
- Andreas Oberbach
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
| | - Nadine Schlichting
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany.,Munich Heart Alliance, Partner Site German Centre for Cardiovascular Disease (DZHK), Munich, Germany
| | - Stefanie Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Yvonne Kullnick
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Maik Friedrich
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Friedemann Horn
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Vivek Kumbhari
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Florida, USA
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medical Centre Qatar, Doha, Qatar
| | - Dominik Joskowiak
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Frank Born
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Shekhar Saha
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Erik Bagaev
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
47
|
Design and Experimental Evaluation of a New RNA-FISH Probe to Detect and Identify Paenibacillus sp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Paenibacillus, rod-saped gram-positive endospores forming aerobic or facultative anaerobic bacteria, colonize diverse ecosystems and are involved in the biodegradation of cultural heritage assets. Biodeteriogenic microorganisms can be easily detected/identified by ribonucleic acid- fluorescent in situ hybridization RNA-FISH with specific probes. In this work, probes designed in silico were analyzed to calculate hybridization efficiency and specificity by varying the formamide concentration in the hybridization. The Pab489 probe showed excellent in silico performance with high theoretical maximum efficiency hybridization (99.99%) and specificity and was selected for experimental assays with target Paenibacillus sp. and non-target biodeteriogenic microorganisms. Results assessed by epifluorescence microscopy and flow cytometry revealed that, regardless of the formamide concentration, it was possible to observe that the Pab489-Cy3 probe had a similar signal intensity to the EUB338-Cy3 probe (positive control), so the presence of formamide, a highly toxic and carcinogenic compound used to aid the hybridization process, is not necessary. The designed probe used in FISH assays allows specific in situ identification of Paenibacillus spp. in microbial communities in a culture-independent way. This approach can be employed for screening Paenibacillus spp., showing great potential for future application in biodeterioration of heritage assets, in the search for Paenibacillus strains that produce compounds with biotechnological or medical potential.
Collapse
|
48
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
49
|
Ding J, Sharon N, Bar-Joseph Z. Temporal modelling using single-cell transcriptomics. Nat Rev Genet 2022; 23:355-368. [PMID: 35102309 DOI: 10.1038/s41576-021-00444-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Methods for profiling genes at the single-cell level have revolutionized our ability to study several biological processes and systems including development, differentiation, response programmes and disease progression. In many of these studies, cells are profiled over time in order to infer dynamic changes in cell states and types, sets of expressed genes, active pathways and key regulators. However, time-series single-cell RNA sequencing (scRNA-seq) also raises several new analysis and modelling issues. These issues range from determining when and how deep to profile cells, linking cells within and between time points, learning continuous trajectories, and integrating bulk and single-cell data for reconstructing models of dynamic networks. In this Review, we discuss several approaches for the analysis and modelling of time-series scRNA-seq, highlighting their steps, key assumptions, and the types of data and biological questions they are most appropriate for.
Collapse
|
50
|
Wendel U. Assessing Viability and Stress Tolerance of Probiotics—A Review. Front Microbiol 2022; 12:818468. [PMID: 35154042 PMCID: PMC8829321 DOI: 10.3389/fmicb.2021.818468] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
The interest in probiotics has increased rapidly the latest years together with the global market for probiotic products. Consequently, establishing reliable microbiological methods for assuring the presence of a certain number of viable microorganisms in probiotic products has become increasingly important. To assure adequate numbers of viable cells, authorities are enquiring for information on viability rates within a certain shelf-life in colony forming units (CFU). This information is obtained from plate count enumeration, a method that enables detection of bacterial cells based on their ability to replicate. Although performing plate count enumeration is one manner of assessing viability, cells can still be viable without possessing the ability to replicate. Thus, to properly assess probiotic viability, further analysis of a broader group of characteristics using several types of methods is proposed. In addition to viability, it is crucial to identify how well the cells in a probiotic product can survive in the gastrointestinal tract (GIT) and thus be able to mediate the desired health benefit while passing through the human body. A broad spectrum of different assay designs for assessing probiotic gastric tolerance have been used in research and quality control. However, the absence of any consensus on how to assess these qualities makes it difficult to compare between laboratories and to translate the results into in vivo tolerance. This review presents and discusses the complexity of assuring that a probiotic is suitable for beneficial consumption. It summarizes the information that can be subtracted from the currently available methods for assessment of viability and stress tolerance of a probiotic, hereby altogether defined as “activity.” Strengths and limitations of the different methods are presented together with favorable method combinations. Finally, the importance of choosing a set of analyses that reveals the necessary aspects of probiotic activity for a certain product or application is emphasized.
Collapse
|