1
|
Yang Y, Li S, Zhou X, Zhu M, Zhou W, Shi J. Closed fixed-bed bacteria-algae biofilm reactor: A promising solution for phenol containing wastewater treatment and resource transformation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138176. [PMID: 40194331 DOI: 10.1016/j.jhazmat.2025.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
This study focuses on treating phenolic wastewater with a novel closed fixed-bed bacteria-algae biofilm reactor (CF-BABR) to enhance resource transformation for phenolic substances. The CF-BABR showed strong impact - load resistance and stable degradation efficiency, fully degrading phenolic compounds at concentrations from 0 to 150 mg/L. From the inflow to the outflow, the effective sequences, abundance, and diversity of bacteria decreased. Chlorobaculum was the dominant bacterium for phenolic pollutant degradation. The abundance of fungi decreased gradually, while their diversity increased. Kalenjinia and Cutaneotrichosporon played a synergistic role in reducing pollutant toxicity. The high - concentration pollutants at the influent led to a higher abundance of microalgal communities, and Scenedesmaceae became the most dominant algal family, which was positively correlated with the degradation of phenolic compounds. Functional gene prediction indicated that the abundance of functional genes in bacteria decreased overall along the wastewater flow. Carbohydrate metabolism and amino acid metabolism were the most active secondary pathways. In fungi, the predicted gene functions had the highest abundance in the upstream region. Metabolic intermediates such as organic acids and derivatives, lipids and lipid - like molecules, and carboxylic acids and derivatives demonstrated the degradation effect of CF-BABR on phenolic compounds.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Siqi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Zhou
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingyang Zhu
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenju Zhou
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Teng T, Zheng Z, Jiao W, Liu N, Wang A, Liu M, Xie L, Yang Z, Hu J, Bao Z. Characterization and Functional Analysis of Fads Reveals Δ5 Desaturation Activity during Long-Chain Polyunsaturated Fatty Acid Biosynthesis in Dwarf Surf Clam Mulinia lateralis. Genes (Basel) 2024; 15:365. [PMID: 38540424 PMCID: PMC10970445 DOI: 10.3390/genes15030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 06/14/2024] Open
Abstract
Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.
Collapse
Affiliation(s)
- Tianhao Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Zhenghua Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Wenqian Jiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Ao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Mengjiao Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Le Xie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
4
|
Zhang H, Li P, Zhu Y, Jiang Y, Feng J, Zhao Z, Xu J. Contribution of elovl5a to Docosahexaenoic Acid (DHA) Synthesis at the Transcriptional Regulation Level in Common Carp, Cyprinus carpio. Animals (Basel) 2024; 14:544. [PMID: 38396511 PMCID: PMC10886045 DOI: 10.3390/ani14040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential nutrient for humans and plays a critical role in human development and health. Freshwater fish, such as the common carp (Cyprinus carpio), have a certain degree of DHA biosynthesis ability and could be a supplemental source of human DHA needs. The elongase of very-long-chain fatty acid 5 (Elovl5) is an important enzyme affecting polyunsaturated fatty acid (PUFA) biosynthesis. However, the function and regulatory mechanism of the elovl5 gene related to DHA synthesis in freshwater fish is not clear yet. Previous studies have found that there are two copies of the elovl5 gene, elovl5a and elovl5b, which have different functions. Our research group found significant DHA content differences among individuals in Yellow River carp (Cyprinus carpio var.), and four candidate genes were found to be related to DHA synthesis through screening. In this study, the expression level of elovl5a is decreased in the high-DHA group compared to the low-DHA group, which indicated the down-regulation of elovl5a in the DHA synthesis pathways of Yellow River carp. In addition, using a dual-luciferase reporter gene assay, we found that by targeting the 3'UTR region of elovl5a, miR-26a-5p could regulate DHA synthesis in common carp. After CRISPR/Cas9 disruption of elovl5a, the DHA content in the disrupted group was significantly higher than in the wildtype group; meanwhile, the expression level of elovl5a in the disrupted group was significantly reduced compared with the wildtype group. These results suggest that elovl5a may be down-regulating DHA synthesis in Yellow River carp. This study could provide useful information for future research on the genes and pathways that affect DHA synthesis.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (P.L.); (Y.Z.); (Y.J.); (Z.Z.)
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (P.L.); (Y.Z.); (Y.J.); (Z.Z.)
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (P.L.); (Y.Z.); (Y.J.); (Z.Z.)
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (P.L.); (Y.Z.); (Y.J.); (Z.Z.)
| | - Jianxin Feng
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China;
| | - Zixia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (P.L.); (Y.Z.); (Y.J.); (Z.Z.)
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
5
|
Rbah Y, Taaifi Y, Allay A, Belhaj K, Melhaoui R, Houmy N, Ben Moumen A, Azeroual E, Addi M, Mansouri F, Serghini-Caid H, Elamrani A. A Comprehensive Exploration of the Fatty Acids Profile, Cholesterol, and Tocopherols Levels in Liver from Laying Hens Fed Diets Containing Nonindustrial Hemp Seed. SCIENTIFICA 2024; 2024:8848436. [PMID: 38222849 PMCID: PMC10783980 DOI: 10.1155/2024/8848436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
This study investigates the impact of dietary nonindustrial Moroccan hemp seed (HS) on the fatty acid profile, cholesterol, and tocopherol levels, in the liver of 120 Lohmann brown laying hens aged 22 weeks during 12 weeks of treatment. The hens are randomly allocated into four treatment groups, each subdivided into six replicates with five birds in each replicate. The dietary treatments consist of 0% HS (control), 10% HS, 20% HS, and 30% HS. Results indicate a substantial increase (p < 0.01) in polyunsaturated fatty acids, including omega 3 (n-3) and omega 6 (n-6) types, with the inclusion of HS in the diet. The n-6/n-3 ratio is significantly reduced (p < 0.01), and there is a significant reduction (p < 0.01) in saturated fatty acids only for the 30% HS treatment, indicating a more favorable fatty acid composition. Cholesterol levels remain largely unaffected by HS inclusion, except for the 10% HS group, which shows a significant decrease (p < 0.05). Moreover, hepatic tocopherol levels are significantly elevated (p < 0.01) in subjects receiving the HS diet, with the 30% HS group exhibiting the highest tocopherol content. In summary, incorporating HS into the diet up to 30% appears to offer promising benefits for hepatic lipid composition, particularly in terms of n-3 polyunsaturated fatty acids, the n-6/n-3 ratio, and tocopherol levels, while having minimal impact on cholesterol levels.
Collapse
Affiliation(s)
- Youssef Rbah
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Yassine Taaifi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Aymane Allay
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Kamal Belhaj
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, University Chouaib Doukkali, Street Jabran Khalil Jabran BP 299-24000, El Jadida, Morocco
| | - Reda Melhaoui
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Nadia Houmy
- Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Oujda National Institute of Agricultural Research, Ennasr Av, BP 415, Rabat 10090, Morocco
| | - Abdessamad Ben Moumen
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | | | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Farid Mansouri
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
- Laboratory LSAIP Higher School of Education and Training, Mohammed I University, BP-410, Oujda 60000, Morocco
| | - Hana Serghini-Caid
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Ahmed Elamrani
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| |
Collapse
|
6
|
Caputo MJ, Li W, Kendall SJ, Larsen A, Weigel KA, White HM. Liver and Muscle Transcriptomes Differ in Mid-Lactation Cows Divergent in Feed Efficiency in the Presence or Absence of Supplemental Rumen-Protected Choline. Metabolites 2023; 13:1023. [PMID: 37755303 PMCID: PMC10536747 DOI: 10.3390/metabo13091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Improving dairy cow feed efficiency is critical to the sustainability and profitability of dairy production, yet the underlying mechanisms that contribute to individual cow variation in feed efficiency are not fully understood. The objectives of this study were to (1) identify genes and associated pathways that are altered in cows with high- or low-residual feed intake (RFI) using RNA sequencing, and (2) determine if rumen-protected choline supplementation during mid-lactation would influence performance or feed efficiency. Mid-lactation (134 ± 20 days in milk) multiparous Holstein cows were randomly assigned to either supplementation of 0 g/d supplementation (CTL; n = 32) or 30 g/d of a rumen-protected choline product (RPC; 13.2 g choline ion; n = 32; Balchem Corp., New Hampton, NY, USA). Residual feed intake was determined as dry matter intake regressed on milk energy output, days in milk, body weight change, metabolic body weight, and dietary treatment. The 12 cows with the highest RFI (low feed efficient; LE) and 12 cows with the lowest RFI (high feed efficient; HE), balanced by dietary treatment, were selected for blood, liver, and muscle analysis. No differences in production or feed efficiency were detected with RPC supplementation, although albumin was greater and arachidonic acid tended to be greater in RPC cows. Concentrations of β-hydroxybutyrate were greater in HE cows. Between HE and LE, 268 and 315 differentially expressed genes in liver and muscle tissue, respectively, were identified through RNA sequencing. Pathway analysis indicated differences in cell cycling, oxidative stress, and immunity in liver and differences in glucose and fatty acid pathways in muscle. The current work indicates that unique differences in liver and muscle post-absorptive nutrient metabolism contribute to sources of variation in feed efficiency and that differences in amino acid and fatty acid oxidation, cell cycling, and immune function should be further examined.
Collapse
Affiliation(s)
- Malia J. Caputo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Wenli Li
- United States Department of Agriculture-Agriculture Research Station, Madison, WI 53706, USA;
| | - Sophia J. Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Anna Larsen
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
- United States Department of Agriculture-Agriculture Research Station, Madison, WI 53706, USA;
| | - Kent A. Weigel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Heather M. White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| |
Collapse
|
7
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News? Int J Mol Sci 2023; 24:9520. [PMID: 37298468 PMCID: PMC10253816 DOI: 10.3390/ijms24119520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including alpha-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are "essential" fatty acids mainly obtained from diet sources comprising plant oils, marine blue fish, and commercially available fish oil supplements. Many epidemiological and retrospective studies suggested that ω-3 PUFA consumption decreases the risk of cardiovascular disease, but results of early intervention trials have not consistently confirmed this effect. In recent years, some large-scale randomized controlled trials have shed new light on the potential role of ω-3 PUFAs, particularly high-dose EPA-only formulations, in cardiovascular prevention, making them an attractive tool for the treatment of "residual" cardiovascular risk. ω-3 PUFAs' beneficial effects on cardiovascular outcomes go far beyond the reduction in triglyceride levels and are thought to be mediated by their broadly documented "pleiotropic" actions, most of which are directed to vascular protection. A considerable number of clinical studies and meta-analyses suggest the beneficial effects of ω-3 PUFAs in the regulation of blood pressure in hypertensive and normotensive subjects. These effects occur mostly through regulation of the vascular tone that could be mediated by both endothelium-dependent and independent mechanisms. In this narrative review, we summarize the results of both experimental and clinical studies that evaluated the effect of ω-3 PUFAs on blood pressure, highlighting the mechanisms of their action on the vascular system and their possible impact on hypertension, hypertension-related vascular damage, and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Finkel PL, Carrizo D, Parro V, Sánchez-García L. An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration. ASTROBIOLOGY 2023; 23:563-604. [PMID: 36880883 PMCID: PMC10150655 DOI: 10.1089/ast.2022.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Lipid molecules are organic compounds, insoluble in water, and based on carbon-carbon chains that form an integral part of biological cell membranes. As such, lipids are ubiquitous in life on Earth, which is why they are considered useful biomarkers for life detection in terrestrial environments. These molecules display effective membrane-forming properties even under geochemically hostile conditions that challenge most of microbial life, which grants lipids a universal biomarker character suitable for life detection beyond Earth, where a putative biological membrane would also be required. What discriminates lipids from nucleic acids or proteins is their capacity to retain diagnostic information about their biological source in their recalcitrant hydrocarbon skeletons for thousands of millions of years, which is indispensable in the field of astrobiology given the time span that the geological ages of planetary bodies encompass. This work gathers studies that have employed lipid biomarker approaches for paleoenvironmental surveys and life detection purposes in terrestrial environments with extreme conditions: hydrothermal, hyperarid, hypersaline, and highly acidic, among others; all of which are analogous to current or past conditions on Mars. Although some of the compounds discussed in this review may be abiotically synthesized, we focus on those with a biological origin, namely lipid biomarkers. Therefore, along with appropriate complementary techniques such as bulk and compound-specific stable carbon isotope analysis, this work recapitulates and reevaluates the potential of lipid biomarkers as an additional, powerful tool to interrogate whether there is life on Mars, or if there ever was.
Collapse
Affiliation(s)
- Pablo L. Finkel
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
- Department of Physics and Mathematics and Department of Automatics, University of Alcalá, Madrid, Spain
| | | | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
| | | |
Collapse
|
9
|
Vyas S, Matsakas L, Rova U, Christakopoulos P, Patel A. Insights into hydrophobic waste valorization for the production of value-added oleochemicals. Microb Biotechnol 2022; 16:177-183. [PMID: 35932161 PMCID: PMC9871509 DOI: 10.1111/1751-7915.14122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Sachin Vyas
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of CivilEnvironmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Leonidas Matsakas
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of CivilEnvironmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Ulrika Rova
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of CivilEnvironmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Paul Christakopoulos
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of CivilEnvironmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Alok Patel
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of CivilEnvironmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| |
Collapse
|
10
|
Pilecky M, Závorka L, Soto DX, Guo F, Wassenaar LI, Kainz MJ. Assessment of Compound-Specific Fatty Acid δ 13C and δ 2H Values to Track Fish Mobility in a Small Sub-alpine Catchment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11051-11060. [PMID: 35861449 PMCID: PMC9352314 DOI: 10.1021/acs.est.2c02089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Methods for identifying origin, movement, and foraging areas of animals are essential for understanding ecosystem connectivity, nutrient flows, and other ecological processes. Telemetric methods can provide detailed spatial coverage but are limited to a minimum body size of specimen for tagging. In recent years, stable isotopes have been increasingly used to track animal migration by linking landscape isotope patterns into movement (isoscapes). However, compared to telemetric methods, the spatial resolution of bulk stable isotopes is low. Here, we examined a novel approach by evaluating the use of compound-specific hydrogen and carbon stable isotopes of fatty acids (δ2HFA and δ13CFA) from fish liver, muscle, brain, and eye tissues for identifying site specificity in a 254 km2 sub-alpine river catchment. We analyzed 208 fish (European bullhead, rainbow trout, and brown trout) collected in 2016 and 2018 at 15 different sites. δ13CFA values of these fish tissues correlated more among each other than those of δ2HFA values. Both δ2HFA and δ13CFA values showed tissue-dependent isotopic fractionation, while fish taxa had only small effects. The highest site specificity was for δ13CDHA values, while the δ2H isotopic difference between linoleic acid and alpha-linolenic acid resulted in the highest site specificity. Using linear discrimination analysis of FA isotope values, over 90% of fish could be assigned to their location of origin; however, the accuracy dropped to about 56% when isotope data from 2016 were used to predict the sites for samples collected in 2018, suggesting temporal shifts in site specificity of δ2HFA and δ13CFA. However, the predictive power of δ2HFA and δ13CFA over this time interval was still higher than site specificity of bulk tissue isotopes for a single time point. In summary, compound-specific isotope analysis of fatty acids may become a highly effective tool for assessing fine and large-scale movement and foraging areas of animals.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster
Lunz—Biologische Station, Inter-University
Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria
- Donau-Universität
Krems, Department for Biomedical Research, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Libor Závorka
- WasserCluster
Lunz—Biologische Station, Inter-University
Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| | - David X. Soto
- International
Atomic Energy Agency, Isotope Hydrology Section, Vienna International Centre, A-1400 Vienna, Austria
| | - Fen Guo
- Guangdong
Provincial Key Laboratory of Water Quality Improvement and Ecological
Restoration for Watersheds, Institute of Environmental and Ecological
Engineering, Guangdong University of Technology, Guangzhou 511458, China
| | - Leonard I. Wassenaar
- WasserCluster
Lunz—Biologische Station, Inter-University
Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria
- Donau-Universität
Krems, Department for Biomedical Research, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- University
of Saskatchewan, Department of Geological Science, 114 Science Place, Saskatoon SK S7N 5E2, Canada
| | - Martin J. Kainz
- WasserCluster
Lunz—Biologische Station, Inter-University
Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria
- Donau-Universität
Krems, Department for Biomedical Research, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| |
Collapse
|
11
|
Serum fatty acid profiling in patients with SDHx mutations: New advances on cellular metabolism in SDH deficiency. Biochimie 2022; 201:196-203. [PMID: 35870552 DOI: 10.1016/j.biochi.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Apart from the oncometabolite succinate, little studies have appeared on extra-mitochondrial pathways in Succinate Dehydrogenase (SDH) genetic deficiency. The role of NADH/NAD+ redox status and dependent pathways was recently emphasized. Therein, fatty acid (FA) metabolism data were collected here in 30 patients with a loss of function (LOF) variant in one SDHx gene (either with a pheochromocytoma/paraganglioma (PPGL) or asymptomatic) and in 22 wild-type SDHx controls (with PPGL or asymptomatic). Blood acylcarnitines in two patients, peroxisomal biomarkers, very long-chain saturated FA (VLCFA), and C20 to C24 n-3 polyunsaturated fatty acids (PUFA), in all patients were measured by mass spectrometry. Preliminary data showed elevated even and odd long- and very long-chain acylcarnitines in two patients with a SDHB variant. In the whole series, no abnormalities were observed in biomarkers of peroxisomal β-oxidation (C27-bile acids, VLCFAs and phytanic/pristanic acids) in SDHx patients. However, an increased hexaene to pentaene PUFA ratio ([TetraHexaenoic Acid + DocosaHexaenoic Acid]/[n-3 DocosaPentaenoic Acid + EicosaPentaenoic Acid]) was noticed in patients with SDHC/SDHD variants vs patients with SDHA/SDHB variants or controls, suggesting a higher degree of unsaturation of PUFAs. Within the group with a SDHx variant, Eicosapentaenoate/Tetracosahexaenoate ratio, as an empiric index of shortening/elongation balance, discriminated patients with PPGL from asymptomatic ones. Present findings argue for stimulated elongation of saturated FAs, changes in shortening/elongation balance and desaturation rates of C20-C24 PUFAs in SDH-deficient patients with PPGL. Overall, oxidation of NADH sustained by these pathways might reflect or impact glycolytic NAD+ recycling and hence tumor proliferation.
Collapse
|
12
|
Sun J, Li J, Li Y, Du J, Zhao N, Mai K, Ai Q. Regulation of Δ6Fads2 Gene Involved in LC-PUFA Biosynthesis Subjected to Fatty Acid in Large Yellow Croaker ( Larimichthys crocea) and Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2022; 12:biom12050659. [PMID: 35625587 PMCID: PMC9139026 DOI: 10.3390/biom12050659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
Δ6 fatty acyl desaturase (Δ6Fads2) is regarded as the first rate-limiting desaturase that catalyzes the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from 18-carbon fatty acid in vertebrates, but the underlying regulatory mechanism of fads2 has not been comprehensively understood. This study aimed to investigate the regulation role of fads2 subjected to fatty acid in large yellow croaker and rainbow trout. In vivo, large yellow croaker and rainbow trout were fed a fish oil (FO) diet, a soybean oil (SO) diet or a linseed oil (LO) diet for 10 weeks. The results show that LO and SO can significantly increase fads2 expression (p < 0.05). In vitro experiments were conducted in HEK293T cells or primary hepatocytes to determine the transcriptional regulation of fads2. The results show that CCAAT/enhancer-binding protein α (C/EBPα) can up-regulate fads2 expression. GATA binding protein 3 (GATA3) can up-regulate fads2 expression in rainbow trout but showed opposite effect in large yellow croaker. Furthermore, C/EBPα protein levels were significantly increased by LO and SO (p < 0.05), gata3 expression was increased in rainbow trout by LO but decreased in large yellow croaker by LO and SO. In conclusion, we revealed that FO replaced by LO and SO increased fads2 expression through a C/EBPα and GATA3 dependent mechanism in large yellow croaker and rainbow trout. This study might provide critical insights into the regulatory mechanisms of fads2 expression and LC-PUFA biosynthesis.
Collapse
Affiliation(s)
- Jie Sun
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jingqi Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Yongnan Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jianlong Du
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Nannan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031943
| |
Collapse
|
13
|
Environmental adaptation in fish induced changes in the regulatory region of fatty acid elongase gene, elovl5, involved in long-chain polyunsaturated fatty acid biosynthesis. Int J Biol Macromol 2022; 204:144-153. [PMID: 35120941 DOI: 10.1016/j.ijbiomac.2022.01.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Fish are the main source of long-chain polyunsaturated fatty acids (LC-PUFA) for human consumption. In the process of evolution via natural selection, adaptation to distinct environments has likely driven changes in the endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes. However, the molecular mechanisms underlying adaptive changes in this metabolic pathway are poorly understood. Here, we compared the transcriptional regulation of elongation of very long chain fatty acids protein 5 (Elovl5), which is one of the critical enzymes in LC-PUFA biosynthesis pathway, in marine large yellow croaker (Larimichthys crocea) and freshwater rainbow trout (Oncorhynchus mykiss). Comparative transcriptomic and absolute mRNA quantification analyses revealed that the expression of elovl5 in rainbow trout was markedly higher than that in large yellow croaker. Correspondingly, the number of chromatin accessible areas in the regulatory region of elovl5 in rainbow trout was higher than in large yellow croaker, which revealed that chromatin accessibility in the regulatory region of elovl5 in rainbow trout was higher. Furthermore, the differences in sequence and activity of the elovl5 promoter were observed between rainbow trout and large yellow croaker, and transcription factors including CCAAT/enhancer-binding protein β (CEBPβ), GATA binding protein 3 (GATA3) and upstream stimulatory factor 2 (USF2) displayed different regulatory roles on elovl5 expression between the two species. We propose that changes in the gene regulatory region driven by natural selection likely play a key role in differences in elovl5 expression and the activity of Elovl5, which may influence the LC-PUFA biosynthesis capacities of rainbow trout and large yellow croaker. These findings may also provide opportunities to improve the quality of aquatic products and, consequently, human health.
Collapse
|
14
|
Pilecky M, Kämmer SK, Mathieu‐Resuge M, Wassenaar LI, Taipale SJ, Martin‐Creuzburg D, Kainz MJ. Hydrogen isotopes (δ
2
H) of polyunsaturated fatty acids track bioconversion by zooplankton. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| | | | | | | | - Sami J. Taipale
- Department of Biological and Environmental Science University of Jyväskylä Survontie Finland
| | | | - Martin J. Kainz
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| |
Collapse
|
15
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
16
|
Pereira G, Simões P, Bexiga R, Silva E, Mateus L, Fernandes T, Alves SP, Bessa RJB, Lopes-da-Costa L. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J Dairy Sci 2021; 105:361-374. [PMID: 34635360 DOI: 10.3168/jds.2021-20674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
High-yielding dairy cows experience a negative energy balance and inflammatory status during the transition period. Fat supplementation increases diet energy density, and plasma n-3 polyunsaturated fatty acids (PUFA) have been proposed to improve immune function. This study tested the hypothesis that dietary supplementation with a rumen-protected and n-3 PUFA-enriched fat could ameliorate both the energetic deficit and immune status of postpartum high-yielding dairy cows, improving overall health and reproductive efficiency. At 11 d in milk (DIM), cows were randomly allocated to groups (1) n-3 PUFA (n = 29), supplemented with encapsulated linseed oil supplying additional up to 64 g/d (mean 25 ± 4 g/d) of α-linolenic acid (ALA), or (2) control (n = 31), supplemented with hydrogenated palm oil without ALA content. Fat supplements of the n-3 PUFA and control groups were available through an automated, off-parlor feeding system, and intake depended on the cow's feeding behavior. Plasma ALA concentrations were higher in n-3 PUFA than control cows, following a linear relation with supplement ingestion, resulting in a lower n-6/n-3 ratio in plasma. Metabolic parameters (body condition score and glucose and β-hydroxybutyric acid blood concentrations) were unaffected, but milk yield improved with increased intake of fat supplements. Plasma total adiponectin concentrations were negatively correlated with ingestion of n-3 PUFA-enriched fat supplement, following a linear relation with intake. Conception rate to first AI increased with higher intake of both fats, but a decrease of calving-to-conception interval occurred only in n-3 PUFA cows. Postpartum ovarian activity and endometrial inflammatory status at 45 DIM were unaffected. In conclusion, this study evinced a positive linear relation between rumen-protected linseed fat intake and plasma n-3 PUFA concentrations, which modulated adiponectin expression and improved reproductive parameters.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Simões
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ricardo Bexiga
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luisa Mateus
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Tatiane Fernandes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P Alves
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui J B Bessa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luis Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
17
|
Mathieu‐Resuge M, Pilecky M, Twining CW, Martin‐Creuzburg D, Parmar TP, Vitecek S, Kainz MJ. Dietary availability determines metabolic conversion of long‐chain polyunsaturated fatty acids in spiders: a dual compound‐specific stable isotope approach. OIKOS 2021. [DOI: 10.1111/oik.08513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Matthias Pilecky
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
| | - Cornelia W. Twining
- Max Planck Inst. of Animal Behavior Radolfzell Germany
- Limnological Inst., Univ. of Konstanz Konstanz Germany
| | | | | | - Simon Vitecek
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
- Univ. of Natural Resources and Life Sciences, Vienna, Inst. of Hydrobiology and Aquatic Ecosystem Management Vienna Austria
| | - Martin J. Kainz
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
- Faculty of Medicine and Health, Danube Univ. Krems Krems Austria
| |
Collapse
|
18
|
Gao C, Yang J, Hao T, Li J, Sun J. Reconstruction of Litopenaeus vannamei Genome-Scale Metabolic Network Model and Nutritional Requirements Analysis of Different Shrimp Commercial Varieties. Front Genet 2021; 12:658109. [PMID: 34054922 PMCID: PMC8149995 DOI: 10.3389/fgene.2021.658109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
As an important tool for systematic analysis, genome-scale metabolic network (GSMN) model has been widely used in various organisms. However, there are few reports on the GSMNs of aquatic crustaceans. Litopenaeus vannamei is the largest and most productive shrimp species. Feed improvement is one of the important methods to improve the yield of L. vannamei and control water pollution caused by the inadequate absorption of feed. In this work, the first L. vannamei GSMN named iGH3005 was reconstructed and applied to the optimization of feed. iGH3005 was reconstructed based on the genomic data. The model includes 2,292 reactions and 3,005 genes. iGH3005 was used to analyze the nutritional requirements of five different L. vannamei commercial varieties and the genes influencing the metabolism of the nutrients. Based on the simulation, we found that tyrosine-protein kinase src64b like may catalyze different reactions in different commercial varieties. The preference of carbohydrate utilization is different in various commercial varieties, which may due to the different expressions of some genes. In addition, this investigation suggests that a rational and targeted modification in the macronutrient content of shrimp feed would lead to an increase in growth and feed conversion rate. The feed for different commercial varieties should be adjusted accordingly, and possible adjustment schemes were provided. The results of this work provided important information for physiological research and optimization of the components in feed of L. vannamei.
Collapse
Affiliation(s)
- Chenchen Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiarui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jingjing Li
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
19
|
Seyedi J, Tayemeh MB, Esmaeilbeigi M, Joo HS, Langeroudi EK, Banan A, Johari SA, Jami MJ. Fatty acid alteration in liver, brain, muscle, and oocyte of zebrafish (Danio rerio) exposed to silver nanoparticles and mitigating influence of quercetin-supplemented diet. ENVIRONMENTAL RESEARCH 2021; 194:110611. [PMID: 33358875 DOI: 10.1016/j.envres.2020.110611] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
No to less effort has been made to assess the toxicity of silver nanoparticles (AgNPs) to lipid composition in biological systems and also to discover a mitigating agent against their oxidative stress. Hence, this research evaluated the antioxidant capability of quercetin (Qu) against silver nanoparticles (AgNPs) toxicity towards the lipid contents of ovarian, nervous, and hepatic systems as well as skeletal muscles. To this end, zebrafish (n = 180) were assigned into four experimental dietary groups: negative and positive controls, without Qu supplementation; Qu-200, 200 mg Qu per kg diet; and Qu-400, 400 mg Qu per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96 h. As to the liver tissue of the positive and Qu-200 treatments, total polyunsaturated fatty acids (∑PUFA) decreased 3 times, as well as total high unsaturated fatty acids (∑HUFA) reduced about 30% and 50%, respectively. However, the brain ∑HUFA, predominated by DHA, enhanced in Qu-400 treatment. Interestingly, ∑MUFA, ∑PUFA, and ∑HUFA increased in the muscle of all treated groups, especially Qu-200 and Qu-400. The oocyte ∑MUFA content increased in the positive and Qu-200 treatments, whereas ∑HUFA reduced about 25%, 25%, and 20%, respectively, in the positive, Qu-200, and Qu-400 groups. Generally, the findings suggest that unsaturated acyl chains, particularly HUFAs, in the liver tissue and oocyte cell are highly susceptible to peroxidation or degeneration by AgNPs. More broadly, in the context of ecotoxicological risk assessment, the alteration in HUFAs and PUFAs of the liver and oocyte could impact on maternal and offspring health and consequently alter long-term population dynamics of aquatic animals.
Collapse
Affiliation(s)
- Javad Seyedi
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.
| | | | - Milad Esmaeilbeigi
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.
| | - Hamid Salari Joo
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.
| | | | - Ashkan Banan
- Department of Animal Sciences, Lorestan University, Khorramabad, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Iran.
| | - Mohammad Javad Jami
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.
| |
Collapse
|
20
|
Gorica E, Calderone V. Arachidonic Acid Derivatives and Neuroinflammation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:118-129. [PMID: 33557740 DOI: 10.2174/1871527320666210208130412] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.
Collapse
Affiliation(s)
- Era Gorica
- Department of Pharmacy, University of Pisa, Pisa. Italy
| | | |
Collapse
|
21
|
Strandberg U, Vesterinen J, Ilo T, Akkanen J, Melanen M, Kankaala P. Fatty acid metabolism and modifications in Chironomus riparius. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190643. [PMID: 32536306 DOI: 10.1098/rstb.2019.0643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A priori knowledge of fatty acid modifications in consumers is essential for studies using fatty acids as biomarkers. We investigated fatty acid metabolism and possible modification pathways in benthic invertebrate Chironomus riparius larvae (Diptera). We conducted diet manipulation experiments using natural food sources (two chlorophyte algae, a diatom and a non-toxic cyanobacterium). We also did a diet-switch experiment on two different resources, fish food flakes TetraMin® and cyanobacterium Spirulina, to study fatty acid turnover in Chironomus. Results of the diet manipulation experiments indicate that Chironomus larvae have a strong tendency to biosynthesize 20:5n-3 and 20:4n-6 from precursor fatty acids, and that the dietary availability of polyunsaturated fatty acids (PUFA) does not control larval growth. Fatty acid modifications explain why low dietary availability of PUFA did not significantly limit growth. This has ecologically relevant implications on the role of benthic chironomids in conveying energy to upper trophic level consumers. A diet-switch experiment showed that the turnover rate of fatty acids in Chironomus is relatively fast--a few days. The compositional differences of algal diets were large enough to separate Chironomus larvae into distinct groups even if significant modification of PUFA was observed. In summary, fatty acids are excellent dietary biomarkers for Chironomus, if modifications of PUFA are considered, and will provide high-resolution data on resource use. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.
Collapse
Affiliation(s)
- Ursula Strandberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| | - Jussi Vesterinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| | - Timo Ilo
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| | - Miina Melanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. 111, 80101 Joensuu, Finland
| |
Collapse
|
22
|
CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci Rep 2019; 9:16888. [PMID: 31729437 PMCID: PMC6858459 DOI: 10.1038/s41598-019-53316-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.
Collapse
|
23
|
Effects of Fat Supplementation in Dairy Goats on Lipid Metabolism and Health Status. Animals (Basel) 2019; 9:ani9110917. [PMID: 31689973 PMCID: PMC6912558 DOI: 10.3390/ani9110917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There is an increasing demand for information on the nutraceutical properties of food. Due to its bioactive components and high digestibility, goat milk is an excellent functional food. Dietary fat supplementation can further enrich the value of goat milk by modifying its acidic profile. Nevertheless, animal health can also benefit from lipids supplied with rations. In this review, the relationships between dietary fats and goat health status are summarized. Particular attention is paid to describing the effects of specific fatty acids on lipid metabolism and immune functionality. Abstract Fat supplementation has long been used in dairy ruminant nutrition to increase the fat content of milk and supply energy during particularly challenging production phases. Throughout the years, advances have been made in the knowledge of metabolic pathways and technological treatments of dietary fatty acids (FAs), resulting in safer and more widely available lipid supplements. There is an awareness of the positive nutraceutical effects of the addition of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to fat supplementation, which provides consumers with healthier animal products through manipulation of their characteristics. If it is true that benefits to human health can be derived from the consumption of animal products rich in bioactive fatty acids (FAs), then it is reasonable to think that the same effect can occur in the animals to which the supplements are administered. Therefore, recent advances in fat supplementation of dairy goats with reference to the effect on health status have been summarized. In vivo trials and in vitro analysis on cultured cells, as well as histological and transcriptomic analyses of hepatic and adipose tissue, have been reviewed in order to assess documented relationships between specific FAs, lipid metabolism, and immunity.
Collapse
|
24
|
Molecular Cloning, Characterization, and Nutritional Regulation of Elovl6 in Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2019; 20:ijms20071801. [PMID: 30979053 PMCID: PMC6480403 DOI: 10.3390/ijms20071801] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Elongation of very long chain fatty acids protein 6 (Elovl6) is a key enzyme in fatty acid synthesis, which participates in converting palmitate (C16:0) to stearate (C18:0). Although studies of Elovl6 have been carried out in mammals, the nutritional regulation of elovl6 in fish remains poorly understood. In the present study, the cloning and nutritional regulation of elovl6 were determined in large yellow croaker. Sequence and phylogenetic analysis revealed that the full-length cDNA of elovl6 was 1360 bp, including an open reading frame of 810 bp encoding a putative protein of 269 amino acid that possesses the characteristic features of Elovl proteins. The transcript level of elovl6 was significantly increased in the liver of croaker fed the diets with soybean oil (enriched with 18: 2n-6, LA) or linseed oil (enriched with 18: 3n-3, ALA) than that in croaker fed the diet with fish oil (enriched with 20: 5n-3 and 22: 6n-3). Correspondingly, the elovl6 expression in croaker’s hepatocytes treated with ALA or LA was remarkably increased compared to the controls. Furthermore, the transcription factors including hepatocyte nuclear factor 1α (HNF1α), CCAAT-enhancer-binding protein β (CEBPβ), retinoid X receptor α (RXRα), and cAMP response element-binding protein 1 (CREB1) greatly enhanced promoter activity of elovl6 in large yellow croaker, and the expression of transcription factors is consistent with the changes of elovl6 expression in response to fatty acids in vivo and in vitro. In conclusion, this study revealed that elovl6 expression in large yellow croaker could be upregulated by dietary ALA or LA via the increased transcriptional expression of transcription factors including hnf1α, cebpβ, rxrα, and creb1.
Collapse
|
25
|
Tsai YY, Ohashi T, Wu CC, Bataa D, Misaki R, Limtong S, Fujiyama K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J Biosci Bioeng 2019; 127:430-440. [DOI: 10.1016/j.jbiosc.2018.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
|
26
|
Elovl4a participates in LC-PUFA biosynthesis and is regulated by PPARαβ in golden pompano Trachinotus ovatus (Linnaeus 1758). Sci Rep 2019; 9:4684. [PMID: 30886313 PMCID: PMC6423087 DOI: 10.1038/s41598-019-41288-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
The elongases of very long-chain fatty acids (Elovls) are responsible for the rate-limiting elongation process in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. The transcription factor, PPARα, regulates lipid metabolism in mammals; however, the detailed mechanism whereby PPARαb regulates Elovls remains largely unknown in fish. In the present study, we report the full length cDNA sequence of Trachinotus ovatus Elovl4a (ToElovl4a), which encodes a 320 amino acid polypeptide that possesses five putative membrane-spanning domains, a conserved HXXHH histidine motif and an ER retrieval signal. Phylogenetic analysis revealed that the deduced protein of ToElovl4a is highly conserved with the Oreochromis niloticus corresponding homologue. Moreover, functional characterization by heterologous expression in yeast indicated that ToElovl4a can elongate C18 up to C20 polyunsaturated fatty acids. A nutritional study showed that the protein expressions of ToElovl4a in the brain and liver were not significantly affected among the different treatments. The region from PGL3-basic-Elovl4a-5 (−148 bp to +258 bp) is defined as the core promoter via a progressive deletion mutation of ToElovl4a. The results from promoter activity assays suggest that ToElovl4a transcription is positively regulated by PPARαb. Mutation analyses indicated that the M2 binding site of PPARαb is functionally important for protein binding, and transcriptional activity of the ToElovl4a promoter significantly decreased after targeted mutation. Furthermore, PPARαb RNA interference reduced ToPPARαb and ToElovl4a expression at the protein levels in a time-dependent manner. In summary, PPARαb may promote the biosynthesis of LC-PUFA by regulating ToElovl4a expression in fish.
Collapse
|
27
|
de Carvalho CCCR, Caramujo MJ. The Various Roles of Fatty Acids. Molecules 2018; 23:molecules23102583. [PMID: 30304860 PMCID: PMC6222795 DOI: 10.3390/molecules23102583] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids comprise a large group of chemically heterogeneous compounds. The majority have fatty acids (FA) as part of their structure, making these compounds suitable tools to examine processes raging from cellular to macroscopic levels of organization. Among the multiple roles of FA, they have structural functions as constituents of phospholipids which are the "building blocks" of cell membranes; as part of neutral lipids FA serve as storage materials in cells; and FA derivatives are involved in cell signalling. Studies on FA and their metabolism are important in numerous research fields, including biology, bacteriology, ecology, human nutrition and health. Specific FA and their ratios in cellular membranes may be used as biomarkers to enable the identification of organisms, to study adaptation of bacterial cells to toxic compounds and environmental conditions and to disclose food web connections. In this review, we discuss the various roles of FA in prokaryotes and eukaryotes and highlight the application of FA analysis to elucidate ecological mechanisms. We briefly describe FA synthesis; analyse the role of FA as modulators of cell membrane properties and FA ability to store and supply energy to cells; and inspect the role of polyunsaturated FA (PUFA) and the suitability of using FA as biomarkers of organisms.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Maria José Caramujo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2-5º Piso, 1749-016 Lisboa, Portugal.
| |
Collapse
|
28
|
Phospholipid synthesis fueled by lipid droplets drives the structural development of poliovirus replication organelles. PLoS Pathog 2018; 14:e1007280. [PMID: 30148882 PMCID: PMC6128640 DOI: 10.1371/journal.ppat.1007280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023] Open
Abstract
Rapid development of complex membranous replication structures is a hallmark of picornavirus infections. However, neither the mechanisms underlying such dramatic reorganization of the cellular membrane architecture, nor the specific role of these membranes in the viral life cycle are sufficiently understood. Here we demonstrate that the cellular enzyme CCTα, responsible for the rate-limiting step in phosphatidylcholine synthesis, translocates from the nuclei to the cytoplasm upon infection and associates with the replication membranes, resulting in the rerouting of lipid synthesis from predominantly neutral lipids to phospholipids. The bulk supply of long chain fatty acids necessary to support the activated phospholipid synthesis in infected cells is provided by the hydrolysis of neutral lipids stored in lipid droplets. Such activation of phospholipid synthesis drives the massive membrane remodeling in infected cells. We also show that complex membranous scaffold of replication organelles is not essential for viral RNA replication but is required for protection of virus propagation from the cellular anti-viral response, especially during multi-cycle replication conditions. Inhibition of infection-specific phospholipid synthesis provides a new paradigm for controlling infection not by suppressing viral replication but by making it more visible to the immune system.
Collapse
|
29
|
Marques RS, Cooke RF, Rodrigues MC, Brandão AP, Schubach KM, Lippolis KD, Moriel P, Perry GA, Lock A, Bohnert DW. Effects of supplementing calcium salts of polyunsaturated fatty acids to late-gestating beef cows on performance and physiological responses of the offspring. J Anim Sci 2018; 95:5347-5357. [PMID: 29293770 DOI: 10.2527/jas2017.1606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This experiment compared performance and physiological responses of the offspring from cows supplemented with Ca salts of PUFA or SFA + MUFA during late gestation. Ninety-six multiparous, nonlactating, pregnant Angus × Hereford cows were ranked by BW, BCS, and age and divided into 24 groups of 4 cows/group at the end of their second trimester of gestation (d -7). Cows conceived during the same estrus synchronization + AI protocol, with semen from a single sire; hence, gestation length was 195 d for all cows at the beginning of the experiment (d 0). Groups were randomly assigned to receive (DM basis) 405 g/cow daily of soybean meal in addition to 1) 190 g/cow daily of Ca salts of PUFA based on eicosapentaenoic, docosahexaenoic, and linoleic acids or 2) 190 g/cow daily of Ca salts of SFA + MUFA based on palmitic and oleic acids (CON). Groups were maintained in 2 pastures (6 groups of each treatment/pasture) and received daily 10.1 kg/cow (DM basis) of grass-alfalfa hay. Groups were segregated into 1 of 12 drylot pens (6 by 18 m) and individually offered treatments 3 times/wk from d 0 until calving. Cow BW and BCS were recorded, and blood samples were collected on d -7 of the experiment and also within 12 h after calving. Calf BW was also recorded within 12 h of calving. Calves were weaned on d 280 of the experiment, preconditioned for 45 d (d 280 to 325), transferred to a growing lot on d 325, and moved to a finishing lot on d 445, where they remained until slaughter. At calving, PUFA-supplemented cows had a greater ( < 0.01) proportion (as % of total plasma fatty acids) of PUFA, including linoleic, linolenic, arachidonic, docosapentaenoic, and docosahexaenoic acids. At weaning, calves from CON-supplemented cows were older ( = 0.03), although no treatment differences were detected ( = 0.82) for calf weaning BW. During both growing and finishing phases, ADG was greater ( ≤ 0.06) in calves from PUFA-supplemented cows. Upon slaughter, HCW and marbling were also greater ( ≤ 0.05) in calves from PUFA-supplemented cows. Collectively, these results indicate that supplementing eicosapentaenoic, docosahexaenoic, and linoleic acids to late-gestating beef cows stimulated programming effects on postnatal offspring growth and carcass quality. Therefore, supplementing late-gestating beef cows with Ca salts of PUFA appears to optimize offspring productivity in beef production systems.
Collapse
|
30
|
Surm JM, Toledo TM, Prentis PJ, Pavasovic A. Insights into the phylogenetic and molecular evolutionary histories of Fad and Elovl gene families in Actiniaria. Ecol Evol 2018; 8:5323-5335. [PMID: 29938056 PMCID: PMC6010785 DOI: 10.1002/ece3.4044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs, ≥ C20) is reliant on the action of desaturase and elongase enzymes, which are encoded by the fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) gene families, respectively. In Metazoa, research investigating the distribution and evolution of these gene families has been restricted largely to Bilateria. Here, we provide insights into the phylogenetic and molecular evolutionary histories of the Fad and Elovl gene families in Cnidaria, the sister phylum to Bilateria. Four model cnidarian genomes and six actiniarian transcriptomes were interrogated. Analysis of the fatty acid composition of a candidate cnidarian species, Actinia tenebrosa, was performed to determine the baseline profile of this species. Phylogenetic analysis revealed lineage-specific gene duplication in actiniarians for both the Fad and Elovl gene families. Two distinct cnidarian Fad clades clustered with functionally characterized Δ5 and Δ6 proteins from fungal and plant species, respectively. Alternatively, only a single cnidarian Elovl clade clustered with functionally characterized Elovl proteins (Elovl4), while two additional clades were identified, one actiniarian-specific (Novel ElovlA) and the another cnidarian-specific (Novel ElovlB). In actiniarians, selection analyses revealed pervasive purifying selection acting on both gene families. However, codons in the Elovl gene family show patterns of nucleotide variation consistent with the action of episodic diversifying selection following gene duplication events. Significantly, these codons may encode amino acid residues that are functionally important for Elovl proteins to target and elongate different precursor fatty acids. In A. tenebrosa, the fatty acid analysis revealed an absence of LC-PUFAs > C20 molecules and implies that the Elovl enzymes are not actively contributing to the elongation of these LC-PUFAs. Overall, this study has revealed that actiniarians possess Fad and Elovl genes required for the biosynthesis of some LC-PUFAs, and that these genes appear to be distinct from bilaterians.
Collapse
Affiliation(s)
- Joachim M. Surm
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Tarik M. Toledo
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Peter J. Prentis
- School of Earth, Environmental and Biological SciencesScience and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia
| | - Ana Pavasovic
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
31
|
Li S, Monroig Ó, Wang T, Yuan Y, Carlos Navarro J, Hontoria F, Liao K, Tocher DR, Mai K, Xu W, Ai Q. Functional characterization and differential nutritional regulation of putative Elovl5 and Elovl4 elongases in large yellow croaker (Larimichthys crocea). Sci Rep 2017; 7:2303. [PMID: 28536436 PMCID: PMC5442133 DOI: 10.1038/s41598-017-02646-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
Abstract
In the present study, two elongases, Elovl4 and Elovl5, were functionally characterized and their transcriptional regulation in response to n-3 LC-PUFA administration were investigated in vivo and in vitro. We previously described the molecular characterization of croaker elovl5. Here, we report the full-length cDNA sequence of croaker elovl4, which contained 1794 bp (excluding the polyA tail), including 909 bp of coding region that encoded a polypeptide of 302 amino acids possessing all the characteristic features of Elovl proteins. Functional studies showed that croaker Elovl5, displayed high elongation activity towards C18 and C20 PUFA, with only low activity towards C22 PUFA. In contrast, croaker Elovl4 could effectively convert both C20 and C22 PUFA to longer polyenoic products up to C34. n-3 LC-PUFA suppressed transcription of the two elongase genes, as well as srebp-1 and lxrα, major regulators of hepatic lipid metabolism. The results of dual-luciferase reporter assays and in vitro studies both indicated that the transcriptions of elovl5 and elovl4 elongases could be regulated by Lxrα. Moreover, Lxrα could mediate the transcription of elovl4 directly or indirectly through regulating the transcription of srebp-1. The above findings contribute further insight and understanding of the mechanisms regulating LC-PUFA biosynthesis in marine fish species.
Collapse
Affiliation(s)
- Songlin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Óscar Monroig
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Tianjiao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yuhui Yuan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Kai Liao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
32
|
Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius). Lipids 2016; 51:729-41. [DOI: 10.1007/s11745-016-4157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
|
33
|
Dória ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C, Domingues MR, Helguero LA. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 2014; 28:4247-64. [PMID: 24970396 DOI: 10.1096/fj.14-249672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work combined gene and protein expression, gas chromatography-flame ionization detector, and hydrophilic interaction liquid chromatography-tandem mass spectrometry to compare lipid metabolism changes in undifferentiated/proliferating vs. functionally differentiated mammary epithelial cells (MECs) and to study their correlation to breast cancer survival. Sixty-eight genes involved in lipid metabolism were changed in MEC differentiation. Differentiated cells showed induction of Elovl6 (2-fold), Scd1 (4-fold), and Fads2 (2-fold), which correlated with increased levels of C16:1 n-7 and C18:1 n-9 (1.5-fold), C20:3 n-6 (2.5-fold), and C20:4 n-6 (6-fold) fatty acids (FAs) and more phospholipids (PLs) containing these species. Further, increased expression (2- to 3-fold) of genes in phosphatidylethanolamine (PE) de novo biosynthesis resulted in a 20% PE increase. Proliferating/undifferentiated cells showed higher C16:0 (1.7-fold) and C18:2 n-6 (4.2-fold) levels and more PLs containing C16:0 FAs [PC(16:0/16:1), PG(16:0/18:2), PG(16:0/18:1), and SM(16:0/18:0)]. Kaplan-Meier analysis of data from 3455 patients with breast cancer disclosed a positive correlation for 59% of genes expressed in differentiated MECs with better survival. PE biosynthesis and FA oxidation correlated with better prognosis in patients with breast cancer, including the basal-like subtype. Therefore, genes involved in mammary gland FA and PL metabolism and their resulting molecular species reflect the cellular proliferative ability and differentiation state and deserve further studies as potential markers of breast cancer progression
Collapse
Affiliation(s)
- M Luisa Dória
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Ana S Ribeiro
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Cândida Z Cotrim
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Pedro Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Cecilia Williams
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - M Rosário Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Luisa A Helguero
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| |
Collapse
|
34
|
Georgiou CD, Deamer DW. Lipids as universal biomarkers of extraterrestrial life. ASTROBIOLOGY 2014; 14:541-9. [PMID: 24735484 DOI: 10.1089/ast.2013.1134] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In 1965, James Lovelock published a general statement, based on thermodynamic chemical equilibrium principles, about how to detect extant or extinct life on a planet other than Earth. Nearly 50 years later, it is possible to make such measurements with robotic missions such as current and future Mars rovers, and probes to sample icy plumes of Enceladus or Europa. We make a specific recommendation that certain characteristic patterns in the composition of lipid hydrocarbons can only result from a biological process, because the signal arises from a universal requirement related to lipid bilayer fluidity and membrane stability. Furthermore, the pattern can be preserved over millions of years, and instrumentation is already available to be incorporated into flight missions.
Collapse
|
35
|
Montagne K, Uchiyama H, Furukawa KS, Ushida T. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells. J Biomech 2013; 47:354-9. [PMID: 24326098 DOI: 10.1016/j.jbiomech.2013.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 01/09/2023]
Abstract
Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.
Collapse
Affiliation(s)
- Kevin Montagne
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroki Uchiyama
- Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuko S Furukawa
- Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Ushida
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
36
|
Kamalam BS, Médale F, Larroquet L, Corraze G, Panserat S. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates. PLoS One 2013; 8:e76570. [PMID: 24124573 PMCID: PMC3790683 DOI: 10.1371/journal.pone.0076570] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/25/2013] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.
Collapse
Affiliation(s)
- Biju Sam Kamalam
- UR1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Françoise Médale
- UR1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- UR1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- UR1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- UR1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
37
|
Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 2013; 8:e55537. [PMID: 23405167 PMCID: PMC3566009 DOI: 10.1371/journal.pone.0055537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Palmitic acid is known to be apoptotic for nervous cells but no data are available on membrane lipidome transformations occurring during its supplementation, although membrane lipids are clearly involved in the apoptotic signaling cascade. NB100 neuroblastoma cells were supplemented with palmitic acid and membrane fatty acids were isolated, derivatized and analysed by gas chromatography at defined time intervals. Parallely, cell viability, morphology, apoptosis, cPLA(2) and caspase activations were checked. Interestingly, under 150 µM supplementation the incorporation of palmitic acid was accompanied by the specific release of arachidonic acid. This event was timely correlated with cPLA(2) and caspases activations, and the time window of 60 minutes was envisaged for crucial membrane lipidome changes. The simultaneous addition of 50 µM oleic, 50 µM arachidonic and 150 µM palmitic acids to the cell cultures influenced membrane changes with suppression of caspase activation and maintenance of cell viability. These results highlight the role of the membrane asset with fatty acid remodeling and suggest the potential of lipid-based strategies for influencing cell response and fate in human diseases, such as neurodegenerative disorders or tumours.
Collapse
|