1
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
2
|
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E, Jimenez-Mateos EM, Björkhem I, DeFelipe J, Cedazo-Minguez A. 27-Hydroxycholesterol Induces Aberrant Morphology and Synaptic Dysfunction in Hippocampal Neurons. Cereb Cortex 2020; 29:429-446. [PMID: 30395175 PMCID: PMC6294414 DOI: 10.1093/cercor/bhy274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition. Furthermore, PSD95 has an essential function for synaptic maintenance and plasticity. PSD95 synthesis is controlled by the REST-miR124a-PTBP1 axis. Here, we report that high levels of 27-OH induce REST-miR124a-PTBP1 axis dysregulation in a possible RxRγ-dependent manner, suggesting that 27-OH reduces PSD95 levels through this mechanism. Our results reveal a possible molecular link between hypercholesterolemia and neurodegeneration. We discuss the possibility that reduction of 27-OH levels could be a useful strategy for preventing memory and cognitive decline in neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Raul Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad A Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Matute
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eva Maria Jimenez-Mateos
- Department of Physiology and Medical Physics Royal, College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Kim H, Jung H, Jung H, Kwon SK, Ko J, Um JW. The small GTPase ARF6 regulates GABAergic synapse development. Mol Brain 2020; 13:2. [PMID: 31907062 PMCID: PMC6945580 DOI: 10.1186/s13041-019-0543-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyunsu Jung
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.,Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
4
|
Zhu F, Collins MO, Harmse J, Choudhary JS, Grant SGN, Komiyama NH. Cell-type-specific visualisation and biochemical isolation of endogenous synaptic proteins in mice. Eur J Neurosci 2019; 51:793-805. [PMID: 31621109 PMCID: PMC7079123 DOI: 10.1111/ejn.14597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1,000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here, we report an efficient method for the purification of synaptic protein complexes, fusing a high‐affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy, which enables the visualisation of endogenous PSD95 with fluorescent‐protein tag in Cre‐recombinase‐expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein complexes and visualisation of these in specific cell types. We find that the composition of PSD95 complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95 complexes in different brain regions. We have detected differentially interacting proteins by comparing data sets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region‐ and cell‐type‐specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses.
Collapse
Affiliation(s)
- Fei Zhu
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark O Collins
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Johan Harmse
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK
| | - Noboru H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre for Research into Autism, Fragile X Syndrome and Intellectual Disabilities, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Guo X, Xu J, Cui X, Chen H, Qi H. iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC PLANT BIOLOGY 2017; 17:28. [PMID: 28129739 PMCID: PMC5273850 DOI: 10.1186/s12870-017-0977-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Oriental melon is one of the most popular crops for its nutritional and flavour quality. Components that determine melon quality, such as sugar, colour, texture, flavour and aroma, among other factors, accumulate in different developmental stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in the oriental melon is very important for advancing our understanding of oriental melon quality in the ripening processes. RESULTS iTRAQ-based protein profiling was conducted on 'YuMeiren' oriental melon fruit at different developmental stages. Physiological quality indices, including firmness, rind colour, soluble solids content (SSC), ethylene production, sugar content and volatile compounds were also characterized during four maturity periods of the melon, including 5, 15, 25 and 35 days after anthesis (DAA). A principal component analysis (PCA) revealed that the aroma volatiles at 5 DAA and 15 DAA were similar and separated from that of 35 DAA. More than 5835 proteins were identified and quantified in the two biological repeats and divided into 4 clusters by hierarchical cluster analysis. A functional analysis was performed using Blast2GO software based on the enrichment of a GO analysis for biological process, molecular function and cellular components. The main KEGG pathways, such as glycolysis, α-linolenic acid and starch and sucrose metabolism, were analyzed. The gene family members corresponding to differentially expressed proteins, including lipoxygenase (CmLOX01-18) and alcohol acetyltransferase (CmAAT1-4) involved in the α-linolenic acid metabolic pathway, were verified with real-time qPCR. The results showed that the expression patterns of 64.7% of the genes were consistent with the expression patterns of the corresponding proteins. CONCLUSIONS This study combined the variation of the quality index and differentially expressed proteins of oriental melon at different developmental stages that laid the foundation for the subsequent protein and gene function validation.
Collapse
Affiliation(s)
- Xiaoou Guo
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Jingjing Xu
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Xiaohui Cui
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Hao Chen
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Hongyan Qi
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| |
Collapse
|
6
|
Abstract
In the past few years significant concern has been raised about the quality and reproducibility of antibodies used in numerous scientific publications. In this chapter we discuss some of the biggest contributing factors to the "antibody problem" from both the commercial production side, as well as the end-users side. Specifically we argue that Western blot data should be used to provide a reliable initial indication of antibody quality, as well as a guide to distinguish between multiple offerings for antibodies to the same target. Secondly, we describe a set of best practices for antibody manufacturers to employ that will eliminate most of the variability in polyclonal antibodies. Taken together these proposals provide a way to significantly improve both the quality and the reproducibility of commercial antibodies.
Collapse
|
7
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
8
|
Raposo RAS, Thomas B, Ridlova G, James W. Proteomic-based identification of CD4-interacting proteins in human primary macrophages. PLoS One 2011; 6:e18690. [PMID: 21533244 PMCID: PMC3076427 DOI: 10.1371/journal.pone.0018690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human macrophages (Mφ) express low levels of CD4 glycoprotein, which is
constitutively recycled, and 40–50% of its localization is
intracellular at steady-state. Although CD4-interacting proteins in lymphoid
cells are well characterised, little is known about the CD4 protein
interaction-network in human Mφ, which notably lack LCK, a Src family
protein tyrosine kinase believed to stabilise CD4 at the surface of T cells.
As CD4 is the main cellular receptor used by HIV-1, knowledge of its
molecular interactions is important for the understanding of viral infection
strategies. Methodology/Principal Findings We performed large-scale anti-CD4 immunoprecipitations in human primary
Mφ followed by high-resolution mass spectrometry analysis to elucidate
the protein interaction-network involved in induced CD4 internalization and
degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ
showed CD4 association with a range of proteins found in the cellular
cortex, membrane rafts and components of clathrin-adaptor proteins, whereas
in induced internalization and degradation CD4 is associated with components
of specific signal transduction, transport and the proteasome. Conclusions/Significance This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome
has been analysed in human primary Mφ. Our data have identified
important Mφ cell surface CD4-interacting proteins, as well as
regulatory proteins involved in internalization and degradation. The data
give valuable insights into the molecular pathways involved in the
regulation of CD4 expression in Mφ and provide candidates/targets for
further biochemical studies.
Collapse
|
9
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
10
|
Schweigert FJ. Nutritional Proteomics: Methods and Concepts for Research in Nutritional Science. ANNALS OF NUTRITION AND METABOLISM 2007; 51:99-107. [PMID: 17476098 DOI: 10.1159/000102101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutritional proteomics or nutriproteomics is the application of proteomics methodology to nutrition-related research but also represents the interaction of bioactive food ingredients with proteins, whereby the interaction with proteins occurs in two basically specific ways. Firstly, the effect of nutrients on protein expression, which can be monitored by protein mapping, and secondly, the interaction of nutrients with proteins by post-translational modifications or small-molecule protein interactions. These interactions result in changes to the three-dimensional structure of such effected proteins. As a consequence, their original functions are modulated, resulting for example in reduced activity in the case of enzymes or changes in ability of recognition between molecules such as protein-protein interactions and ligand-receptor interactions. The characterization of such modifications together with functional data from established biochemical and physiological methods will result in a better understanding of the interplay between bioactive dietary components and diet-related diseases such as cancer, diabetes or neurodegenerative diseases. The occurrence of such modifications can possibly be additionally used as biomarkers in the diagnosis and therapy of these diseases as well as biomarkers for the efficacy or safety of selected nutrients.
Collapse
Affiliation(s)
- Florian J Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Germany.
| |
Collapse
|
11
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
12
|
Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KKW, Denslow ND. Neuroproteomics in neurotrauma. MASS SPECTROMETRY REVIEWS 2006; 25:380-408. [PMID: 16498609 DOI: 10.1002/mas.20073] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurotrauma in the form of traumatic brain injury (TBI) afflicts more Americans annually than Alzheimer's and Parkinson's disease combined, yet few researchers have used neuroproteomics to investigate the underlying complex molecular events that exacerbate TBI. Discussed in this review is the methodology needed to explore the neurotrauma proteome-from the types of samples used to the mass spectrometry identification and quantification techniques available. This neuroproteomics survey presents a framework for large-scale protein research in neurotrauma, as applied for immediate TBI biomarker discovery and the far-reaching systems biology understanding of how the brain responds to trauma. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of neurotrauma on society.
Collapse
Affiliation(s)
- Andrew K Ottens
- Center of Neuroproteomics and Biomarkers Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 2005; 95:1732-45. [PMID: 16269012 DOI: 10.1111/j.1471-4159.2005.03506.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, J.W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Johnson MD, Yu LR, Conrads TP, Kinoshita Y, Uo T, McBee JK, Veenstra TD, Morrison RS. The Proteomics of Neurodegeneration. ACTA ACUST UNITED AC 2005; 5:259-70. [PMID: 16078862 DOI: 10.2165/00129785-200505040-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuing improvement and refinement of proteomic and bioinformatic tools has made it possible to obtain increasing amounts of structural and functional information about proteins on a global scale. The emerging field of neuroproteomics promises to provide powerful strategies for further characterizing neuronal dysfunction and cell loss associated with neurodegenerative diseases. Neuroproteomic studies have thus far revealed relatively comprehensive quantitative changes and post-translational modifications (mostly oxidative damage) of high abundance proteins, confirming deficits in energy production, protein degradation, antioxidant protein function, and cytoskeletal regulation associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. The identification of changes in low-abundance proteins and characterization of their functions based on protein-protein interactions still await further development of proteomic methodologies and more dedicated application of these technologies by neuroscientists. Once accomplished, however, the resulting information will certainly provide a truly comprehensive view of neurodegeneration-associated changes in protein expression, facilitating the identification of novel biomarkers for the early detection of neurodegenerative diseases and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark D Johnson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rebois R, Allen BG, Hébert TE. The targetable G protein proteome: where is the next generation of drug targets? ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1741-8372(04)02429-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Couve A, Restituito S, Brandon JM, Charles KJ, Bawagan H, Freeman KB, Pangalos MN, Calver AR, Moss SJ. Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 2004; 279:13934-43. [PMID: 14718537 DOI: 10.1074/jbc.m311737200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Andrés Couve
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Husi H. NMDA receptors, neural pathways, and protein interaction databases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:49-77. [PMID: 15482811 DOI: 10.1016/s0074-7742(04)61003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Holger Husi
- Division of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, Scotland, United Kingdom
| |
Collapse
|
18
|
Wang KKW, Ottens A, Haskins W, Liu MC, Kobeissy F, Denslow N, Chen S, Hayes RL. Proteomics Studies of Traumatic Brain Injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:215-40. [PMID: 15482817 DOI: 10.1016/s0074-7742(04)61009-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kevin K W Wang
- Center of Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Agnati LF, Ferré S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55:509-50. [PMID: 12869660 DOI: 10.1124/pr.55.3.2] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Abstract
In a recent article Rose (2002) raises numerous crucial issues with regard to the research into and the use of cognition or memory enhancing agents. Although development of 'smart' drugs is in its infancy, his paper delineates some issues society may have to face when these drugs arrive. Questions about the development of such drugs may be interesting to several readers of Genes Brain and Behavior given the wealth of information expected to be gained on brain function from studies using genetic approaches including mutagenesis, transgenic techniques and genomics in general. Besides the scientific questions, several ethical issues may need to be addressed that are of interest to us all. Rose (2002) discusses some of these questions, but perhaps presents a too negative view on the problems, especially with regard to the present and future of memory research. This paper is intended to focus mainly on the scientific questions and argues that our fear of complex ethical problems should not make us throw the baby (i.e., our research and discoveries) out with the bath water.
Collapse
Affiliation(s)
- R Gerlai
- Saegis Pharmaceuticals, Inc., 60 Stone Pine Road, Suite 200, Half Moon Bay, CA 94019, USA.
| |
Collapse
|
22
|
Allain H, Bentué-Ferrer D, Tribut O, Gauthier S, Michel BF, Drieu-La Rochelle C. Alzheimer's disease: the pharmacological pathway. Fundam Clin Pharmacol 2003; 17:419-28. [PMID: 12914543 DOI: 10.1046/j.1472-8206.2003.00153.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current pharmacological treatment of Alzheimer's disease (AD) comes down to four marketed drugs (tacrine, donepezil, rivastigmine and galantamine) all of which are cholinesterase inhibitors, conforming to the cholinergic hypothesis. The future is clearly directed at new biological targets closely linked to the pathophysiology of the disease and more precisely, the pathological hallmark of AD which includes widespread neuronal degeneration, neuritic plaques containing beta-amyloid and tau-rich neurofibrillary tangles. For clinicians, this means that new curative drugs will have to be prescribed early in the course of the disease. This review describes the main entry pathways for drug discovery in AD: (1) supplementation therapy, (2) anti-apoptotic compounds, (3) substances with a mitochondrial impact, (4) anti-amyloid substances, (5) anti-protein aggregation and (6) lipid-lowering drugs. The rapidity at which these compounds will be at our disposal is highly dependent on the policy of the pharmaceutical companies.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Université de Rennes I, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | |
Collapse
|
23
|
Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003; 26:360-8. [PMID: 12850432 DOI: 10.1016/s0166-2236(03)00162-0] [Citation(s) in RCA: 641] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure-stability-function relationships suggest that large and small spines are "memory spines" and "learning spines", respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.
Collapse
Affiliation(s)
- Haruo Kasai
- Department of Cell Physiology, National Institute for Physiological Sciences and The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan.
| | | | | | | | | |
Collapse
|
24
|
Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pavlova M, Semesi A, Northey J, Beasley S, Lan N, Das R, Gerstein M, Arrowmith CH, Edwards AM. Strategies for structural proteomics of prokaryotes: Quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins 2003; 50:392-9. [PMID: 12557182 DOI: 10.1002/prot.10282] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Only about half of non-membrane-bound proteins encoded by either bacterial or archaeal genomes are soluble when expressed in Escherichia coli (Yee et al., Proc Natl Acad Sci USA 2002;99:1825-1830; Christendat et al., Prog Biophys Mol Biol 200;73:339-345). This property limits genome-scale functional and structural proteomics studies, which depend on having a recombinant, soluble version of each protein. An emerging strategy to increase the probability of deriving a soluble derivative of a protein is to study different sequence homologues of the same protein, including representatives from thermophilic organisms, based on the assumption that the stability of these proteins will facilitate structural analysis. To estimate the relative merits of this strategy, we compared the recombinant expression, solubility, and suitability for structural analysis by NMR and/or X-ray crystallography for 68 pairs of homologous proteins from E. coli and Thermotoga maritima. A sample suitable for structural studies was obtained for 62 of the 68 pairs of homologs under standardized growth and purification procedures. Fourteen (eight E. coli and six T. maritima proteins) samples generated NMR spectra of a quality suitable for structure determination and 30 (14 E. coli and 16 T. maritima proteins) samples formed crystals. Only three (one E. coli and two T. maritima proteins) samples both crystallized and had excellent NMR properties. The conclusions from this work are: (1) The inclusion of even a single ortholog of a target protein increases the number of samples for structural studies almost twofold; (2) there was no clear advantage to the use of thermophilic proteins to generate samples for structural studies; and (3) for the small proteins analyzed here, the use of both NMR and crystallography approaches almost doubled the number of samples for structural studies.
Collapse
Affiliation(s)
- Alexei Savchenko
- Ontario Center for Structural Proteomics, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martin SJ, Morris RGM. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 2003; 12:609-36. [PMID: 12440577 DOI: 10.1002/hipo.10107] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted, although definitive proof of the synaptic plasticity and memory hypothesis is still lacking. This article reviews recent evidence relevant to the hypothesis, with particular emphasis on studies of experience-dependent plasticity in the neocortex and hippocampus. In our view, there is now compelling evidence that changes in synaptic strength occur as a consequence of certain forms of learning. A major challenge will be to determine whether such changes constitute the memory trace itself or play a less specific supporting role in the information processing that accompanies memory formation.
Collapse
|
26
|
Lamprecht R, Farb CR, LeDoux JE. Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex. Neuron 2002; 36:727-38. [PMID: 12441060 DOI: 10.1016/s0896-6273(02)01047-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used fear conditioning, which is known to alter synaptic efficacy in lateral amygdala (LA), to study molecular mechanisms underlying long-term memory. Following fear conditioning, the tyrosine phosphorylated protein p190 RhoGAP becomes associated with GRB2 in LA significantly more in conditioned than in control rats. RasGAP and Shc were also found to associate with GRB2 in LA significantly more in the conditioned animals. Inhibition of the p190 RhoGAP-downstream kinase ROCK in LA during fear conditioning impaired long- but not short-term memory. Thus, the p190 RhoGAP/ROCK pathway, which regulates the morphology of dendrites and axons during neural development, plays a central role, through a GRB2-mediated molecular complex, in fear memory formation in the lateral amygdala.
Collapse
Affiliation(s)
- Raphael Lamprecht
- W.M. Keck Foundation Laboratory for Neurobiology, Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
27
|
|
28
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
|
30
|
|
31
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|