1
|
Raza T, Qadir MF, Imran S, Khatoon Z, Khan MY, Mechri M, Asghar W, Rehmani MIA, Villalobos SDLS, Mumtaz T, Iqbal R. Bioherbicides: revolutionizing weed management for sustainable agriculture in the era of One-health. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100394. [PMID: 40391281 PMCID: PMC12088770 DOI: 10.1016/j.crmicr.2025.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
The main objective of agricultural weed management is to increase crop productivity to maintain a delicate balance between food demand and supply for an increasing population and ensure food security globally. Agriculture plays a significant role in the social life and economy of many developed or developing countries. Blind use of chemical herbicides to maximize crop production exerts many negative environmental impacts and develops resistance among the weed biotypes against herbicides, even representing a high risk to the environment and human health. Thus, in the last few years, the research activities of scientists have increased to find alternative weed control methods. Bioherbicides or biological management of weeds is an emerging topic with decent potential for sustainable crop production. Biological management of weeds has numerous positive aspects and advantages over chemical control, such as being highly selective, specific toward targeted weeds, sustainable, and having minimize harmful effect on the main crop, environment, and humans. Several biological agents, such as bacteria, fungi and viruses, also plant extracts and essential oils, have been introduced, and their bioherbicidal potential has been explored in weed management. To develop an effective bioherbicide, specific and complex types of interaction have been developed between targeted weeds and biological agents. Whereas a limited number of bioherbicides have performed successfully under field conditions to control specific weeds, nonetheless, the efficiency of many other bioherbicidal agents is still inadequate due to many reasons, such as formulation, less persistence in the field as well as lack of host-agent interaction. This critical review paper discusses several different biological methods of weed management, their advantages and disadvantages, and the importance of bioherbicides as weed-controlling agents to achieve global sustainable crop production, in the era of One-health.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville USA
- University of Agriculture, Faisalabad, Sub-Campus Burewala, Vehari 61010, Pakistan
| | - Muhammad Farhan Qadir
- College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, Xinjiang, China
| | - Shakeel Imran
- University of Agriculture, Faisalabad, Sub-Campus Burewala, Vehari 61010, Pakistan
| | - Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Muhammad Yahya Khan
- University of Agriculture, Faisalabad, Sub-Campus Burewala, Vehari 61010, Pakistan
| | - Mouna Mechri
- National Institute of Field Crops, Boussalem 8170, Tunisia
| | - Waleed Asghar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | | | - Sergio de los Santos Villalobos
- Departamento de Ciencias Agronómicas y Veterinaria, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, CP 85000, col. Centro, Cd. Obregón, Sonora, Mexico
| | - Tooba Mumtaz
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 3800, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, the Islamia University of Bahawalpur, 63100, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
2
|
Kandalgaonkar KN, Barvkar VT. Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance. MYCORRHIZA 2025; 35:13. [PMID: 39998668 DOI: 10.1007/s00572-025-01189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are an essential symbiotic partner colonizing more than 70% of land plants. In exchange for carbon sources, mycorrhizal association ameliorates plants' growth and yield and enhances stress tolerance and/or resistance. To achieve this symbiosis, plants mediate a series of biomolecular changes, including the regulation of phytohormones. This review focuses on the role of each phytohormone in establishing symbiosis. It encases phytohormone modulation, exogenous application of the hormones, and mutant studies. The review also comments on the plausible phytohormone cross-talk essential for maintaining balanced mycorrhization and preventing fungal parasitism. Finally, we briefly discuss AMF-mediated stress regulation and contribution of phytohormone modulation in plants. We must examine their interplay to understand how phytohormones act species-specific or concentration-dependent manner. The review summarizes the gaps in these studies to improve our understanding of processes underlying plant-AMF symbiosis.
Collapse
Affiliation(s)
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune - 411007, Maharashtra, India.
| |
Collapse
|
3
|
Alamri AA, Ayyad MA, Mohamedbakr HG, Soliman UA, Almashnowi MY, Pan JH, Helmy ET. Green magnetically separable molluscicide Ba-Ce-Cu ferrite/TiO 2 nanocomposite for controlling terrestrial gastropods Monacha Cartusiana. Sci Rep 2025; 15:2888. [PMID: 39843605 PMCID: PMC11754440 DOI: 10.1038/s41598-025-85730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The increasing economic damage caused by terrestrial gastropods, especially the Monacha cartusiana (M. cartusiana) land snail, to the agricultural sector requires a diligent and continuous search for new materials and alternatives for the control operations. In this piece of work, a magnetically separable molluscicide with high effectiveness green Barium-Cerium-Copper ferrite/TiO2 (Ba-Ce-CuFO/TiO2) nanocomposite was greenly prepared using Eichhornia plant aqueous extract and characterized using different techniques. The green Ba-Ce-CuFO/TiO2 nanocomposite was applied as an aspect of the attempts to search for new active substances that would have a potential toxic effect against M. cartusiana. Laboratory toxicity evaluations by leaf dipping and contact methods showed LC50 values of 1218.79 and 289.19 ppm, respectively. Analysis of biochemical variables as a bio response indicator showed a noticeable increase in the values of aspartate transaminase (AST) and alanine transaminase (ALT) relative to the control, while the decrease was characteristic for alkaline phosphatase (ALP) and total protein (TP) other variables when the animals were treated with LC50 value. The histopathological examination was performed on both the muscular foot and the digestive gland, or what is known as the hepatopancreas, which showed enlarged lumens and damaged digestive cells, in addition to destructed digestive tubes, the existence of pyknotic nuclei, and hematocyte infiltration. Foot histopathology showed ruptured epithelial cells, deep folds, and empty spaces when animals were treated with our target nanocomposite LC50 value. Application under natural field conditions through the bait technique showed a significant satisfactory population diminution after 14 days of exposure, as the mean percentage of diminution was 72.2% compared to the recommended pesticide Neomyl SL 20%, which poses a 74.27% reduction. Built on the above, we recommend further studies of the usage of green Ba-Ce-CuFO/TiO2 nanocomposite, and the introduction of such nanocomposite in gastropod control operations to reduce losses in the agricultural sector in general.
Collapse
Affiliation(s)
- Abdullah A Alamri
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Hossameldin G Mohamedbakr
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Usama A Soliman
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Majed Y Almashnowi
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Jia Hong Pan
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Elsayed T Helmy
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, People's Republic of China.
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
4
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Malik MA, Ahmad N, Bhat MY. The green shield: Trichoderma's role in sustainable agriculture against soil-borne fungal threats. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100313. [PMID: 39649407 PMCID: PMC11621600 DOI: 10.1016/j.crmicr.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Soil-borne pathogenic fungi are a major agricultural concern, leading to significant decreases in plant yield. Chemically controlling these plants imposes environmental threats that could potentially endanger both humans and other animals. Therefore, employing biological methods in plant disease control represents a more effective alternative approach. The objective of this study was to isolate Trichoderma species from soil samples and evaluate their in vitro biocontrol efficacy against fungal pathogens viz. Fusarium oxysporum, Aspergillus niger, Rhizoctonia solani, Cladosporium cladosporioides, Alternaria alternata, Penicillium citrinum, Curvularia lunata, Fusarium metavorans, Aspergillus flavus, Penicillium chrysogenum, Nigrospora sphaerica, and Fusarium solani. The biocontrol testing efficacy of the isolates against various fungal pathogens was assessed using the dual culture technique. In this investigation various Trichoderma species were isolated from 25 soil samples and were tested against 12 soil borne fungal pathogens. The radial growth inhibition of Trichoderma harzanium and Trichoderma viride varied between (20.18% to 58.13% t), (07.01% to 67.16%) respectively. Furthermore, the culture filtrates of Trichoderma species at different concentrations (5%, 10%, 15%, and 20%) caused a significant reduction in the mycelial growth of all the tested fungal pathogens. The radial growth inhibition was more by higher concentrations in comparison to low concentrations. In the light of these observations, native Trichoderma species seems to be competent biocontrol agents and provide as a sustainable method against disease caused by soil borne plant pathogens.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Nusrat Ahmad
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Mohd Yaqub Bhat
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
6
|
Woo H, Kim I, Chhetri G, Park S, Lee H, Yook S, Seo T. Two Novel Bacterial Species, Rhodanobacter lycopersici sp. nov. and Rhodanobacter geophilus sp. nov., Isolated from the Rhizosphere of Solanum lycopersicum with Plant Growth-Promoting Traits. Microorganisms 2024; 12:2227. [PMID: 39597616 PMCID: PMC11596576 DOI: 10.3390/microorganisms12112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Two novel bacterial species were isolated from the rhizosphere of Solanum lycopersicum (tomato plant), both exhibiting plant growth-promoting properties. Two isolated strains, Rhodanobacter lycopersici sp. nov. Si-cT and Rhodanobacter geophilus sp. nov. S2-gT, were classified through a polyphasic approach, confirming their novel status within the Rhodanobacter genus. The strains demonstrated a remarkable tolerance to extreme pH conditions, with R. lycopersici Si-cT surviving in pH 3.0-13.0 and R. geophilus S2-gT tolerating pH 2.0-13.0. Additionally, both strains exhibited multiple plant growth-promoting traits, including indole-3-acetic acid and ammonia production, phosphate solubilization, and siderophore formation. These characteristics suggest that the two strains may play an important role in promoting plant growth, especially in soils with variable pH levels. However, since the direct impact on plant growth was not experimentally tested, the potential of these bacteria for agricultural applications remains to be confirmed through further research. This study expands our understanding of the diversity within the Rhodanobacter genus and provides insights into the potential use of these novel species in sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taegun Seo
- Department of Life Science, Dongguk University, Goyang 10326, Republic of Korea; (H.W.); (I.K.); (G.C.); (S.P.); (H.L.); (S.Y.)
| |
Collapse
|
7
|
Masenya K, Manganyi MC, Dikobe TB. Exploring Cereal Metagenomics: Unravelling Microbial Communities for Improved Food Security. Microorganisms 2024; 12:510. [PMID: 38543562 PMCID: PMC10974370 DOI: 10.3390/microorganisms12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Food security is an urgent global challenge, with cereals playing a crucial role in meeting the nutritional requirements of populations worldwide. In recent years, the field of metagenomics has emerged as a powerful tool for studying the microbial communities associated with cereal crops and their impact on plant health and growth. This chapter aims to provide a comprehensive overview of cereal metagenomics and its role in enhancing food security through the exploration of beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration of metagenomics with other tools can effectively address the adverse effects on food security. For this purpose, we discuss the integration of metagenomic data and machine learning in providing novel insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the potential applications of leveraging microbial diversity and epigenetic modifications in improving crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the field of food security by harnessing the potential of beneficial interactions between cereals and their microbiota, paving the way for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedibone Masenya
- National Zoological Gardens, South African National Biodiversity Institute, 32 Boom St., Pretoria 0001, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Pretoria 0204, South Africa;
| | - Tshegofatso Bridget Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
8
|
Iloabuchi K, Spiteller D. Bacillus sp. G2112 Detoxifies Phenazine-1-carboxylic Acid by N5 Glucosylation. Molecules 2024; 29:589. [PMID: 38338334 PMCID: PMC10856480 DOI: 10.3390/molecules29030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'β-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.
Collapse
Affiliation(s)
- Kenechukwu Iloabuchi
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Obukpa Road, Nsukka 410105, Nigeria
| | - Dieter Spiteller
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
9
|
Liu J, Han Z, An L, Ghanizadeh H, Wang A. Evaluation of immobilized microspheres of Clonostachys rosea on Botrytis cinerea and tomato seedlings. Biomaterials 2023; 301:122217. [PMID: 37423183 DOI: 10.1016/j.biomaterials.2023.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Tomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.). Biological control using fungal agents such as Clonostachys rosea plays a pivotal role in managing gray mold. However, these biological agents can negatively be influenced by environmental factors. However, immobilization is a promising approach to tackle this issue. In this research, we used a nontoxic chemical material, sodium alginate as a carrier to immobilize C. rosea. For this, sodium alginate microspheres were prepared using sodium alginate prior to embedding C. rosea. The results showed that C. rosea was successfully embedded in sodium alginate microspheres, and immobilization enhanced the stability of the fungi. The embedded C. rosea was able to suppress the growth of gray mold efficiently. In addition, the activity of stress related enzymes, peroxidase superoxidase dismutase and polyphenol oxidation was promoted in tomatoes treated with the embedded C. rosea. By measuring photosynthetic efficiency, it was noted that the embedded C. rosea has positive impacts on tomato plants. Taken together, these results indicate that immobilization of C. rosea improved its stability without detrimentally affecting its efficiency on gray mold suppression and tomato growth. The results of this research can be used as a basis for research and development of new immobilized biocontrol agents.
Collapse
Affiliation(s)
- Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zhengyuan Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Lidong An
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
10
|
Soe ZZ, Shin YH, Kang HS, Jeun YC. Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus. THE PLANT PATHOLOGY JOURNAL 2023; 39:351-360. [PMID: 37550981 PMCID: PMC10412969 DOI: 10.5423/ppj.oa.05.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.
Collapse
Affiliation(s)
- Zar Zar Soe
- Sustainable Agriculture Research Institute, Jeju National University, Jeju 63243,
Korea
| | - Yong Ho Shin
- Sustainable Agriculture Research Institute, Jeju National University, Jeju 63243,
Korea
| | - Hyun Su Kang
- Sustainable Agriculture Research Institute, Jeju National University, Jeju 63243,
Korea
| | - Yong Chull Jeun
- Sustainable Agriculture Research Institute, Jeju National University, Jeju 63243,
Korea
- The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju 63604,
Korea
| |
Collapse
|
11
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
12
|
Siddiqui HA, Asad S, Naqvi RZ, Asif M, Liu C, Liu X, Farooq M, Abro S, Rizwan M, Arshad M, Sarwar M, Amin I, Mukhtar Z, Mansoor S. Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac-Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Sci Rep 2022; 12:18422. [PMID: 36319662 PMCID: PMC9626562 DOI: 10.1038/s41598-022-22209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cotton is an international agricultural commodity and the main cash crop of Pakistan of which quality and quantity are subject to various whims of nature. Climate change, insect pest complex, and weeds are reducing its productivity. Here, we have developed triple gene cotton containing EPSPS gene along with two Bt toxin genes Cry1Ac and Cry2Ab using a strategy where all three genes are cloned in the same T-DNA, followed by successful cotton transformation via Agrobacterium-mediated transformation. This strategy has been developed to help cotton breeders in developing new cultivars by incorporating these genes into the non-transgenic or single Bt (Cry1Ac) gene cotton background where all three genes will inherit together. The expression of all three proteins was confirmed through immunostrips and was quantified through enzyme-linked immunosorbent assay (ELISA). The spatio-temporal expression of Bt protein in different parts of triple gene NIBGE cotton plants was determined. Maximum expression was found in leaves followed by seeds and boll rinds. Insect bioassays with cotton bollworms (Helicoverpa armigera), armyworms (Spodoptera litura), and pink bollworms (Pectinophora gossypiella) showed more than 90% mortality. The best performing line (NIBGE-E2) on the basis of spatiotemporal expression, glyphosate assays, and insect mortality data, was used for event characterization by using the genome sequencing approach. The event was successfully characterized and named NIBGE 20-01. A diagnostics test based on event-specific PCR was developed and its ability to distinguish NIBGE 20-01 event from other commercial transgenic cotton events was confirmed. To confirm stable expression of all three proteins in the field conditions, homozygous transgenic lines were grown in the field and the expression was confirmed through immunostrip assays. It was found that all three genes are expressed under field conditions. To show that all three genes are inherited together upon crossing with local elite cotton lines, the F1 generation was grown under glasshouse and field conditions. The expression of all three genes was confirmed under field conditions. Our results showed that transgenic cotton with three genes cloned in the same T-DNA can express all genes and can be conveniently transferred into elite cotton lines through a single cross.
Collapse
Affiliation(s)
- Hamid Anees Siddiqui
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | | | - Xin Liu
- Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Muhammad Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Saifullah Abro
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Rizwan
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Sarwar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan.
| |
Collapse
|
13
|
JASSIM NS, ATI MA. Efficacy of Bacillus subtilis (Ehrenberg1835) Cohn1872, in suppressing Fusarium oxysporum Schlecht. emend. Snyder & Hansen, the causal agent of root rot of date palm offshoots (Phoenix dactylifera L.) in Iraq. ACTA AGRICULTURAE SLOVENICA 2022; 118. [DOI: 10.14720/aas.2022.118.3.2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Date palm root rot disease is one of the most important diseases of date palms and offshoots. It is caused by many soil-borne pathogenic fungi. Pathogenicity assays of the isolated fungi showed that the major causative agents of root rot disease in date palm plantlets were Fusarium oxysporum Schlecht. emend. Snyder & Hansen, F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg S1, F. proliferatum S2, Gibberella fujikuroi (Sawada) Wollenw., and Rhizoctonia solani J.G. Kühn. The most virulent fungus was F. oxysporum with a severity index of 82.16 % of root rot, while R. solani was the least harmful with a disease severity rate of 12.42 %. In laboratory tests, Bacillus subtilis reduced the radial mycelial growth of F. oxysporum on PDA medium by 86.6 %. The application of B. subtilis in combination with F. oxysporum substantially inhibited the severity of root rot disease relative to plantlets treated with only F. oxysporum. In addition, B. subtilis application in the presence or absence of F. oxysporum improved the plant physiology of plantlets, including total chlorophyll, total carotenoid, antioxidant enzyme levels (catalase and peroxidase), and total proline content.
Collapse
|
14
|
Derbalah A, Abdelsalam I, Behiry SI, Abdelkhalek A, Abdelfatah M, Ismail S, Elsharkawy MM. Copper oxide nanostructures as a potential method for control of zucchini yellow mosaic virus in squash. PEST MANAGEMENT SCIENCE 2022; 78:3587-3595. [PMID: 35598074 DOI: 10.1002/ps.7001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zucchini yellow mosaic virus (ZYMV) infects cucurbits and has been identified as a major limiting factor in their production. The purpose of this study was to create copper oxide nanostructures (CONS) to control ZYMV in squash plants. Protection of squash against ZYMV was assessed in terms of virus severity, ZYMV concentration, transcription of pathogenesis-related genes and growth enhancement of treated squash. RESULTS The findings revealed that squash plants treated with CONS had a significant reduction in disease severity when compared with untreated plants. In squash plants treated with CONS, defense genes associated with the salicylic acid signaling pathway were strongly expressed compared with untreated plants. The structural characteristics of CONS, such as their small size and appropriate shape, added to their excellent anti-ZYMV efficacy. CONS-treated squash plants show significantly improved growth traits compared with untreated plants. CONCLUSION Based on the results of this study, CONS may be a new strategy for the control of ZYMV in squash. This represents an unconventional solution to control this virus, particularly as no chemical pesticides can control viral diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Ibrahim Abdelsalam
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications SRTA-City, Alexandria, Egypt
| | | | - Sherin Ismail
- Chemistry Department, Tanta University, Tanta, Egypt
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
15
|
Wu C, Chao Y, Shu L, Qiu R. Interactions between soil protists and pollutants: An unsolved puzzle. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128297. [PMID: 35077968 DOI: 10.1016/j.jhazmat.2022.128297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Soil protists are essential but often overlooked in soils, although they play crucial functional roles in the terrestrial ecosystem. While soil protists have drawn increased attention to their functional role in soils, their interaction with soil pollutants remains unresolved. This review provides a first overview of the current understanding of interactions between soil protists and major pollutants (heavy metals, organic pollutants, nanoparticles, and soil pathogens). We summarize how soil pollutants affect protists and vice versa, showing that we are just beginning to understand their complex interactions. In addition, we identify five research gaps, including hidden diversity, adaptive mechanisms, species interactions, soil bioindicators and environmental applications, and we hope that our review will help promote and build research guidelines for the future. In conclusion, a better understanding of soil pollutant-protist interactions will significantly increase our knowledge of the pollution ecology in the soil and how soil organisms respond and adapt to environmental pollution, which will contribute to the bioremediation and environmental applications of protists in soil.
Collapse
Affiliation(s)
- Chenyuan Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Song L, Xue X, Wang S, Li J, Jin K, Xia Y. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8030270. [PMID: 35330272 PMCID: PMC8951457 DOI: 10.3390/jof8030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sulfatases are commonly divided into three classes: type I, type II, and type III sulfatases. The type III sulfatase, alkylsulfatase, could hydrolyze the primary alkyl sulfates, such as sodium dodecyl sulfate (SDS) and sodium octyl sulfate. Thus, it has the potential application of SDS biodegradation. However, the roles of alkylsulfatase in biological control fungus remain unclear. In this study, an alkylsulfatase gene MaAts was identified from Metarhizium acridum. The deletion strain (ΔMaAts) and the complemented strain (CP) were constructed to reveal their functions in M. acridum. The activity of alkylsulfatase in ΔMaAts was dramatically reduced compared to the wild-type (WT) strain. The loss of MaAts delayed conidial germination, conidiation, and significantly declined the fungal tolerances to UV-B irradiation and heat-shock, while the fungal conidial yield and virulence were unaffected in M. acridum. The transcription levels of stress resistance-related genes were significantly changed after MaAts inactivation. Furthermore, digital gene expression profiling showed that 512 differential expression genes (DEGs), including 177 up-regulated genes and 335 down-regulated genes in ΔMaAts, were identified. Of these DEGs, some genes were involved in melanin synthesis, cell wall integrity, and tolerances to various stresses. These results indicate that MaAts and the DEGs involved in fungal stress tolerances may be candidate genes to be adopted to improve the stress tolerances of mycopesticides.
Collapse
Affiliation(s)
- Lei Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoning Xue
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Juan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| |
Collapse
|
17
|
Asad SA. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2021.100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Renoud S, Abrouk D, Prigent-Combaret C, Wisniewski-Dyé F, Legendre L, Moënne-Loccoz Y, Muller D. Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms 2022; 10:microorganisms10020325. [PMID: 35208780 PMCID: PMC8877547 DOI: 10.3390/microorganisms10020325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The impact of inoculated plant growth-promoting rhizobacteria (PGPR) on its host physiology and nutrition depends on inoculum level. Whether the impact of the inoculated PGPR on the indigenous rhizosphere microbiota also varies with the PGPR inoculum level is unclear. Here, we tested this issue using the PGPR Azospirillum lipoferum CRT1—maize model system, where the initial seed inoculation is known to enhance maize growth and germination, and impacts the maize rhizomicrobiota, including microbial functional groups modulating plant growth. A. lipoferum CRT1 was added to the seeds at standard (105–6 cells.seed−1) or reduced (104–5 cells.seed−1) inoculation levels, in three fields. The effect of the two PGPR formulations was assessed on maize growth and on the nifH (nitrogen fixation), acdS (ACC deaminase activity) and phlD (2,4-diacetylphloroglucinol production) microbial functional groups. The size of the three functional groups was monitored by qPCR at the six-leaf stage and the flowering stage, and the diversity of the nifH and acdS functional groups (as well as the bacterial community) were estimated by MiSeq metabarcoding at the six-leaf stage. The results showed that the benefits of the reduced inoculant formulation were significant in two out of three fields, but different (often lower) than those of the standard formulation. The effects of formulations on the size of the three functional groups differed, and depended on field site and functional group. The reduced formulation had an impact on the diversity of nifH and acdS groups at one site, whereas the standard formulation had an impact at the two other sites. Inoculation significantly impacted the total bacterial community in the three fields, but only with the reduced formulation. In conclusion, the reduced inoculant formulation impacted the indigenous rhizosphere microbiota differently, but not less efficiently, than the standard formulation.
Collapse
Affiliation(s)
- Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Florence Wisniewski-Dyé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Laurent Legendre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
- Département de Biologie Biochimie, Univ Lyon, Université Jean Monnet, UFR des Sciences et Techniques, F-42000 Saint-Etienne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
- Correspondence: ; Tel.: +33-4-72-43-27-14
| |
Collapse
|
19
|
Ali NS, Syafiq TM, Saad MM. Induction of Hydrolytic Enzymes: A Criterion for Biological Control Candidates against Fungal Pathogen. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Ku Y, Yang N, Pu P, Mei X, Cao L, Yang X, Cao C. Biocontrol Mechanism of Bacillus subtilis C3 Against Bulb Rot Disease in Fritillaria taipaiensis P.Y.Li. Front Microbiol 2021; 12:756329. [PMID: 34659191 PMCID: PMC8515143 DOI: 10.3389/fmicb.2021.756329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bulb rot disease has become one of the main diseases that seriously affects the yield and quality of Fritillaria taipaiensis P.Y.Li (F. taipaiensis). In this study, F. taipaiensis was used as the research object to explore the effect and mechanism of Bacillus subtilis C3 in preventing and curing bulb rot. Through isolation and verification of the pathogenic fungi, we determined for the first time that the pathogenic fungus that causes bulb rot in F. taipaiensis is Fusarium oxysporum. The results of the study showed that B. subtilis C3 inhibits the growth of pathogenic fungi, and the inhibition rate is as high as 60%. In the inhibition mechanism, strain C3 inhibits the conidiogenesis of pathogenic fungi and destroys the cell structure of its hyphae, causing protoplast exudation, chromatin concentration, DNA fragmentation, and ultimately cell death. Among the secondary metabolites of C3, antimicrobial proteins and main active components (paeonol, ethyl palmitate, and oxalic acid) inhibited the growth of F. oxysporum. The molecular weight of the antibacterial protein with the highest inhibition rate was approximately 50 kD. The results of a field experiment on the Taibai Mountain F. taipaiensis planting base showed that after the application of strain C3, the incidence of bulb rot in Fritillaria was reduced by 18.44%, and the ratio of bacteria to fungi in the soil increased to 8.21, which verified the control effect of C3 on Fritillaria bulb rot disease. This study provides a theoretical basis for the use of B. subtilis C3 to prevent and control bulb rot in Fritillaria.
Collapse
Affiliation(s)
- Yongli Ku
- College of Forestry, Northwest A&F University, Yangling, China
| | - Nan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China.,College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Peng Pu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xueli Mei
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Le Cao
- College of Environment and Life Sciences, Weinan Normal University, Weinan, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Cuiling Cao
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Thiele-Bruhn S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200183. [PMID: 34365823 PMCID: PMC8349636 DOI: 10.1098/rstb.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.
Collapse
Affiliation(s)
- Sören Thiele-Bruhn
- Soil Science, University of Trier, Behringstrasse 21, D-54286 Trier, Germany
| |
Collapse
|
22
|
Development of Banana Peel Powder as Organic Carrier based Bioformulation and Determination of its Plant Growth Promoting Efficacy in Rice Cr100g. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agriculture is the primary source of income for more than 50 % of the Indian population and the current challenge in the agricultural industry is the increased crop production with sustainable agricultural practices from the shrinking cropland area. Plant Growth Promoting Rhizobacteria (PGPR) has been used as a bio inoculants for increasing the crop yield and the effectiveness of PGPR as biofertilizers majorly depends on the selection of the best carrier material, proper formulation of microorganisms and mode of delivery of the formulation. So, the present study investigates the effect of PGPR bacterial strains isolated from the Siruvani forest region, Coimbatore, Tamil Nadu. We have tested the efficacy of these PGPR strains using both in vitro seed germination assay and in vivo pot culture studies in CR100G rice seeds. We have used the banana peel powder (Patent No: 202041010982) as a novel organic carrier material for the development of bioformulation, along with talc as an inorganic carrier material to perform the in vivo study. The results showed that the rice plants treated with banana peel powder based bioformulation gives the highest shoot length (15.78 cm) when compared to the control (10.48 cm) on the 14th day, 21st and 45th day of seed seeding. The grain yield also increased in the Non-Enriched Banana Single (NEBS) bacterium group (125%) when normalized with the control. Thus, our current study suggests that Banana peel powder could be the better approach to be used as an organic carrier material for the development of Biofertilizers in future.
Collapse
|
23
|
Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J Fungi (Basel) 2021; 7:jof7080650. [PMID: 34436189 PMCID: PMC8401644 DOI: 10.3390/jof7080650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.
Collapse
|
24
|
Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Diánez F. Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. J Fungi (Basel) 2021; 7:598. [PMID: 34436137 PMCID: PMC8397002 DOI: 10.3390/jof7080598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.
Collapse
Affiliation(s)
- Brenda Sánchez-Montesinos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Alejandro Moreno-Gavíra
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Teresa Marín-Rodulfo
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain;
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| |
Collapse
|
25
|
Kazerooni EA, Maharachchikumbura SSN, Al-Sadi AM, Kang SM, Yun BW, Lee IJ. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi (Basel) 2021; 7:jof7060472. [PMID: 34200967 PMCID: PMC8230671 DOI: 10.3390/jof7060472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the ability of Bacillus amyloliquefaciens, to augment plant growth and suppress gray mold and leaf spot in pepper plants. Morphological modifications in fungal pathogen hyphae that expanded toward the PGPR colonies were detected via scanning electron microscope. Furthermore, preliminary screening showed that PGPR could produce various hydrolytic enzymes in its media. Treatments with B. amyloliquefaciens suppressed Botrytis gray mold and Alternaria leaf spot diseases on pepper caused by Botrytis pelargonii and Alternaria alternata, respectively. The PGPR strain modulated plant physio-biochemical processes. The inoculation of pepper with PGPR decreased protein, amino acid, antioxidant, hydrogen peroxide, lipid peroxidation, and abscisic acid levels but increased salicylic acid and sugar levels compared to those of uninoculated plants, indicating a mitigation of the adverse effects of biotic stress. Moreover, gene expression studies confirmed physio-biochemical findings. PGPR inoculation led to increased expression of the CaXTH genes and decreased expression of CaAMP1, CaPR1, CaDEF1, CaWRKY2, CaBI-1, CaASRF1, CaSBP11, and CaBiP genes. Considering its beneficial effects, the inoculation of B. amyloliquefaciens can be proposed as an eco-friendly alternative to synthetic chemical fungicides.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| |
Collapse
|
26
|
Baazeem A, Almanea A, Manikandan P, Alorabi M, Vijayaraghavan P, Abdel-Hadi A. In Vitro Antibacterial, Antifungal, Nematocidal and Growth Promoting Activities of Trichoderma hamatum FB10 and Its Secondary Metabolites. J Fungi (Basel) 2021; 7:jof7050331. [PMID: 33923354 PMCID: PMC8145006 DOI: 10.3390/jof7050331] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 01/15/2023] Open
Abstract
Microbial natural biocides have attracted much more attention in recent years in order to avoid the unrestricted use of chemical biocides in the environment. The aim of this study is to analyze the antibacterial and antifungal activities of secondary metabolites and growth promoting, nematicidal, and soil enzyme activity mediated by Trichoderma hamatum FB10. The bactericidal and fungicidal activities were performed using cell-free extract. Results revealed that the selected strain exert antibacterial activity against Acidovorax avenae, Erutimacarafavora, and Xanthomonas campestris. The selected fungal strain FB10 showed antagonistic activity against fungal pathogens such as, S. sclerotiorum, Rhizoctonia solani, Alternaria radicina, Alternaria citri, and Alternaria dauci. Among the bacterial pathogens, A. avenae showed least MIC (30 ± 2.5 µg/mL) and MBC (70 ± 1.25 µg/mL) values. T. hamatum FB10 strain synthesized bioactive volatile secondary metabolite, which effectively inhibited the growth of bacteria and fungi and indicated the presence of 6-pentyl-alpha-pyrone as the major compound (67.05%). The secondary metabolite synthesized by T. hamatum FB10 showed nematicidal activity against M. incognita eggs. Egg hatch inhibition was 78 ± 2.6% and juvenile stage mortality rate was 89 ± 2.5% when the strain FB10 was treated with nematode. The cell free extract of T. hamatum FB10 showed protease, amylase, cellulase, chitinase, glucanase activities. T. hamatum FB10 inoculated with green gram increased 11% plant height, compared to the control. The fresh weight of the experimental group inoculated with T. hamatum FB10 increased 33.6% more compared to the control group. The green gram seedlings inoculated with T. hamatum FB10 increased 18% more dry weight than control group. Soil enzymes such as, urease, phosphatase, catalase and saccharase were improved in the soil inoculated with T. hamatum FB10. These biochemical components play potent role in soil fertility, energy conversion, and in soil organic matter conversion.
Collapse
Affiliation(s)
- Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdulaziz Almanea
- Section of Microbiology, Department of Laboratory, King Saud Hospital, Unaizah 51911, Saudi Arabia;
| | - Palanisamy Manikandan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmmah University, Majmaah 11952, Saudi Arabia;
- Greenlink Analytical and Research Laboratory (India) Private Limited, Coimbatore 641014, Tamil Nadu, India
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ponnuswamy Vijayaraghavan
- Bioprocess Engineering Division, Smykon Biotech, Nagercoil, Kanyakumari 629201, Tamil Nadu, India
- Correspondence: (P.V.); (A.A.-H.)
| | - Ahmed Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmmah University, Majmaah 11952, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt
- Correspondence: (P.V.); (A.A.-H.)
| |
Collapse
|
27
|
Bioremediation of Toxic Pesticides in Soil Using Microbial Products. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Plett JM, Solomon J, Snijders F, Marlow-Conway J, Plett KL, Bithell SL. Order of microbial succession affects rhizobia-mediated biocontrol efforts against Phytophthora root rot. Microbiol Res 2020; 242:126628. [PMID: 33153885 DOI: 10.1016/j.micres.2020.126628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The management of soilborne root diseases in pulse crops is challenged by a limited range of resistance sources and often a complete absence of in-crop management options. Therefore, alternative management strategies need to be developed. We evaluated disease limiting interactions between the rhizobia species Mesorhizobium ciceri, and the oomycete pathogen Phytophthora medicaginis, which causes Phytophthora root rot (PRR) of chickpea (Cicer arietinum). For the PRR susceptible var. Sonali plants, post-pathogen M. ciceri inoculation significantly improved probability of plant survival when compared to P. medicaginis infected plants only pre-inoculated with M. ciceri (75 % versus 35 %, respectively). Potential mechanisms for these effects were investigated: rhizobia inoculation benefits to plant nodulation were not demonstrated, but the highest nodule N-fixation activity of P. medicaginis inoculated plants occurred for the post-pathogen M. ciceri treatment; rhizobia inoculation treatment did not reduce lesion development but certain combinations of microbial inoculation led to significant reduction in root growth. Microcosm studies, however, showed that the presence of M. ciceri reduced growth of P. medicaginis isolates. Putative chickpea disease resistance gene expression was evaluated using qPCR in var. Sonali roots. When var. Sonali plants were treated with M. ciceri post-P. medicaginis inoculation, the gene regulation in the plant host became more similar to PRR moderately resistant var. PBA HatTrick. These results suggest that M. ciceri application post P. medicaginis inoculation may improve plant survival by inducing defense responses similar to a PRR moderately resistant chickpea variety. Altogether, these results indicate that order of microbial succession can significantly affect PRR plant survial in susceptible chickpea under controlled conditions and improved plant survival effects are due to a number of different mechanisms including improved host nutrition, through direct inhibiton of pathogen growth, as well as host defense priming.
Collapse
Affiliation(s)
- J M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia.
| | - J Solomon
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - F Snijders
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - J Marlow-Conway
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - K L Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - S L Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, 2340, Australia
| |
Collapse
|
29
|
Barupal T, Meena M, Sharma K. Comparative analysis of bioformulations against Curvularia lunata (Wakker) Boedijn causing leaf spot disease of maize. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2020:1-12. [DOI: https:/doi.org/10.1080/03235408.2020.1827657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/18/2023]
Affiliation(s)
- Tansukh Barupal
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Kanika Sharma
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
30
|
Barupal T, Meena M, Sharma K. Comparative analysis of bioformulations against Curvularia lunata (Wakker) Boedijn causing leaf spot disease of maize. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2020:1-12. [DOI: 10.1080/03235408.2020.1827657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/18/2023]
Affiliation(s)
- Tansukh Barupal
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Kanika Sharma
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
31
|
Librán-Embid F, Klaus F, Tscharntke T, Grass I. Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139204. [PMID: 32438190 DOI: 10.1016/j.scitotenv.2020.139204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The development of biodiversity-friendly agricultural landscapes is of major importance to meet the sustainable development challenges of our time. The emergence of unmanned aerial vehicles (UAVs), i.e. drones, has opened a new set of research and management opportunities to achieve this goal. On the one hand, this review summarizes UAV applications in agricultural landscapes, focusing on biodiversity conservation and agricultural land monitoring, based on a systematic review of the literature that resulted in 550 studies. Additionally, the review proposes how to integrate UAV research in these fields and point to new potential applications that may contribute to biodiversity-friendly agricultural landscapes. UAV-based imagery can be used to identify and monitor plants, floral resources and animals, facilitating the detection of quality habitats with high prediction power. Through vegetation indices derived from their sensors, UAVs can estimate biomass, monitor crop plant health and stress, detect pest or pathogen infestations, monitor soil fertility and target patches of high weed or invasive plant pressure, allowing precise management practices and reduced agrochemical input. Thereby, UAVs are helping to design biodiversity-friendly agricultural landscapes and to mitigate yield-biodiversity trade-offs. In conclusion, UAV applications have become a major means of biodiversity conservation and biodiversity-friendly management in agriculture, while latest developments, such as the miniaturization and decreasing costs of hyperspectral sensors, promise many new applications for the future.
Collapse
Affiliation(s)
| | - Felix Klaus
- Agroecology, University of Göttingen, D-37077 Göttingen, Germany
| | - Teja Tscharntke
- Agroecology, University of Göttingen, D-37077 Göttingen, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|
32
|
Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122063. [PMID: 31972432 DOI: 10.1016/j.jhazmat.2020.122063] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used in various fields due to their antimicrobial activities. However, the antimicrobial mechanisms of AgNPs against fungi, especially on transcriptional level, are still unclear. In this study, the inhibitory property of AgNPs against Fusarium solani species complex was investigated. Transmission electron microscopes were used to observe the alterations in morphology and cellular structure of fungal hyphae treated with AgNPs. Disturbances in the cell walls and membranes, as well as empty space in the cytoplasm were observed. The transcriptome sequencing of F. solani species complex mycelia was performed using the Illumina NextSeq 500 ribonucleic acid sequencing (RNA-Seq) platform. In the RNA-Seq study, AgNPs treatment resulted in 2503 differentially expressed genes (DEGs). Gene Ontology (GO) analysis revealed that the DEGs were mainly involved in 6 different terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that energy and substance metabolism, signal transduction and genetic information processing were the most highly enriched pathways for these DEGs. In addition, RNA-seq results were validated by quantitative polymerase chain reactions (qPCRs). Our findings enhanced the understanding of the antifungal activities of AgNPs and the underlying molecular mechanisms, and provided a new perspective for investigating this novel antifungal agent.
Collapse
Affiliation(s)
- Tianlin Shen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qiushuang Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chengliang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhuan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanli Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
34
|
Kimmelshue C, Goggi AS, Cademartiri R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Sci Rep 2019; 9:17950. [PMID: 31784552 PMCID: PMC6884569 DOI: 10.1038/s41598-019-54068-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Biological control of bacteria with bacteriophages is a viable alternative to antibiotics. To be successful, biological control bacteriophages must be stable when exposed to the environment. Stabilization can be achieved through incorporation of bacteriophages into polymers and stabilizers that will be coated onto the seed. For this study, bacteriophages against Clavibacter michiganensis subsp. nebraskensis (Cmn), the causal agent of Goss's wilt, were incorporated into polyvinyl polymers with alcohol, ether and pyrrolidone functional groups and coated onto maize (Zea mays L.) seeds. The objectives of this study were to evaluate polymers and stabilizers that can protect Clavibacter michiganensis subsp. nebraskensis (CN8) bacteriophages against dehydration during storage. Bacteriophages stability when coated on seed depended on the glass transition temperature (Tg), functional groups of the polymer, and the presence of stabilizers such as sugars and proteins. Polyvinyl alcohol (PVOH) provided the greatest stability for CN8 bacteriophages on seed when coatings did not contain a stabilizer. A possible reason for the greater stability of this coating is having a glass transition temperature (Tg) very close to ambient temperature. PVOH combined with whey protein isolate (WPI) maintained CN8 bacteriophage activity in storage for four months at 26 °C and seven months at 10 °C. This coating also significantly reduced bacterial loads in seedlings grown from contaminated seeds, without affecting seed germination. Bacteriophage-polymer coatings which are stable during drying and storage, and are compatible with biological systems, not only provide an alternative to traditional antibiotics in agriculture, but also provide options for food, environmental and medical applications.
Collapse
Affiliation(s)
- Chad Kimmelshue
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Seed Science Center, Iowa State University, Ames, Iowa, United States of America
| | - A Susana Goggi
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America.
- Seed Science Center, Iowa State University, Ames, Iowa, United States of America.
| | - Rebecca Cademartiri
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America.
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa, United States of America.
| |
Collapse
|
35
|
Hamed Derbalah AS, Elsharkawy MM. A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. J Biotechnol 2019; 306:134-141. [PMID: 31593748 DOI: 10.1016/j.jbiotec.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
This study was carried out to fabricate nickel oxide nanostructures (NONS) and to evaluate its ability to control Cucumber mosaic virus (CMV) by direct antiviral activity as well as induction of systemic resistance in treated cucumber plants. The efficacy of nickel oxide nanostructures for control CMV in cucumber plants was biologically evaluated by a reduction in disease severity, reduction in CMV accumulation and expression of regulatory and defense-related genes. Cucumber plants treated with nickel oxide nanostructures showed incredible suppression of CMV infection compared with non-treated plants. The enzyme-linked immunosorbent assay (ELISA) showed a marked reduction in CMV accumulation in cucumber plants treated with nickel oxide nanostructures compared to untreated plants. Based on real-time polymerase chain reaction (RT-PCR) test, cucumber plants treated with nickel oxide nanostructures showed increased expression of regulatory and defense-related genes concerned in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways. NONS nanostructures showed direct antiviral activity against CMV resulted in significant reduction in CMV severity and titer relative to untreated plants. Treatment with nickel oxide nanostructures significantly improved cucumber fresh and dry weights as well as number of leaves. The induction of systemic resistance towards CMV by NONS nanostructures considered a novel strategy and first report.
Collapse
Affiliation(s)
- Aly Soliman Hamed Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt.
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| |
Collapse
|
36
|
A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth. SUSTAINABILITY 2019. [DOI: 10.3390/su11195304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel delivery method for the application of bio-based biostimulants as seed coatings was developed using different sources of liquid and powder forms of vermicompost and soy flour. Micronized vermicompost (MVC) and soy flour (SF) were mixed in different combinations as dry seed coating blends and applied using rotary pan seed coating equipment. The physical properties of coated seeds were measured, and as binder concentration increased, coating strength increased. The rates and percentages of germination of the newly developed coating formulations of SF+MVC did not decrease the germination parameters and were not significantly different than the control. However, the SF, SF with concentrated vermicompost extract, and SF + MVC from dairy manure increased the seedling vigor index by 24, 30, and 39 percent, respectively, compared to the control. Plant biometric parameters and nitrogen uptake per plant were also significantly higher for SF and SF+MVC coated seeds than the control, in a greenhouse environment. This is the first seed coating study to show an enhancement of plant growth with vermicompost, and vermicompost in combination with a plant-based protein that serves as a dry seed coating binder and biostimulant, respectively. Seed coatings developed in this study can serve as a model for development of the delivery systems of seeds for the application of bio-based biostimulants to enhance early plant growth.
Collapse
|
37
|
Murfadunnisa S, Vasantha-Srinivasan P, Ganesan R, Senthil-Nathan S, Kim TJ, Ponsankar A, Dinesh Kumar S, Chandramohan D, Krutmuang P. Larvicidal and enzyme inhibition of essential oil from Spheranthus amaranthroids (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101324] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Jeon CW, Kim DR, Kwak YS. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World J Microbiol Biotechnol 2019; 35:128. [PMID: 31375920 DOI: 10.1007/s11274-019-2704-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties that could potentially suppress the large patch pathogen found at turfgrass plantations. This study aims to demonstrate the feasibility of using the strain as a biological control mechanism. Sequencing of the S8 strain genome revealed a valinomycin biosynthesis gene cluster. This cluster is composed of the vlm1 and vlm2 genes, which are known to produce antifungal compounds. In order to verify this finding for the large patch pathogen, a valinomycin biosynthesis knockout mutant was created via the CRISPR/Cas9 system. The mutant lost antifungal activity against the large patch pathogen. Consequently, it is anticipated that eco-friendly microbial preparations derived from the S8 strain can be utilized to biologically control large patch disease.
Collapse
Affiliation(s)
- Chang-Wook Jeon
- Dvision of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, 52828, South Korea
| | - Da-Ran Kim
- Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Youn-Sig Kwak
- Dvision of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, 52828, South Korea. .,Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
39
|
Embedding Bacillus velezensis NH-1 in Microcapsules for Biocontrol of Cucumber Fusarium Wilt. Appl Environ Microbiol 2019; 85:AEM.03128-18. [PMID: 30824441 DOI: 10.1128/aem.03128-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/16/2019] [Indexed: 11/20/2022] Open
Abstract
Cucumber Fusarium wilt, caused by Fusarium oxysporum, is a devastating disease of cucumber and leads to enormous economic losses worldwide. The antagonistic bacterium Bacillus velezensis NH-1 suppresses F. oxysporum For a higher biological control effect, control-released microcapsules of NH-1 were prepared using cell immobilization technology. NH-1 cells were embedded in combinations of the biodegradable wall materials sodium alginate, chitosan, and cassava-modified starch to prepare control-released microbiological microcapsules. For the preparation of alginate single-layer microcapsules, the highest embedding rate of 72.60% was obtained by applying 3% sodium alginate and 2% calcium chloride. After the application of monolayer alginate microcapsules in soil, the number of bacterial cells corresponded to a sustained release curve, and the survival rate of NH-1 was higher than the control in which soil was directly irrigated with NH-1 broth. The use of 0.8% chitosan (pH 3.0) and 0.5% cassava-modified starch in the preparation of double-layer and triple-layer microcapsules changed the performance of the microcapsules and increased the embedding rate. After dry storage for 65 days, the number of NH-1 cells was at the highest level in the monolayer microcapsules. In the field experiment, the control efficiency of alginate-coated monolayer microcapsules on Fusarium wilt was 100%, which was significantly higher than for the NH-1 culture and double-layer and triple-layer microcapsules. Collectively, sodium alginate is an ideal wall material for preparing slow-release bacterial microcapsules to control cucumber Fusarium wilt. Monolayer alginate microcapsules retard the release of B. velezensis NH-1 in soils and significantly improve its biocontrol efficiency on cucumber Fusarium wilt.IMPORTANCE Bacillus species are often used for the biocontrol of various plant pathogens, but the control efficiency of Bacillus is usually unstable in field experiments. To improve the control efficiency of Bacillus, in this study, microcapsules of Bacillus velezensis strain NH-1 were prepared using different wall materials (sodium alginate, chitosan, and cassava-modified starch). It was found that the control efficiency of alginate-coated monolayer microcapsules on Fusarium wilt was 100% in field experiments, which was higher than for NH-1 culture and double-layer and triple-layer microcapsules. This study provides a new approach for preparing a biocontrol agent against Fusarium wilt with high biocontrol efficiency.
Collapse
|
40
|
Inside the plant: addressing bacterial endophytes in biotic stress alleviation. Arch Microbiol 2019; 201:415-429. [PMID: 30834947 DOI: 10.1007/s00203-019-01642-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Bacterial endophytes are the internal association of bacteria with the plants, cherished whole or any part of their life cycle inside the plant. They are reported to improve plant health against the biotic stresses via de novo synthesis of structural compounds and stimulation of plant immunity. They are found to be vital in development of host resistance against phytopathogens and capable in reducing and elimination of deleterious effects of plant pathogens. Fungal-, bacterial-, viral-, insect- and nematode-associated negative effect can be reduced by the bacterial endophytes. They are also reported to control plant pathogens through several defense mechanisms such as by producing antimicrobial compounds and antibiotics, de novo synthesis of structural compounds, keeping out of pathogens by niche competition and induction of plant immunity or induced systemic resistance. In this review, an effort is made to summarize the exploitation of endophytic bacteria as a biological substitute to control biotic stresses in agricultural practices.
Collapse
|
41
|
Elsharkawy MM, Derbalah A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean. PEST MANAGEMENT SCIENCE 2019; 75:828-834. [PMID: 30141238 DOI: 10.1002/ps.5185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study fabricated titanium dioxide nanostructures (TDNS) to control broad bean stain virus (BBSV) in faba bean plants. Protection of faba bean against BBSV was evaluated biologically with respect to virus severity, reduction in BBSV accumulation and expression of a pathogenesis-related gene. RESULTS The results indicate that faba bean plants treated with TDNS show a significant reduction in disease severity relative to untreated plants. The regulatory and defense gene involved in the salicylic acid signaling pathway was highly expressed in faba bean plants treated with TDNS compared with untreated plants. The structural features of TDNS, such as the small particle size and suitable shape, contributed to its high efficacy against BBSV. Growth of faba bean plants treated with TDNS was significantly enhanced relative to untreated plants. CONCULSION TDNS is an important, eco-friendly and safe strategy for controlling BBSV in faba bean and this study is the first report of this control strategy. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohsen M Elsharkawy
- Agricultural Botany Department, Kafr-El-Sheikh University, Kafr El Sheikh, Egypt
| | - Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Kafr-El-Sheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
42
|
Agrillo B, Mirino S, Tatè R, Gratino L, Gogliettino M, Cocca E, Tabli N, Nabti E, Palmieri G. An alternative biocontrol agent of soil-borne phytopathogens: A new antifungal compound produced by a plant growth promoting bacterium isolated from North Algeria. Microbiol Res 2019; 221:60-69. [PMID: 30825942 DOI: 10.1016/j.micres.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 11/15/2022]
Abstract
Bacteria isolated from different environments can be exploited for biocontrol purposes by the identification of the molecules involved in the antifungal activity. The present study was aimed at investigating antifungal protein compounds purified from a previously identified plant growth promoting bacterium, Pseudomonas protegens N isolated from agricultural land in northern Algeria. Therefore, a novel protein was purified by chromatographic and ultrafiltration steps and its antifungal activity together with growth-inhibition mechanism was evaluated against different fungi by plate-based assays. In addition, stereomicroscopy and transmission electron microscopy (TEM) was performed to explore the inhibition activity of the compound on spore germination processes. The protein, showing a molecular mass of about 100 kDa under native conditions, was revealed to be in the surface-membrane fraction and displayed an efficient activity against a variety of phytopathogenic fungi, being Alternaria the best target towards which it exhibited a marked fungicidal action and inhibition of spore germination. Moreover, the compound was able to significantly decrease fungal infection on tomato fruits producing also morphological aberrations on conidia. The obtained results suggested that the isolated compound could represent a promising agent for eco-friendly management of plant pathogens in agriculture.
Collapse
Affiliation(s)
- Bruna Agrillo
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy; Materias S.r.l., Corso N. Protopisani n. 50, 80146, Naples, Italy
| | - Sara Mirino
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Lorena Gratino
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marta Gogliettino
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Ennio Cocca
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Nassira Tabli
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Elhafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Gianna Palmieri
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
43
|
Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K. Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Farias CP, Carvalho RCDE, Resende FML, Azevedo LCB. Consortium of five fungal isolates conditioning root growth and arbuscular mycorrhiza in soybean, corn, and sugarcane. AN ACAD BRAS CIENC 2018; 90:3649-3660. [PMID: 30517219 DOI: 10.1590/0001-3765201820180161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
Plant growth and arbuscular mycorrhizal colonization were studied in sugarcane, corn and soybean by applying five plant growth promoting fungi: Beauveria bassiana, Metarhizium anisopliae, Pochonia chlamydosporia, Purpureocillium lilacinum, and Trichoderma asperella. Sugarcane, corn and soybean were grown in pots under two treatments: (1) inoculation with the fungal consortium and (2) control without inoculation. In the inoculated treatment, fungal spore suspension were applied to the seeds and shoots were sprayed every 28 days. Means were analyzed by analysis of variance and Tukey's test at 5% probability level. The experiment was arranged in a completely randomized design, with six replications. Fungi consortium mediate root growth in soybean and corn, and arbuscular mycorrhizal colonization in soybean and sugarcane. These findings are probably caused by the fungi producing phytohormones and inducing the plants to synthesize phytohormones: auxins for root growth; and jasmonic, abscisic, and salicylic acids with a role in the regulation of mycorrhizal colonization. These effects are important when seeking conservation strategies in agriculture and livestock production, since Fungi consortium can better mediate soil resource acquisition, promoting greater absorption of nutrients and water.
Collapse
Affiliation(s)
- Christyan P Farias
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Rafael C DE Carvalho
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Felipe M L Resende
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Lucas C B Azevedo
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
45
|
Mannaa M, Kim KD. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II. MYCOBIOLOGY 2018; 46:52-63. [PMID: 29998033 PMCID: PMC6037079 DOI: 10.1080/12298093.2018.1454015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 05/13/2023]
Abstract
In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
46
|
El-Sayed ASA, Akbar A, Iqrar I, Ali R, Norman D, Brennan M, Ali GS. A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol Res 2017; 207:140-152. [PMID: 29458848 DOI: 10.1016/j.micres.2017.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023]
Abstract
Biological control is an eco-friendly strategy for mitigating and controlling plant diseases with negligible effects on human health and environment. Biocontrol agents are mostly isolated from field crops, and microbiomes associated with wild native plants is underexplored. The main objective of this study was to characterize the bacterial isolates associated with Smilax bona-nox L, a successful wild plant with invasive growth habits. Forty morphologically distinct bacterial isolates were recovered from S. bona-nox. Based on 16S rRNA gene sequencing, these isolates belonged to 12 different genera namely Burkholderia, Pseudomonas, Xenophilus, Stenotrophomonas, Pantoea, Enterobactriaceae, Kosakonia, Microbacterium, Curtobacterium, Caulobacter, Lysinibacillus and Bacillus. Among them, Pseudomonas sp. EA6 and Pseudomonas sp. EA14 displayed the highest potential for inhibition of Phytophthora. Based on sequence analysis of rpoD gene, these isolates revealed a 97% identity with a Pseudomonas fluorescence strain. Bioactivity-driven assays for finding bioactive compounds revealed that crude proteins of Pseudomonas sp. EA6 inhibited mycelial growth of P. parasitica, whereas crude proteins of Pseudomonas sp. EA14 displayed negligible activity. Fractionation and enzymatic analyses revealed that the bioactivity of Pseudomonas sp. EA6 was mostly due to glucanolytic enzymes. Comparison of chromatographic profile and bioactivity assays indicated that the secreted glucanolytic enzymes consisted of β-1,3 and β-1,4 glucanases, which acted together in hydrolyzing Phytophthora cell walls. Since the biological activity of the crude glucanolytic extract was >60-fold higher than the purified β-1,3 glucanase, the glucanolytic enzyme system of Pseudomonas sp. EA6 likely acts synergistically in cell wall hydrolysis of P. parasitica.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA; Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Asma Akbar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Irum Iqrar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Robina Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - David Norman
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Mary Brennan
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA.
| |
Collapse
|
47
|
Witkowska D, Buska-Pisarek K, Łaba W, Piegza M, Kancelista A. Effect of Lyophilization on Survivability and Growth Kinetic of Trichoderma Strains Preserved on Various Agriculture By-Products. Pol J Microbiol 2017; 66:181-188. [PMID: 28735312 DOI: 10.5604/01.3001.0010.4361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth of four Trichoderma strains were tested on lignocellulosic by-products in solid state fermentation (SSF). The strains were also analyzed for their survival rate and growth after lyophilization on these carriers. All applied monocomponent and bicomponent media were substrates for the production and preservation of Trichoderma biomass. However, the maximum number of colony forming units (CFU/g dm) was acquired on bicomponent media based on dried grass and beet pulp or grass with corn cobs, when compared to monocomponent media. Although the process of lyophilization reduced the survival rate by 50%-60%, the actual number of viable cells in obtained biopreparations remained relatively high (0.58 × 108-1.68 × 108 CFU/g dm). The studied strains in the preserved biopreparations were characterized by a high growth rate, as evaluated in microcultures using the Bioscreen C system.
Collapse
Affiliation(s)
- Danuta Witkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Buska-Pisarek
- Laboratory of Reproductive Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
48
|
Kashef MT, Helmy OM. Genetic Characterization of a Novel Composite Transposon Carrying armA and aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt. Pol J Microbiol 2017; 66:163-169. [PMID: 28735317 DOI: 10.5604/01.3001.0010.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides are used in treating a wide range of infections caused by Gram-positive and Gram-negative bacteria; however, aminoglycoside resistance is common and occurs by several mechanisms. Among these mechanisms is bacterial rRNA methylation by the 16S rRNA methyl transferase (16S-RMTase) enzymes; but data about the spread of this mechanism in Egypt are scarce. Cephalosporins are the most commonly used antimicrobial agents in Egypt; therefore, this study was conducted to determine the frequency of 16S-RMTase among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycosides resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In conclusion, the isolation frequency of 16S-RMTase was low among the tested aminoglycoside-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.
Collapse
Affiliation(s)
- Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
49
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 PMCID: PMC5266735 DOI: 10.3389/fpls.2016.02049] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I. Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia
- R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H. Brown
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| |
Collapse
|
50
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 DOI: 10.3389/fpls] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/27/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia; R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis Davis, CA, USA
| |
Collapse
|