1
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
2
|
Das AK, Hussain A, Methela NJ, Lee DS, Lee GJ, Woo YJ, Yun BW. Genome-wide characterization of nitric oxide-induced NBS-LRR genes from Arabidopsis thaliana and their association in monocots and dicots. BMC PLANT BIOLOGY 2024; 24:934. [PMID: 39379841 PMCID: PMC11462825 DOI: 10.1186/s12870-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Geum-Jin Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youn-Ji Woo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
3
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
4
|
Hinshaw C, López-Uribe MM, Rosa C. Plant Virus Impacts on Yield and Plant-Pollinator Interactions Are Phylogenetically Modulated Independently of Domestication in Cucurbita spp. PHYTOPATHOLOGY 2024; 114:2182-2191. [PMID: 38842916 DOI: 10.1094/phyto-08-23-0270-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Plant defenses are conserved among closely related species, but domestication can alter host genotypes through artificial selection with potential losses in host defenses. Therefore, both domestication and host phylogenetic structure may influence plant virus infection outcomes. Here, we examined the association of phylogeny and domestication with the fitness of infected plants. We inoculated three pairs of domesticated and wild/noncultivated squash (Cucurbita spp.) with a combination of two viruses commonly found to coinfect cucurbits, zucchini yellow mosaic virus and squash mosaic virus, and recorded fitness traits related to flowers, pollination, fruit, and seed viability in the field over 2 separate years. In an additional field experiment, we recorded the relative abundance of both viruses via RT-qPCR. We found a gradient of susceptibility across the six tested lineages, and phylogenetic structure, but not domestication, contributed to differences in infection outcomes and impacts on several fitness traits, including fruit number, fruit weight, and germination. Plant virus infection also impacted the quantity and quality of floral rewards and visitation rates of specialist bee pollinators. There were no detectable differences in viral load between the six host taxa for either virus individually or the ratio of zucchini yellow mosaic virus to squash mosaic virus. Our results highlight the importance of phylogenetic structure in predicting host susceptibility to disease across wild and domesticated plants and the ability of several hosts to maintain fitness in the field despite infection. Broader consequences of plant pathogens for beneficial insects, such as pollinators, should also be considered in future research.
Collapse
Affiliation(s)
- Chauncy Hinshaw
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
5
|
Liu X, Zhang W, Zhang Y, Yang J, Zeng P, Tian Z, Sun W, Cai J. Chromosome-scale genomes of Quercus sichourensis and Quercus rex provide insights into the evolution and adaptation of Fagaceae. J Genet Genomics 2024; 51:554-565. [PMID: 38575109 DOI: 10.1016/j.jgg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
The Fagaceae, a plant family with a wide distribution and diverse adaptability, has garnered significant interest as a subject of study in plant speciation and adaptation. Meanwhile, certain Fagaceae species are regarded as highly valuable wood resources due to the exceptional quality of their wood. In this study, we present two high-quality, chromosome-scale genome sequences for Quercus sichourensis (848.75 Mb) and Quercus rex (883.46 Mb). Comparative genomics analysis reveals that the difference in the number of plant disease resistance genes and the nonsynonymous and synonymous substitution ratio (Ka/Ks) of protein-coding genes among Fagaceae species are related to different environmental adaptations. Interestingly, most genes related to starch synthesis in the investigated Quercoideae species are located on a single chromosome, as compared to the outgroup species, Fagus sylvatica. Furthermore, resequencing and population analysis of Q. sichourensis and Q. rex reveal that Q. sichourensis has lower genetic diversity and higher deleterious mutations compared to Q. rex. The high-quality, chromosome-level genomes and the population genomic analysis of the critically endangered Q. sichourensis and Q. rex will provide an invaluable resource as well as insights for future study in these two species, even the genus Quercus, to facilitate their conservation.
Collapse
Affiliation(s)
- Xue Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weixiong Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongting Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng Zeng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zunzhe Tian
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Jing Cai
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
6
|
Jacott CN, Schoonbeek HJ, Sidhu GS, Steuernagel B, Kirby R, Zheng X, von Tiedermann A, Macioszek VK, Kononowicz AK, Fell H, Fitt BDL, Mitrousia GK, Stotz HU, Ridout CJ, Wells R. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:65. [PMID: 38430276 PMCID: PMC10908622 DOI: 10.1007/s00122-024-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
KEY MESSAGE Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gurpinder Singh Sidhu
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Burkhard Steuernagel
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Kirby
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Zheng
- Department of Crop Sciences, Georg August University, 37077, Göttingen, Germany
| | | | - Violetta K Macioszek
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245, Białystok, Poland
| | - Andrzej K Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Heather Fell
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Georgia K Mitrousia
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Wells
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
7
|
Kheng S, Choe SH, Sahu N, Park JI, Kim HT. Identification of Gene Responsible for Conferring Resistance against Race KN2 of Podosphaera xanthii in Melon. Int J Mol Sci 2024; 25:1134. [PMID: 38256205 PMCID: PMC10816175 DOI: 10.3390/ijms25021134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea; (S.K.); (S.-H.C.); (N.S.); (J.-I.P.)
| |
Collapse
|
8
|
Zhou R, Dong Y, Wang C, Liu J, Liang Q, Meng X, Lang X, Xu S, Liu W, Zhang S, Wang N, Yang KQ, Fang H. LncRNA109897-JrCCR4-JrTLP1b forms a positive feedback loop to regulate walnut resistance against anthracnose caused by Colletotrichum gloeosporioides. HORTICULTURE RESEARCH 2023; 10:uhad086. [PMID: 37786525 PMCID: PMC10541558 DOI: 10.1093/hr/uhad086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/20/2023] [Indexed: 10/04/2023]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a C. gloeosporioides-induced lncRNA, lncRNA109897, located upstream from the target gene JrCCR4, upregulated the expression of JrCCR4. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of lncRNA109897 to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of Arabidopsis thaliana further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of C. gloeosporioides. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.
Collapse
Affiliation(s)
- Rui Zhou
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Yuhui Dong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Changxi Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Jianning Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Qiang Liang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Xiaoye Meng
- Department of Natural Resources Of Shandong Province, Forestry Protection and Development Service Center, Jinan, Shandong, China, 250000
| | - Xinya Lang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shengyi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Ke Qiang Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| |
Collapse
|
9
|
Fu Y, Shu L, Li H, Zhang X, Liu X, Ou Z, Liang X, Qi X, Yang L. Establishment of Highly Efficient Plant Regeneration, Callus Transformation and Analysis of Botrytis cinerea-Responsive PR Promoters in Lilium brownii var. viridulum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1992. [PMID: 37653909 PMCID: PMC10221712 DOI: 10.3390/plants12101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Lilium brownii var. viridulum, commonly called Longya lily, is a well-known flower and vegetable plant in China that has poor tolerance to Botrytis fungal disease. The molecularimprovement has mainly been restricted to an efficient regeneration and transformation system. In this study, the highly efficient regeneration of Longya lily was established through the optimization of embryogenic callus, adventitious shoot and rooting induction. The major factors influencing transformation (antibiotics, Agrobacterium concentration, infection time, suspension solution and coculture medium) were examined. The expression responses of PR promoters (ZmPR4 and BjCHI1) to B. cinerea were assessed in transgenic calli. The results showed that Murashige and Skoog (MS) medium with 1.0 mg·L-1 picloram (PIC) and 0.2 mg·L-1 1-naphthaleneacetic acid (NAA) under light conditions and MS with 0.5 mg·L-1 6-benzylaminopurine (6-BA) and 1.0 mg·L-1 NAA under darkness were optimal for embryogenic callus induction (64.67% rate) and proliferation (3.96 coefficient). Callus inoculation into MS containing 2.0 mg·L-1 thidiazuron (TDZ), 0.4 mg·L-1 NAA, 1.0 mg·L-1 TDZ and 0.5 mg·L-1 NAA led to shooting induction (92.22 of rate) and proliferation (3.28 of coefficient) promotion, respectively. The rooting rate reached 99.00% on MS with 0.3 mg·L-1 NAA. Moreover, a transformation rate of 65.56% was achieved by soaking the callus in Agrobacterium at an OD600 of 0.4 for 10 min in modified MS without NH4NO3 as the suspension solution and coculture medium before selecting 75 mg·L-1 hygromycin and 300 mg·L-1 cefotaxime. Only the BjCHI1 promoter was obviously expressed in transgenic calli. These results could facilitate the generation of Longya lily transgenic plants with improved B. cinerea resistance.
Collapse
Affiliation(s)
- Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Liling Shu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Hanyi Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xingming Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xuan Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Zhengying Ou
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaomeng Liang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xiangying Qi
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
10
|
Zhang C, Xie W, Fu H, Chen Y, Chen H, Cai T, Yang Q, Zhuang Y, Zhong X, Chen K, Gao M, Liu F, Wan Y, Pandey MK, Varshney RK, Zhuang W. Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to Ralstonia solanacearum infection in cultivated peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1048168. [PMID: 36684803 PMCID: PMC9845939 DOI: 10.3389/fpls.2022.1048168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bacterial wilt disease (BWD), caused by Ralstonia solanacearum is a major challenge for peanut production in China and significantly affects global peanut field productivity. It is imperative to identify genetic loci and putative genes controlling resistance to R. solanacearum (RRS). Therefore, a sequencing-based trait mapping approach termed "QTL-seq" was applied to a recombination inbred line population of 581 individuals from the cross of Yueyou 92 (resistant) and Xinhuixiaoli (susceptible). A total of 381,642 homozygous single nucleotide polymorphisms (SNPs) and 98,918 InDels were identified through whole genome resequencing of resistant and susceptible parents for RRS. Using QTL-seq analysis, a candidate genomic region comprising of 7.2 Mb (1.8-9.0 Mb) was identified on chromosome 12 which was found to be significantly associated with RRS based on combined Euclidean Distance (ED) and SNP-index methods. This candidate genomic region had 180 nonsynonymous SNPs and 14 InDels that affected 75 and 11 putative candidate genes, respectively. Finally, eight nucleotide binding site leucine rich repeat (NBS-LRR) putative resistant genes were identified as the important candidate genes with high confidence. Two diagnostic SNP markers were validated and revealed high phenotypic variation in the different resistant and susceptible RIL lines. These findings advocate the expediency of the QTL-seq approach for precise and rapid identification of candidate genomic regions, and the development of diagnostic markers that are applicable in breeding disease-resistant peanut varieties.
Collapse
Affiliation(s)
- Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wenping Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Fu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuting Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhui Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kun Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Hembade VL, Yashveer S, Taunk J, Sangwan S, Tokas J, Singh V, Redhu NS, Grewal S, Malhotra S, Kumar M. Chitosan-Salicylic acid and Zinc sulphate nano-formulations defend against yellow rust in wheat by activating pathogenesis-related genes and enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:129-140. [PMID: 36228444 DOI: 10.1016/j.plaphy.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Stripe rust instigated by Puccinia striiformis f. sp. tritici causes major yield loss in wheat. In this study, disease resistance was induced in wheat by pre-activation of pathogenesis related (PR) genes using two different nano-formulations (NFs) i.e. Chitosan- Salicylic acid (SA) NFs (CH-NFs) and Zinc sulphate NFs (Zn-NFs). These NFs were synthesized using green approach and were characterized using various techniques. Both NFs effectively controlled stripe rust in wheat genotypes (WH 711 and WH 1123) by significantly increasing activities of phenylalanine ammonia lyase, tyrosine ammonia lyase and polyphenol oxidase enzymes when compared with disease free-control and diseased plants. Total soluble sugar (TSS) level was highest in CH-NF treated plants. TSS was also relatively higher in diseased plants than disease free-control as well as Zn-NF treated plants. Both CH-NFs and Zn-NFs induced the expression of PR genes. In CH-NF treated plants, the relative expression of PR genes was higher on the 3rd day after spraying (DAS) of NFs as compared to diseased and Zn-NF treated plants in both the genotypes. While in case of Zn-NF treated plants, relative expression of PR genes was higher on 5th DAS as compared to diseased and disease free-control plants. Early rise in expression of PR genes due to NF treatments was responsible for disease resistance in both the wheat genotypes as evidenced by a lower average coefficient of infection. These NFs can be synthesized easily with low cost input, are eco-friendly and can be effectively used against yellow rust as well as other wheat diseases.
Collapse
Affiliation(s)
- Vivekanand Laxman Hembade
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India
| | - Sonali Sangwan
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Jayanti Tokas
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Vikram Singh
- Wheat Section, Department of Genetics & Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Neeru Singh Redhu
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Shalini Malhotra
- Department of Biotechnology, Pt Jawahar Lal Nehru Government College, Faridabad, 121002, Haryana, India
| | - Mukesh Kumar
- Wheat Section, Department of Genetics & Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
12
|
Ma G, Song Q, Li X, Qi L. Genetic Insight into Disease Resistance Gene Clusters by Using Sequencing-Based Fine Mapping in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2022; 23:9516. [PMID: 36076914 PMCID: PMC9455867 DOI: 10.3390/ijms23179516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Rust and downy mildew (DM) are two important sunflower diseases that lead to significant yield losses globally. The use of resistant hybrids to control rust and DM in sunflower has a long history. The rust resistance genes, R13a and R16, were previously mapped to a 3.4 Mb region at the lower end of sunflower chromosome 13, while the DM resistance gene, Pl33, was previously mapped to a 4.2 Mb region located at the upper end of chromosome 4. High-resolution fine mapping was conducted using whole genome sequencing of HA-R6 (R13a) and TX16R (R16 and Pl33) and large segregated populations. R13a and R16 were fine mapped to a 0.48 cM region in chromosome 13 corresponding to a 790 kb physical interval on the XRQr1.0 genome assembly. Four disease defense-related genes with nucleotide-binding leucine-rich repeat (NLR) motifs were found in this region from XRQr1.0 gene annotation as candidate genes for R13a and R16. Pl33 was fine mapped to a 0.04 cM region in chromosome 4 corresponding to a 63 kb physical interval. One NLR gene, HanXRQChr04g0095641, was predicted as the candidate gene for Pl33. The diagnostic SNP markers developed for each gene in the current study will facilitate marker-assisted selections of resistance genes in sunflower breeding programs.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102-6050, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705-2350, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102-6050, USA
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102-2765, USA
| |
Collapse
|
13
|
Backer R, Engelbrecht J, van den Berg N. Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:928176. [PMID: 35837458 PMCID: PMC9274290 DOI: 10.3389/fpls.2022.928176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hemibiotrophic plant pathogen Phytophthora cinnamomi Rands is the most devastating pathogen of avocado (Persea americana Mill.) and, as such, causes significant annual losses in the industry. Although the molecular basis of P. cinnamomi resistance in avocado and P. cinnamomi virulence determinants have been the subject of recent research, none have yet attempted to compare the transcriptomic responses of both pathogen and host during their interaction. In the current study, the transcriptomes of both avocado and P. cinnamomi were explored by dual RNA sequencing. The basis for partial resistance was sought by the inclusion of both susceptible (R0.12) and partially resistant (Dusa®) rootstocks sampled at early (6, 12 and 24 hours post-inoculation, hpi) and late time-points (120 hpi). Substantial differences were noted in the number of differentially expressed genes found in Dusa® and R0.12, specifically at 12 and 24 hpi. Here, the partially resistant rootstock perpetuated defense responses initiated at 6 hpi, while the susceptible rootstock abruptly reversed course. Instead, gene ontology enrichment confirmed that R0.12 activated pathways related to growth and development, essentially rendering its response at 12 and 24 hpi no different from that of the mock-inoculated controls. As expected, several classes of P. cinnamomi effector genes were differentially expressed in both Dusa® and R0.12. However, their expression differed between rootstocks, indicating that P. cinnamomi might alter the expression of its effector arsenal based on the rootstock. Based on some of the observed differences, several P. cinnamomi effectors were highlighted as potential candidates for further research. Similarly, the receptor-like kinase (RLK) and apoplastic protease coding genes in avocado were investigated, focusing on their potential role in differing rootstock responses. This study suggests that the basis of partial resistance in Dusa® is predicated on its ability to respond appropriately during the early stages following P. cinnamomi inoculation, and that important components of the first line of inducible defense, apoplastic proteases and RLKs, are likely to be important to the observed outcome.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Fick A, Swart V, Backer R, Bombarely A, Engelbrecht J, van den Berg N. Partially Resistant Avocado Rootstock Dusa ® Shows Prolonged Upregulation of Nucleotide Binding-Leucine Rich Repeat Genes in Response to Phytophthora cinnamomi Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:793644. [PMID: 35360305 PMCID: PMC8963474 DOI: 10.3389/fpls.2022.793644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Avocado is an important agricultural food crop in many countries worldwide. Phytophthora cinnamomi, a hemibiotrophic oomycete, remains one of the most devastating pathogens within the avocado industry, as it is near impossible to eradicate from areas where the pathogen is present. A key aspect to Phytophthora root rot disease management is the use of avocado rootstocks partially resistant to P. cinnamomi, which demonstrates an increased immune response following infection. In plant species, Nucleotide binding-Leucine rich repeat (NLR) proteins form an integral part of pathogen recognition and Effector triggered immune responses (ETI). To date, a comprehensive set of Persea americana NLR genes have yet to be identified, though their discovery is crucial to understanding the molecular mechanisms underlying P. americana-P. cinnamomi interactions. In this study, a total of 161 PaNLR genes were identified in the P. americana West-Indian pure accession genome. These putative resistance genes were characterized using bioinformatic approaches and grouped into 13 distinct PaNLR gene clusters, with phylogenetic analysis revealing high sequence similarity within these clusters. Additionally, PaNLR expression levels were analyzed in both a partially resistant (Dusa®) and a susceptible (R0.12) avocado rootstock infected with P. cinnamomi using an RNA-sequencing approach. The results showed that the partially resistant rootstock has increased expression levels of 84 PaNLRs observed up to 24 h post-inoculation, while the susceptible rootstock only showed increased PaNLR expression during the first 6 h post-inoculation. Results of this study may indicate that the partially resistant avocado rootstock has a stronger, more prolonged ETI response which enables it to suppress P. cinnamomi growth and combat disease caused by this pathogen. Furthermore, the identification of PaNLRs may be used to develop resistant rootstock selection tools, which can be employed in the avocado industry to accelerate rootstock screening programs.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Robert Backer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (IBMCP-CSIC-UPV), Valencia, Spain
| | - Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Li S, Hanlon R, Wise H, Pal N, Brar H, Liao C, Gao H, Perez E, Zhou L, Tyler BM, Bhattacharyya MK. Interaction of Phytophthora sojae Effector Avr1b With E3 Ubiquitin Ligase GmPUB1 Is Required for Recognition by Soybeans Carrying Phytophthora Resistance Rps1-b and Rps1-k Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:725571. [PMID: 34691104 PMCID: PMC8526854 DOI: 10.3389/fpls.2021.725571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 05/27/2023]
Abstract
Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.
Collapse
Affiliation(s)
- Shan Li
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Regina Hanlon
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hua Wise
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Narinder Pal
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hargeet Brar
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chunyu Liao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hongyu Gao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Eli Perez
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Lecong Zhou
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Brett M. Tyler
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
16
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
17
|
Kaur B, Bhatia D, Mavi GS. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J Genet 2021. [DOI: 10.1007/s12041-021-01300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Gao X, Guo P, Wang Z, Chen C, Ren Z. Transcriptome profiling reveals response genes for downy mildew resistance in cucumber. PLANTA 2021; 253:112. [PMID: 33914134 DOI: 10.1007/s00425-021-03603-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
We discovered a potential defense pathway of cucumber to downy mildew. The signaling that activates the pathways of ROS and lignin accumulation may play an important role in the defense response. Many resistance genes were identified by transcriptome analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive diseases and causes severe yield losses of cucumber. However, the genes and pathways involved in regulating DM resistance were still poorly understood. In our study, we observed that the highly sensitive inbred line 53 (IL53) exhibited more severe disease symptoms than the highly resistant inbred line 51 (IL51) under P. cubensis infection. Furthermore, lignin, limiting the germination and extension of P. cubensis, and H2O2, as a signaling molecule during the resistant process, were both shown to increase, indicating that the signaling that activates these pathways might be responsible for the resistance divergence between IL51 and IL53. Transcriptome analysis, using the resistant and susceptible pools in F2 populations with IL51 and IL53 as parents, showed that a series of differentially expressed genes was involved in multiple functions of defense response: pathogen-associated molecular pattern recognition, signal transduction, reactive oxygen species and lignin accumulation, and transcription regulators. Combining physiological data with transcriptomes, we predicted a potential molecular mechanism of cucumber resistance to DM. Our research provided a foundation for further studies on the mechanism of cucumber resistance to DM.
Collapse
Affiliation(s)
- Xinbin Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Pei Guo
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Zhiyuan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| |
Collapse
|
19
|
Identification of Bacterial Blight Resistance Loci in Rice ( Oryza sativa L.) against Diverse Xoo Thai Strains by Genome-Wide Association Study. PLANTS 2021; 10:plants10030518. [PMID: 33802191 PMCID: PMC8001028 DOI: 10.3390/plants10030518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1–6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.
Collapse
|
20
|
Ma Y, Chhapekar SS, Lu L, Oh S, Singh S, Kim CS, Kim S, Choi GJ, Lim YP, Choi SR. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC PLANT BIOLOGY 2021; 21:47. [PMID: 33461498 PMCID: PMC7814608 DOI: 10.1186/s12870-020-02803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/16/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes are important for plant development and disease resistance. Although genome-wide studies of NBS-encoding genes have been performed in several species, the evolution, structure, expression, and function of these genes remain unknown in radish (Raphanus sativus L.). A recently released draft R. sativus L. reference genome has facilitated the genome-wide identification and characterization of NBS-encoding genes in radish. RESULTS A total of 225 NBS-encoding genes were identified in the radish genome based on the essential NB-ARC domain through HMM search and Pfam database, with 202 mapped onto nine chromosomes and the remaining 23 localized on different scaffolds. According to a gene structure analysis, we identified 99 NBS-LRR-type genes and 126 partial NBS-encoding genes. Additionally, 80 and 19 genes respectively encoded an N-terminal Toll/interleukin-like domain and a coiled-coil domain. Furthermore, 72% of the 202 NBS-encoding genes were grouped in 48 clusters distributed in 24 crucifer blocks on chromosomes. The U block on chromosomes R02, R04, and R08 had the most NBS-encoding genes (48), followed by the R (24), D (23), E (23), and F (17) blocks. These clusters were mostly homogeneous, containing NBS-encoding genes derived from a recent common ancestor. Tandem (15 events) and segmental (20 events) duplications were revealed in the NBS family. Comparative evolutionary analyses of orthologous genes among Arabidopsis thaliana, Brassica rapa, and Brassica oleracea reflected the importance of the NBS-LRR gene family during evolution. Moreover, examinations of cis-elements identified 70 major elements involved in responses to methyl jasmonate, abscisic acid, auxin, and salicylic acid. According to RNA-seq expression analyses, 75 NBS-encoding genes contributed to the resistance of radish to Fusarium wilt. A quantitative real-time PCR analysis revealed that RsTNL03 (Rs093020) and RsTNL09 (Rs042580) expression positively regulates radish resistance to Fusarium oxysporum, in contrast to the negative regulatory role for RsTNL06 (Rs053740). CONCLUSIONS The NBS-encoding gene structures, tandem and segmental duplications, synteny, and expression profiles in radish were elucidated for the first time and compared with those of other Brassicaceae family members (A. thaliana, B. oleracea, and B. rapa) to clarify the evolution of the NBS gene family. These results may be useful for functionally characterizing NBS-encoding genes in radish.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sangheon Oh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sonam Singh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Chang Soo Kim
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province 17565 Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
21
|
Conti G, Gardella V, Vandecaveye MA, Gomez CA, Joris G, Hauteville C, Burdyn L, Almasia NI, Nahirñak V, Vazquez-Rovere C, Gochez AM, Furman N, Lezcano CC, Kobayashi K, García ML, Canteros BI, Hopp HE, Reyes CA. Transgenic Citrange troyer rootstocks overexpressing antimicrobial potato Snakin-1 show reduced citrus canker disease symptoms. J Biotechnol 2020; 324:99-102. [PMID: 32998033 DOI: 10.1016/j.jbiotec.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
Citrus canker is a major disease caused by Xanthomonas citri pv. citri. Snakin-1 is an antimicrobial peptide, which was previously shown to be effective against different bacterial and fungal diseases in potato, wheat and lettuce when expressed in transgenic plants. We generated transgenic Citrange Troyer citrus rootstocks constitutively expressing this peptide and 5 different transgenic lines were challenged against virulent X. citri isolates. Challenge assays conducted in vitro using detached leaves and in planta by infiltration revealed a significant reduction of the number and size of canker lesions in some of the transgenic lines.
Collapse
Affiliation(s)
- G Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Instituto de Biotecnología CICVyA-INTA, Hurlingham, Provincia de Buenos Aires, Argentina; Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - V Gardella
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, La Plata, Provincia de Buenos Aires, Argentina
| | - M A Vandecaveye
- EEA Bella Vista, INTA, Bella Vista, Provincia de Corrientes, Argentina
| | - C A Gomez
- EEA Concordia, INTA, Concordia, Provincia de Entre Ríos, Argentina
| | - G Joris
- EEA Concordia, INTA, Concordia, Provincia de Entre Ríos, Argentina
| | - C Hauteville
- EEA Concordia, INTA, Concordia, Provincia de Entre Ríos, Argentina
| | - L Burdyn
- EEA Concordia, INTA, Concordia, Provincia de Entre Ríos, Argentina
| | - N I Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Instituto de Biotecnología CICVyA-INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - V Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Instituto de Biotecnología CICVyA-INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - C Vazquez-Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Instituto de Biotecnología CICVyA-INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - A M Gochez
- EEA Bella Vista, INTA, Bella Vista, Provincia de Corrientes, Argentina
| | - N Furman
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - C C Lezcano
- EEA Bella Vista, INTA, Bella Vista, Provincia de Corrientes, Argentina
| | - K Kobayashi
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - M L García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, La Plata, Provincia de Buenos Aires, Argentina
| | - B I Canteros
- EEA Bella Vista, INTA, Bella Vista, Provincia de Corrientes, Argentina
| | - H E Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Instituto de Biotecnología CICVyA-INTA, Hurlingham, Provincia de Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, La Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
22
|
Correr FH, Hosaka GK, Gómez SGP, Cia MC, Vitorello CBM, Camargo LEA, Massola NS, Carneiro MS, Margarido GRA. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. PLANT CELL REPORTS 2020; 39:873-889. [PMID: 32314046 DOI: 10.1007/s00299-020-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/02/2023]
Abstract
Successful orange rust development on sugarcane can potentially be explained as suppression of the plant immune system by the pathogen or delayed plant signaling to trigger defense responses. Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inoculation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensitive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune response regulation provided evidence of some potential defense response. Events related to biotic stress responses were predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient recognition system by a susceptible sugarcane genotype.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Guilherme Kenichi Hosaka
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Sergio Gregorio Pérez Gómez
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mariana Cicarelli Cia
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Claudia Barros Monteiro Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Nelson Sidnei Massola
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, São Paulo, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
23
|
Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. ACTA ACUST UNITED AC 2020; 1:332-342. [PMID: 37128085 DOI: 10.1038/s43016-020-0075-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
Emerging fungal and oomycete pathogens infect staple calorie crops and economically important commodity crops, thereby posing a significant risk to global food security. Our current agricultural systems - with emphasis on intensive monoculture practices - and globalized markets drive the emergence and spread of new pathogens and problematic traits, such as fungicide resistance. Climate change further promotes the emergence of pathogens on new crops and in new places. Here we review the factors affecting the introduction and spread of pathogens and current disease control strategies, illustrating these with the historic example of the Irish potato famine and contemporary examples of soybean rust, wheat blast and blotch, banana wilt and cassava root rot. Our Review looks to the future, summarizing what we see as the main challenges and knowledge gaps, and highlighting the direction that research must take to face the challenge of emerging crop pathogens.
Collapse
|
24
|
Vadivukkarasi P, Bhai RS. Phyllosphere-associated Methylobacterium: a potential biostimulant for ginger (Zingiber officinale Rosc.) cultivation. Arch Microbiol 2020; 202:369-375. [PMID: 31673721 DOI: 10.1007/s00203-019-01753-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Methanol, a by-product associated with plant metabolism, is a substrate for pink pigmented facultative methylotrophs (PPFMs) of phyllosphere. The symbiotic interaction of PPFMs has many desirable effects on plant growth and disease resistance. The present study investigated the potential of native PPFMs for mitigating biotic stress and plant growth promotion in ginger. PPFMs were isolated from ginger phyllosphere by leaf imprint technique and screened against major fungal phytopathogens of ginger viz. Macrophomina phaseolina, Sclerotium rolfsii, Pythium myriotylum, Colletotrichum gloeosporioides and Fusarium oxysporum. Among the 60 PPFMs, IISRGPPFM13 was selected for its highly inhibitory activity against the target pathogens. The isolate was useful for mineral solubility, production of IAA, siderophores and hydrolytic enzymes like cellulase, pectinase, lipase, amylase and chitinase. On in planta experiments revealed that IISRGPPFM13 considerably increased plant growth parameters when the bacterium was applied as soil drenching cum foliar spraying. Methanol utilization potential of the isolate was confirmed by mxaF gene analysis where the sequence showing 95.51% identity towards Methylobacterium platani and M. iners. Further, 16S rRNA gene sequence showing 98.73% identity with M. komagatae 002-079 T (AB252201). This is the first report of its kind that a genus of Methylobacterium with biostimulant potential isolated from the phyllosphere of ginger.
Collapse
Affiliation(s)
- Ponnusamy Vadivukkarasi
- Division of Crop Protection, ICAR-Indian Institute of Spices Research (IISR), Marikunnu P.O., Kozhikode, Kerala, 673012, India
| | - R Suseela Bhai
- Division of Crop Protection, ICAR-Indian Institute of Spices Research (IISR), Marikunnu P.O., Kozhikode, Kerala, 673012, India.
| |
Collapse
|
25
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
26
|
Xu YQ, Wang H, Qin RL, Fang LJ, Liu Z, Yuan SS, Gai YP, Ji XL. Characterization of NPR1 and NPR4 genes from mulberry (Morus multicaulis) and their roles in development and stress resistance. PHYSIOLOGIA PLANTARUM 2019; 167:302-316. [PMID: 30506684 DOI: 10.1111/ppl.12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The quality and quantity of mulberry leaves are often affected by various environmental factors. The plant NPR1 and its homologous genes are important for plant systemic acquired resistance. Here, the full-length cDNAs encoding the NPR1 and NPR4 genes (designated MuNPR1 and MuNPR4, respectively) were isolated from Morus multicaulis. Sequence analysis of the amino acids and protein modeling of the MuNPR1 and MuNPR4 proteins showed that MuNPR1 shares some conserved characteristics with its homolog MuNPR4. MuNPR1 was shown to have different expression patterns than MuNPR4 in mulberry plants. Interestingly, MuNPR1 or MuNPR4 transgenic Arabidopsis produced an early flowering phenotype, and the expression of the pathogenesis-related 1a gene was promoted in MuNPR1 transgenic Arabidopsis. The MuNPR1 transgenic plants showed more resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000) than did the wild-type Arabidopsis. Moreover, the ectopic expression of MuNPR1 might lead to enhanced scavenging ability and suppress collase accumulation. In contrast, the MuNPR4 transgenic Arabidopsis were hypersensitive to Pst. DC3000 infection. In addition, transgenic Arabidopsis with the ectopic expression of either MuNPR1 or MuNPR4 showed sensitivity to salt and drought stresses. Our data suggest that both the MuNPR1 and MuNPR4 genes play a role in the coordination between signaling pathways, and the information provided here enables the in-depth functional analysis of the MuNPR1 and MuNPR4 genes and may promote mulberry resistance breeding in the future.
Collapse
Affiliation(s)
- Yu-Qi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Hong Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Rong-Li Qin
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Li-Jing Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhuang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuo-Shuo Yuan
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xian-Ling Ji
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
27
|
Song H, Cai Z, Liao J, Tang D, Zhang S. Sexually differential gene expressions in poplar roots in response to nitrogen deficiency. TREE PHYSIOLOGY 2019; 39:1614-1629. [PMID: 31115478 DOI: 10.1093/treephys/tpz057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a key nutrient impacting plant growth and physiological processes. However, the supply of N is often not sufficient to meet the requirements of trees in many terrestrial ecosystems. Because of differences in production costs, male and female plants have evolved different stress resistance strategies for N limitation. However, little is known about differential gene expression according to sex in poplars responding to N limitation. To explore sex-related constitutive defenses, Populus cathayana Rehder transcriptomic, proteomic and metabolic analyses were performed on the roots of male and female Populus cathayana. We detected 16,816 proteins and 37,286 transcripts, with 2797 overlapping proteins and mRNAs in the roots. In combination with the identification of 90 metabolites, we found that N deficiency greatly altered gene expression related to N metabolism as well as carbohydrate metabolism, secondary metabolism and stress-related processes in both sexes. Nitrogen-deficient P. cathayana females exhibited greater root biomass and less inhibition of citric acid production and glycolysis as well as higher secondary metabolic activity and abscisic acid contents than N-deficient P. cathayana males. Interestingly, males presented a better osmotic adjustment ability and higher expression of resistance genes, suggesting that P. cathayana males exhibit a better stress tolerance ability and can invest fewer resources in defense compared with females. Therefore, our study provides new molecular evidence that P. cathayana males and females adopt different resistance strategies to cope with N deficiency in their roots.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoteng Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Zhang Y, Guo M, Shen J, Song X, Dong S, Wen Y, Yuan X, Guo P. Comparative Genomics Analysis in Grass Species Reveals Two Distinct Evolutionary Strategies Adopted by R Genes. Sci Rep 2019; 9:10735. [PMID: 31341223 PMCID: PMC6656885 DOI: 10.1038/s41598-019-47121-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 12/04/2022] Open
Abstract
Resistance genes play an important role in the defense of plants against the invasion of pathogens. In Setaria italica and closely related grass species, R genes have been identified through genetic mapping and genome-wide homologous/domain searching. However, there has been to date no systematic analysis of the evolutionary features of R genes across all sequenced grass genomes. Here, we determined and comprehensively compared R genes in all 12 assembled grass genomes and an outgroup species (Arabidopsis thaliana) through synteny and selection analyses of multiple genomes. We found that the two groups of nucleotide binding site (NBS) domains containing R genes—R tandem duplications (TD) and R singletons—adopted different strategies and showed different features in their evolution. Based on Ka/Ks analysis between syntenic R loci pairs of TDs or singletons, we conclude that R singletons are under stronger purifying selection to be conserved among different grass species than R TDs, while R genes located at TD arrays have evolved much faster through diversifying selection. Furthermore, using the variome datasets of S. italica populations, we scanned for selection signals on genes and observed that a part of R singleton genes have been under purifying selection in populations of S. italica, which is consistent with the pattern observed in syntenic R singletons among different grass species. Additionally, we checked the synteny relationships of reported R genes in grass species and found that the functionally mapped R genes for novel resistance traits are prone to appear in TDs and are heavily divergent from their syntenic orthologs in other grass species, such the black streak R gene Rxo1 in Z. mays and the blast R gene Pi37 in O. sativa. These findings indicate that the R genes from TDs adopted tandem duplications to evolve faster and accumulate more mutations to facilitate functional innovation to cope with variable threats from a fluctuating environment, while R singletons provide a way for R genes to maintain sequence stability and retain conservation of function.
Collapse
Affiliation(s)
- Yinan Zhang
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Meijun Guo
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Shen
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xie Song
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Yinyuan Wen
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China
| | - Pingyi Guo
- Agronomy College, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
29
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
30
|
Descalsota-Empleo GI, Noraziyah AAS, Navea IP, Chung C, Dwiyanti MS, Labios RJD, Ikmal AM, Juanillas VM, Inabangan-Asilo MA, Amparado A, Reinke R, Cruz CMV, Chin JH, Swamy BPM. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice. Genes (Basel) 2019; 10:E30. [PMID: 30626141 PMCID: PMC6356647 DOI: 10.3390/genes10010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
Collapse
Affiliation(s)
- Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- University of the Southern Mindanao, Kabacan, Cotabato 9407, Philippines.
| | | | - Ian Paul Navea
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Nousbo Corp. #4-107, 89 Seohoro, Gwonsun, Suwon 16614, Gyeonggi, Korea.
| | - Chongtae Chung
- Chungcheongnam-do Agricultural Research and Extension Services, 167, Chusa-ro, Shinam-myeon, Yesan-gun 32418, Chungcheongnam-do, Korea.
| | - Maria Stefanie Dwiyanti
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Applied Plant Genome Laboratory, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.
| | | | - Asmuni Mohd Ikmal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | - Amery Amparado
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | - Russell Reinke
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | | | - Joong Hyoun Chin
- Department of Integrative Bio-Industrial Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | | |
Collapse
|
31
|
Lin HA, Chen SY, Chang FY, Tung CW, Chen YC, Shen WC, Chen RS, Wu CW, Chung CL. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. BOTANICAL STUDIES 2018; 59:32. [PMID: 30578469 PMCID: PMC6303224 DOI: 10.1186/s40529-018-0248-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rice blast, caused by Magnaporthe oryzae, is an important rice disease occurring in all rice-growing areas. To manage blast disease effectively and in an environmentally friendly way, it is important to continually discover diverse resistant resources for breeding. In this study, genome-wide association study (GWAS) was used to map genes/loci resistant to rice blast in the open-access rice diversity panel 1 (RDP1), previously genotyped with a 44K single-nucleotide polymorphism array. Two geographically and genetically different M. oryzae isolates from Taiwan, D41-2 and 12YL-DL3-2, were used to challenge RDP1. Infected leaves were visually rated for lesion type (LT) and evaluated for proportion of diseased leaf area (%DLA) by image analysis software. RESULTS A total of 32 quantitative trait loci (QTLs) were identified, including 6 from LT, 30 from DLA, and 4 from both LT and DLA. In all, 22 regions co-localized with previously reported resistance (R) genes and/or QTLs, including two cloned R genes, Pita and Ptr; 19 mapped R loci, and 20 QTLs. We identified 100 candidate genes encoding leucine-rich repeat-containing proteins, transcription factors, ubiquitination-related proteins, and peroxidases, among others, in the QTL intervals. Putative resistance and susceptibility haplotypes of the 32 QTL regions for each tested rice accessions were also determined. CONCLUSIONS By using Taiwanese M. oryzae isolates and image-based phenotyping for detailed GWAS, this study offers insights into the genetics underlying the natural variation of blast resistance in RDP1. The results can help facilitate the selection of desirable donors for gene/QTL validation and blast resistance breeding.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Szu-Yu Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Fang-Yu Chang
- Kaohsiung District Agricultural Research and Extension Station, No. 2-6, Dehe Rd., Pingtung County, 90846 Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004 Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, No. 2-6, Dehe Rd., Pingtung County, 90846 Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| |
Collapse
|
32
|
Kim SM. Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2733-2743. [PMID: 30225642 PMCID: PMC6244528 DOI: 10.1007/s00122-018-3187-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/08/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Using QTL analysis and fine mapping, the novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis. Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major factor causing rice yield loss in most rice-cultivating countries, especially in Asia. The deployment of cultivars with resistance to BB is the most effective method to control the disease. However, the evolution of new Xoo or pathotypes altered by single-gene-dependent mutations often results in breakdown of resistance. Thus, efforts to identify novel R-genes with sustainable BB resistance are urgently needed. In this study, we identified three quantitative trait loci (QTLs) on chromosomes 1, 4, and 11, from an F2 population of 493 individuals derived from a cross between IR73571-3B-11-3-K3 and Ilpum using a 7K SNP chip. Of these QTLs, one major QTL, qBB_11, on chromosome 11 explained 61.58% of the total phenotypic variance in the population, with an LOD value of 113.59, based on SNPs 11964077 and 11985463. The single major R-gene, with recessive gene action, was designated xa44(t) and was narrowed down to a 120-kb segment flanked within 28.00 Mbp to 28.12 Mbp. Of nine ORFs present in the target region, two ORFs revealed significantly different expression levels of the candidate genes. These candidate genes (Os11g0690066 and Os11g0690466) are described as "serine/threonine protein kinase domain containing protein" and "hypothetical protein," respectively. The results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.
Collapse
Affiliation(s)
- Suk-Man Kim
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.
- IRRI-Korea Office, National Institute of Crop Science, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
33
|
Wei S, Wu M, Li G, Liu M, Jiang C, Li Z. Fungistatic Activity of Multiorigin Humic Acids in Relation to Their Chemical Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7514-7521. [PMID: 29987927 DOI: 10.1021/acs.jafc.8b01931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Humic acid (HA) has an inhibitory effect on phytopathogenic fungi, but the structure-activity relationship remains unclear. HAs were extracted from 14 different materials, and their fungistatic activities and elemental C, N, S, and O contents were measured. Cross-polarization magic-angle spinning 13C nuclear magnetic resonance (CPMAS 13C NMR) was used to measure the organic carbon composition. The results showed that all HAs suppressed phytopathogenic fungi growth, with Yunnan lignite HAs showing the highest inhibition (85.3%) against Physalospora piricola. The soil and compost HA aromaticity (ARO) was <50%, except for black soil HAs, while the ARO of all coal HAs was >60%. The ARO of meadow and moss peat HAs was <50%, while the ARO of woody peat HAs was 50.61%. Mantel test and redundancy analysis (RDA) were applied to evaluate the structure-activity relationship. The Mantel test revealed that the N, S, O, N/O, carbonyl C, aromatic C-O, and anomeric C contents were significantly correlated with fungistatic activity. The RDA analysis showed that the S content was positively correlated with fungistatic activity, while the O content was negatively correlated. The carbonyl C content had a positive correlation with fungistatic activity, while the anomeric C and aromatic C-O content had a negative correlation. A high S content and an active composition (carbonyl C) in HAs would lead to a high degree of fungistatic activity. Phytotoxicity test indicated all HAs were beneficial to plant growth. This work identified the basic properties of HAs from various raw materials that control their fungistatic activities.
Collapse
Affiliation(s)
- Shiping Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guilong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunyu Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
34
|
Cao L, Wu XM, Hu YW, Xue NN, Nie P, Chang MX. The discrepancy function of NLRC5 isoforms in antiviral and antibacterial immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:153-163. [PMID: 29454830 DOI: 10.1016/j.dci.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
NOD-like receptors (NLRs) are a family of intracellular pattern recognition receptors (PRRs) that play critical roles in innate immunity against pathogens infection. NLRC5, the largest member of NLR family, has been characterized as a regulator of innate immunity and MHC class I expression. Alternative splicing of NLRC5 is only reported in human and zebrafish. However, the function of NLRC5 isoforms in the innate immune responses remains unknown. In the present study, we report the functional characterization of zfNLRC5a and zfNLRC5d, two splicing isoforms of zebrafish NLRC5. zfNLRC5a and zfNLRC5d are generated by exon skipping, and whose alternative splicing sites exist in the region of LRRs. Fluorescence microscopy showed that zfNLRC5 isoforms were located throughout the entire cell including nuclear staining. The expression of zfNLRC5 isoform was inducible in response to bacterial and viral infections. During SVCV infection, the in vitro and in vivo studies found that zfNLRC5d overexpression increased protection against viral infection; however zfNLRC5a overexpression had no significant effect on antiviral activity. Interestingly, zfNLRC5 isoforms but not zfNLRC5 were involved in transcriptional regulation of TLRs and NF-κB signaling. Overexpression of zfNLRC5 isoforms also contributed to negative regulation of antibacterial immune response, with the decreased expression of nfkbiaa (IκBα). All together, these results firstly demonstrate the function of NLRC5 isoforms in antiviral and antibacterial immune responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China.
| |
Collapse
|
35
|
Lovelace AH, Smith A, Kvitko BH. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:750-765. [PMID: 29460676 DOI: 10.1094/mpmi-01-18-0008-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pattern-triggered immunity (PTI) can confer broad defense against diverse microbes and pathogens with disparate lifestyles through the detection of microbial extracellular signatures by surface-exposed pattern recognition receptors. However, unlike recognition of pathogen effectors by cytosolic resistance proteins, PTI is typically not associated with a host-cell programmed cell death response. Although host PTI signaling has been extensively studied, the mechanisms by which it restricts microbial colonization are poorly understood. We sought to gain insight into the mechanisms of PTI action by using bacterial transcriptomics analysis during exposure to PTI. Here, we describe a method for bacterial cell extraction from inoculated leaves that was used to analyze a time course of genome-wide transcriptional responses in the pathogen Pseudomonas syringae pv. tomato DC3000 during early naïve host infection and exposure to pre-induced PTI in Arabidopsis thaliana. Our analysis revealed early transcriptional regulation of important bacterial metabolic processes and host interaction pathways. We observed peak induction of P. syringae virulence genes at 3 h postinoculation and that exposure to PTI was associated with significant reductions in the expression of virulence genes. We also observed the induction of P. syringae sulfur starvation response genes such as sulfate and sulfonate importers only during exposure to PTI.
Collapse
Affiliation(s)
- Amelia H Lovelace
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Amy Smith
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Brian H Kvitko
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
- 2 The Plant Center, University of Georgia
| |
Collapse
|
36
|
Yuan C, Wang M, Skinner DZ, See DR, Xia C, Guo X, Chen X. Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici Through Characterization of a Sexual Population with Genotyping-by-Sequencing. PHYTOPATHOLOGY 2018; 108:133-141. [PMID: 28876207 DOI: 10.1094/phyto-04-17-0139-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host-pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Congying Yuan
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Meinan Wang
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Danniel Z Skinner
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Deven R See
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Chongjing Xia
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xinhong Guo
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xianming Chen
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
37
|
Dilla-Ermita CJ, Tandayu E, Juanillas VM, Detras J, Lozada DN, Dwiyanti MS, Vera Cruz C, Mbanjo EGN, Ardales E, Diaz MG, Mendioro M, Thomson MJ, Kretzschmar T. Genome-wide Association Analysis Tracks Bacterial Leaf Blight Resistance Loci In Rice Diverse Germplasm. RICE (NEW YORK, N.Y.) 2017; 10:8. [PMID: 28321828 PMCID: PMC5359197 DOI: 10.1186/s12284-017-0147-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/23/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND A range of resistance loci against different races of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial blight (BB) disease of rice, have been discovered and characterized. Several have been deployed in modern varieties, however, due to rapid evolution of Xoo, a number have already become ineffective. The continuous "arms race" between Xoo and rice makes it imperative to discover new resistance loci to enable durable deployment of multiple resistance genes in modern breeding lines. Rice diversity panels can be exploited as reservoirs of useful genetic variation for bacterial blight (BB) resistance. This study was conducted to identify loci associated to BB resistance, new genetic donors and useful molecular markers for marker-assisted breeding. RESULTS A genome-wide association study (GWAS) of BB resistance using a diverse panel of 285 rice accessions was performed to identify loci that are associated with resistance to nine Xoo strains from the Philippines, representative of eight global races. Single nucleotide polymorphisms (SNPs) associated with differential resistance were identified in the diverse panel and a subset of 198 indica accessions. Strong associations were found for novel SNPs linked with known bacterial blight resistance Xa genes, from which high utility markers for tracking and selection of resistance genes in breeding programs were designed. Furthermore, significant associations of SNPs in chromosomes 6, 9, 11, and 12 did not overlap with known resistance loci and hence might prove to be novel sources of resistance. Detailed analysis revealed haplotypes that correlated with resistance and analysis of putative resistance alleles identified resistant genotypes as potential donors of new resistance genes. CONCLUSIONS The results of the GWAS validated known genes underlying resistance and identified novel loci that provide useful targets for further investigation. SNP markers and genetic donors identified in this study will help plant breeders in improving and diversifying resistance to BB.
Collapse
Affiliation(s)
- Christine Jade Dilla-Ermita
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Erwin Tandayu
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Venice Margarette Juanillas
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Jeffrey Detras
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Dennis Nicuh Lozada
- Crop, Soil, and Environmental Science, University of Arkansas, Fayettevile, AR, USA
| | - Maria Stefanie Dwiyanti
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Casiana Vera Cruz
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Edwige Gaby Nkouaya Mbanjo
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Edna Ardales
- Crop Protection Cluster, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Maria Genaleen Diaz
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Merlyn Mendioro
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Tobias Kretzschmar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
38
|
Cui H, Wang C, Qin T, Xu F, Tang Y, Gao Y, Zhao K. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern. PLoS One 2017; 12:e0185925. [PMID: 28982185 PMCID: PMC5628896 DOI: 10.1371/journal.pone.0185925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly conserved in the Oryza genus but absent in other plant species by searching the plant database, suggesting that Xa23 originated along with the diversification of the Oryza genus from the grass family during evolution. This research offers a potential for flexible use of novel Xa23 alleles in rice breeding programs and provide a model for evolution analysis of other executor R genes.
Collapse
Affiliation(s)
- Hua Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Tengfei Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Feifei Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm JC, González I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schütze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun 2017; 8:15708. [PMID: 28585529 PMCID: PMC5467160 DOI: 10.1038/ncomms15708] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/21/2017] [Indexed: 01/13/2023] Open
Abstract
Rapid identification of agronomically important genes is of pivotal interest for crop breeding. One source of such genes are crop wild relative (CWR) populations. Here we used a CWR population of <200 wild beets (B. vulgaris ssp. maritima), sampled in their natural habitat, to identify the sugar beet (Beta vulgaris ssp. vulgaris) resistance gene Rz2 with a modified version of mapping-by-sequencing (MBS). For that, we generated a draft genome sequence of the wild beet. Our results show the importance of preserving CWR in situ and demonstrate the great potential of CWR for rapid discovery of causal genes relevant for crop improvement. The candidate gene for Rz2 was identified by MBS and subsequently corroborated via RNA interference (RNAi). Rz2 encodes a CC-NB-LRR protein. Access to the DNA sequence of Rz2 opens the path to improvement of resistance towards rhizomania not only by marker-assisted breeding but also by genome editing. Variation among wild relatives of crop plants can be used to identify genes underlying traits of agronomic importance. Here, the authors show that a modified mapping-by-sequencing approach can rapidly identify the genetic basis for viral resistance in sugar beet using wild beet populations in their natural habitat.
Collapse
Affiliation(s)
| | - D Ries
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - D Holtgräwe
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - A Minoche
- Max Planck Institute for Molecular Genetics, Ihnestraße 73, Berlin 14195, Germany.,Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - T Kraft
- Syngenta Seeds AB, Box 302, Landskrona 26123, Sweden
| | - S L M Frerichmann
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - T Rosleff Soerensen
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - J C Dohm
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - I González
- Centre for Genomic Regulation (CRG), Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - M Schilhabel
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - M Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, Göttingen 37079, Germany
| | - H Tschoep
- SESVanderHave N.V., Industriepark, Tienen 3300, Belgium
| | - H Uphoff
- Syngenta Seeds AB, Box 302, Landskrona 26123, Sweden
| | - K Schütze
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - D Borchardt
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - O Toerjek
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - W Mechelke
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - J C Lein
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - A W Schechert
- Strube Research GmbH &Co. KG, Hauptstraße 1, Söllingen 38387, Germany
| | - L Frese
- Federal Research Centre for Cultivated Plants (JKI), Erwin-Baur-Str. 27, Quedlinburg 06484, Germany
| | - H Himmelbauer
- Max Planck Institute for Molecular Genetics, Ihnestraße 73, Berlin 14195, Germany.,Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Centre for Genomic Regulation (CRG), Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - B Weisshaar
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - F J Kopisch-Obuch
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany.,KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| |
Collapse
|
40
|
Kim YM, Kim S, Koo N, Shin AY, Yeom SI, Seo E, Park SJ, Kang WH, Kim MS, Park J, Jang I, Kim PG, Byeon I, Kim MS, Choi J, Ko G, Hwang J, Yang TJ, Choi SB, Lee JM, Lim KB, Lee J, Choi IY, Park BS, Kwon SY, Choi D, Kim RW. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. DNA Res 2017; 24:71-80. [PMID: 28011721 PMCID: PMC5381346 DOI: 10.1093/dnares/dsw049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/10/2016] [Indexed: 11/14/2022] Open
Abstract
Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H. syriacus genome comprised of a 1.75 Gb assembly that covers 92% of the genome with only 1.7% (33 Mb) gap sequences. Predicted gene modeling detected 87,603 genes, mostly supported by deep RNA sequencing data. To define gene family distribution among relatives of H. syriacus, orthologous gene sets containing 164,660 genes in 21,472 clusters were identified by OrthoMCL analysis of five plant species, including H. syriacus, Arabidopsis thaliana, Gossypium raimondii, Theobroma cacao and Amborella trichopoda. We inferred their evolutionary relationships based on divergence times among Malvaceae plant genes and found that gene families involved in flowering regulation and disease resistance were more highly divergent and expanded in H. syriacus than in its close relatives, G. raimondii (DD) and T. cacao. Clustered gene families and gene collinearity analysis revealed that two recent rounds of whole-genome duplication were followed by diploidization of the H. syriacus genome after speciation. Copy number variation and phylogenetic divergence indicates that WGDs and subsequent diploidization led to unequal duplication and deletion of flowering-related genes in H. syriacus and may affect its unique floral morphology.
Collapse
Affiliation(s)
- Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seungill Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eunyoung Seo
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seong-Jin Park
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Myung-Shin Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jieun Park
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Insu Jang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Pan-Gyu Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Iksu Byeon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min-Seo Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - JinHyuk Choi
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Gunhwan Ko
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - JiHye Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Korea
| | - Tae-Jin Yang
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Korea
| | - Je Min Lee
- Department of Horticultural Science, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Jungho Lee
- Green Plant Institute, Yongin 446-908, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Beom-Seok Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Ryan W. Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
41
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
42
|
Mathur V, Javid L, Kulshrestha S, Mandal A, Reddy AA. World Cultivation of Genetically Modified Crops: Opportunities and Risks. SUSTAINABLE AGRICULTURE REVIEWS 2017. [DOI: 10.1007/978-3-319-58679-3_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Hadwiger LA, Tanaka K. Non-host Resistance: DNA Damage Is Associated with SA Signaling for Induction of PR Genes and Contributes to the Growth Suppression of a Pea Pathogen on Pea Endocarp Tissue. FRONTIERS IN PLANT SCIENCE 2017; 8:446. [PMID: 28421088 PMCID: PMC5379135 DOI: 10.3389/fpls.2017.00446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 05/06/2023]
Abstract
Salicylic acid (SA) has been reported to induce plant defense responses. The transcriptions of defense genes that are responsible for a given plant's resistance to an array of plant pathogens are activated in a process called non-host resistance. Biotic signals capable of carrying out the activation of pathogenesis-related (PR) genes in pea tissue include fungal DNase and chitosan, two components released from Fusarium solani spores that are known to target host DNA. Recent reports indicate that SA also has a physical affinity for DNA. Here, we report that SA-induced reactive oxygen species release results in fragment alterations in pea nuclear DNA and cytologically detectable diameter and structural changes in the pea host nuclei. Additionally, we examine the subsequent SA-related increase of resistance to the true pea pathogen F. solani f.sp. pisi and the accumulation of the phytoalexin pisatin. This is the first report showing that SA-induced PR gene activation may be attributed to the host pea genomic DNA damage and that at certain concentrations, SA can be temporally associated with subsequent increases in the defense response of this legume.
Collapse
|
44
|
Chang SP, Jeon YH, Kim YH. Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection. THE PLANT PATHOLOGY JOURNAL 2016; 32:311-320. [PMID: 27493606 PMCID: PMC4968641 DOI: 10.5423/ppj.oa.12.2015.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 06/06/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ.
Collapse
Affiliation(s)
- Sung Pae Chang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Animal and Plant Quarantine Agency, Anyang 14089,
Korea
| | - Yong Ho Jeon
- Department of Bioresource Sciences, Andong National University, Andong 36729,
Korea
| | - Young Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
45
|
Habachi-Houimli Y, Khalfallah Y, Makni H, Makni M, Bouktila D. Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. C R Biol 2016; 339:347-56. [PMID: 27349470 DOI: 10.1016/j.crvi.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
Abstract
In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Yosra Khalfallah
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Hanem Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de l'animation pour la jeunesse et la culture (ISAJC), université de Tunis, 2055 Bir El Bey, Tunisia
| | - Mohamed Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Dhia Bouktila
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja (ISBB), université de Jendouba, 9000 Béja, Tunisia.
| |
Collapse
|
46
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
47
|
Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica. Biochem Genet 2016; 54:232-248. [DOI: 10.1007/s10528-016-9715-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/22/2016] [Indexed: 11/27/2022]
|
48
|
Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016; 21:182. [PMID: 26848649 PMCID: PMC6273650 DOI: 10.3390/molecules21020182] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/04/2022] Open
Abstract
Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the “Plant Cell Factory” concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.
Collapse
|
49
|
Tian Y, Zhan G, Chen X, Tungruentragoon A, Lu X, Zhao J, Huang L, Kang Z. Virulence and Simple Sequence Repeat Marker Segregation in a Puccinia striiformis f. sp. tritici Population Produced by Selfing a Chinese Isolate on Berberis shensiana. PHYTOPATHOLOGY 2016; 106:185-91. [PMID: 26551448 DOI: 10.1094/phyto-07-15-0162-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, frequently produces new races overcoming resistance in wheat cultivars. A recently identified race, V26 with virulence to Yr26 and many other stripe rust resistance genes, has a high potential to cause epidemics in China. In this study, teliospores from a single-urediniospore isolate of V26 (Pinglan 17-7) produced on the wheat line 92R137 (Yr26) were used to produce a sexual population through selfing by infecting Berberis shensiana plants under controlled conditions. One hundred and eighteen progeny isolates and the parental isolate were phenotyped for virulence/avirulence on 24 Yr gene lines of wheat. These progeny isolates were all avirulent to Yr5, Yr8, Yr15, and YrTr1 and virulent to Yr1, Yr2, Yr7, Yr9, Yr10, Yr17, Yr24, Yr25, Yr26, YrA, YrExp2, and YrV23, indicating that the parental isolate is homozygous avirulent or homozygous virulent at these loci. The progeny population segregated for avirulence to Yr6, Yr43, and YrSP at one locus (3 avirulent:1 virulent ratio); for virulence to Yr27 and Yr28 at one locus (3 virulent:1 avirulent); and for Yr4, Yr32, and Yr44 at two loci (15 virulent:1 avirulent). Among the eight segregating avirulence/virulence loci, association was found between virulence to Yr4 and Yr32, as well as between virulence to Yr6 and Yr43 based on χ(2) tests. From 82 genotypically different progeny isolates, 24 pathotypes and 82 multilocus genotypes were identified. The results show that a highly diverse population can be produced from a single isolate by selfing on a barberry plant and sexually produced population can be used to genetically characterize virulence of the stripe rust pathogen.
Collapse
Affiliation(s)
- Yuan Tian
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Gangming Zhan
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xianming Chen
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Angkana Tungruentragoon
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xia Lu
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Jie Zhao
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Lili Huang
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Zhensheng Kang
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|
50
|
Ojaghian MR, Wang Q, Li X, Sun X, Xie GL, Zhang J, Hai-Wei F, Wang L. Inhibitory effect and enzymatic analysis of E-cinnamaldehyde against sclerotinia carrot rot. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 127:8-14. [PMID: 26821652 DOI: 10.1016/j.pestbp.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
This study was conducted to determine the inhibitory effect of E-cinnamaldehyde (EC) against causal agent of storage carrot rot, Sclerotinia sclerotiorum, under in vivo and in vitro conditions. Based on the results, EC was able to completely inhibit mycelial growth of three isolates (P>0.05) in both volatile and contact phases after 6days at the concentrations 200μl and 1μl/ml, respectively. In addition, EC at concentrations 1 and 10μl/ml completely inhibited carpogenic germination of three isolates. The results of in vivo trials showed that EC at the concentration of 10μl/ml was able to control the disease caused by isolates 1 and 3. However the disease caused by isolate 2 was inhibited with the concentration of 20μl/ml. In enzyme analyses, the activity of polyphenoloxidase and peroxidase did not change in the inoculated carrots after application of EC. Furthermore, the level of phenylalanine ammonia lyase decreased. These results indicated that EC does not have any potential to be considered as resistance inducers against sclerotinia carrot rot.
Collapse
Affiliation(s)
- Mohammad Reza Ojaghian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoting Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jingze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Fan Hai-Wei
- Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Li Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|