1
|
Liu Y, Li J, Cheng X, Zhang X. Bibliometric Analysis of the Top-Cited Publications and Research Trends for Stereotactic Body Radiotherapy. Front Oncol 2021; 11:795568. [PMID: 34926312 PMCID: PMC8677697 DOI: 10.3389/fonc.2021.795568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Objective This study aims to analyze the 100 most cited papers and research trends on stereotactic body radiotherapy (SBRT). Methods We used Web of Science to identify the 100 most frequently cited papers on SBRT on September 29, 2021 and extracted the following data: publication year, source title, country/region, organization, total citations, and average number of citations per year. The research type and research domain were classified independently by the authors. Then we carried out a bibliometric analysis to determine the trends in research on SBRT. Results These 100 papers were cited a total of 26,540 times, and the median number of citations was 190 (range, 138-1688). “Stereotactic body radiation therapy for inoperable early stage lung cancer” by Timmerman et al. had the highest number of total citations (1688 times). International Journal of Radiation Oncology, Biology, Physics published the largest number of papers (37 papers), followed by Journal of Clinical Oncology (13 papers). The USA contributed the most papers (67 papers), followed by Canada (18 papers). Primary lung cancer (33 papers, 10,683 citations) and oligometastases (30 papers, 7,147 citations) were the most cited research areas. Conclusions To the best of our knowledge, this is the first bibliometric analysis of the most frequently cited papers on SBRT. Our results provide insight into the historical development of SBRT and important advances in its application to cancer treatment. Early-stage non–small-cell lung cancer and oligometastases were the most cited research areas in the top 100 publications on SBRT, and SBRT combined with immunotherapy was a hot topic in the past few years. This study is helpful for researchers to identify the most influential papers and current research hotspots on SBRT.
Collapse
Affiliation(s)
- Yanhao Liu
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Jinying Li
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xu Cheng
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021; 8:723748. [PMID: 34513884 PMCID: PMC8429617 DOI: 10.3389/fmed.2021.723748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the introduction of new radiotherapy techniques, such as intensity modulated radiation therapy or stereotactic body radiation therapy, radiation induced lung injury remains a significant treatment related adverse event of thoracic radiation therapy. Functional lung avoidance radiation therapy is an emerging concept in the treatment of lung disease to better preserve lung function and to reduce pulmonary toxicity. While conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging offers a potential to increase the accuracy of lung functional mapping and to better tailor lung radiation therapy plans to the individual's lung function. Lung PET/CT imaging may also improve our understanding of radiation induced lung injury compared to the current anatomical based dose–volume constraints. In this review, recent advances in radiation therapy for the management of primary and secondary lung tumors and in V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The new opportunities and challenges arising from the integration of V/Q PET/CT imaging in radiation therapy planning are also discussed.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
| | - Martin Rehn
- Radiation Oncology Department, University Hospital, Brest, France
| | - Frédérique Blanc-Béguin
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| | - Pierre-Yves Le Roux
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| |
Collapse
|
3
|
Bednarz BP, Jupitz S, Lee W, Mills D, Chan H, Fiorillo T, Sabitini J, Shoudy D, Patel A, Mitra J, Sarcar S, Wang B, Shepard A, Matrosic C, Holmes J, Culberson W, Bassetti M, Hill P, McMillan A, Zagzebski J, Smith LS, Foo TK. First-in-human imaging using a MR-compatible e4D ultrasound probe for motion management of radiotherapy. Phys Med 2021; 88:104-110. [PMID: 34218199 DOI: 10.1016/j.ejmp.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Respiration-induced tumor or organ positional changes can impact the accuracy of external beam radiotherapy. Motion management strategies are used to account for these changes during treatment. The authors report on the development, testing, and first-in-human evaluation of an electronic 4D (e4D) MR-compatible ultrasound probe that was designed for hands-free operation in a MR and linear accelerator (LINAC) environment. METHODS Ultrasound components were evaluated for MR compatibility. Electromagnetic interference (EMI) shielding was used to enclose the entire probe and a factory-fabricated cable shielded with copper braids was integrated into the probe. A series of simultaneous ultrasound and MR scans were acquired and analyzed in five healthy volunteers. RESULTS The ultrasound probe led to minor susceptibility artifacts in the MR images immediately proximal to the ultrasound probe at a depth of <10 mm. Ultrasound and MR-based motion traces that were derived by tracking the salient motion of endogenous target structures in the superior-inferior (SI) direction demonstrated good concordance (Pearson correlation coefficients of 0.95-0.98) between the ultrasound and MRI datasets. CONCLUSION We have demonstrated that our hands-free, e4D probe can acquire ultrasound images during a MR acquisition at frame rates of approximately 4 frames per second (fps) without impacting either the MR or ultrasound image quality. This use of this technology for interventional procedures (e.g. biopsies and drug delivery) and motion compensation during imaging are also being explored.
Collapse
Affiliation(s)
- Bryan P Bednarz
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Sydney Jupitz
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Warren Lee
- GE Global Research, Niskayuna, NY 12309, United States
| | - David Mills
- GE Global Research, Niskayuna, NY 12309, United States
| | - Heather Chan
- GE Global Research, Niskayuna, NY 12309, United States
| | | | | | - David Shoudy
- GE Global Research, Niskayuna, NY 12309, United States
| | - Aqsa Patel
- GE Global Research, Niskayuna, NY 12309, United States
| | - Jhimli Mitra
- GE Global Research, Niskayuna, NY 12309, United States
| | | | - Bo Wang
- GE Global Research, Niskayuna, NY 12309, United States
| | - Andrew Shepard
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States
| | - Charles Matrosic
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States
| | - James Holmes
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Wesley Culberson
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Patrick Hill
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Alan McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - James Zagzebski
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - L Scott Smith
- GE Global Research, Niskayuna, NY 12309, United States
| | - Thomas K Foo
- GE Global Research, Niskayuna, NY 12309, United States
| |
Collapse
|
4
|
Grégoire V, Guckenberger M, Haustermans K, Lagendijk JJW, Ménard C, Pötter R, Slotman BJ, Tanderup K, Thorwarth D, van Herk M, Zips D. Image guidance in radiation therapy for better cure of cancer. Mol Oncol 2020; 14:1470-1491. [PMID: 32536001 PMCID: PMC7332209 DOI: 10.1002/1878-0261.12751] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
The key goal and main challenge of radiation therapy is the elimination of tumors without any concurring damages of the surrounding healthy tissues and organs. Radiation doses required to achieve sufficient cancer-cell kill exceed in most clinical situations the dose that can be tolerated by the healthy tissues, especially when large parts of the affected organ are irradiated. High-precision radiation oncology aims at optimizing tumor coverage, while sparing normal tissues. Medical imaging during the preparation phase, as well as in the treatment room for localization of the tumor and directing the beam, referred to as image-guided radiotherapy (IGRT), is the cornerstone of precision radiation oncology. Sophisticated high-resolution real-time IGRT using X-rays, computer tomography, magnetic resonance imaging, or ultrasound, enables delivery of high radiation doses to tumors without significant damage of healthy organs. IGRT is the most convincing success story of radiation oncology over the last decades, and it remains a major driving force of innovation, contributing to the development of personalized oncology, for example, through the use of real-time imaging biomarkers for individualized dose delivery.
Collapse
Affiliation(s)
- Vincent Grégoire
- Department of Radiation OncologyLéon Bérard Cancer CenterLyonFrance
| | - Matthias Guckenberger
- Department for Radiation OncologyUniversity Hospital ZurichUniversity of ZurichSwitzerland
| | - Karin Haustermans
- Department of Radiation OncologyLeuven Cancer InstituteUniversity Hospital GasthuisbergLeuvenBelgium
| | | | | | - Richard Pötter
- Department of Radiation OncologyMedical UniversityGeneral Hospital of ViennaAustria
| | - Ben J. Slotman
- Department of Radiation OncologyAmsterdam University Medical CentersThe Netherlands
| | - Kari Tanderup
- Department of OncologyAarhus University HospitalDenmark
| | - Daniela Thorwarth
- Section for Biomedical PhysicsDepartment of Radiation OncologyUniversity of TübingenGermany
| | - Marcel van Herk
- Department of Biomedical Engineering and PhysicsCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Institute of Cancer SciencesUniversity of ManchesterUK
- Department of Radiotherapy Related ResearchThe Christie NHS Foundation TrustManchesterUK
| | - Daniel Zips
- Department of Radiation OncologyUniversity of TübingenGermany
| |
Collapse
|
5
|
Keiper TD, Tai A, Chen X, Paulson E, Lathuilière F, Bériault S, Hébert F, Cooper DT, Lachaine M, Li XA. Feasibility of real‐time motion tracking using cine MRI during MR‐guided radiation therapy for abdominal targets. Med Phys 2020; 47:3554-3566. [DOI: 10.1002/mp.14230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Timothy D. Keiper
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - An Tai
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - Xinfeng Chen
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - Eric Paulson
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | | | | | - François Hébert
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - David T. Cooper
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - Martin Lachaine
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - X. Allen Li
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| |
Collapse
|
6
|
Chen GP, Tai A, Keiper TD, Lim S, Li XA. Technical Note: Comprehensive performance tests of the first clinical real-time motion tracking and compensation system using MLC and jaws. Med Phys 2020; 47:2814-2825. [PMID: 32277477 PMCID: PMC7496291 DOI: 10.1002/mp.14171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To evaluate the performance of the first clinical real‐time motion tracking and compensation system using multileaf collimator (MLC) and jaws during helical tomotherapy delivery. Methods Appropriate mechanical and dosimetry tests were performed on the first clinical real‐time motion tracking system (Synchrony on Radixact, Accuray Inc) recently installed in our institution. kV radiography dose was measured by CTDIw using a pencil chamber. Changes of beam characteristics with jaw offset and MLC leaf shift were evaluated. Various dosimeters and phantoms including A1SL ion chamber (Standard Imaging), Gafchromic EBT3 films (Ashland), TomoPhantom (Med Cal), ArcCheck (Sun Nuclear), Delta4 (ScandiDos), with fiducial or high contrast inserts, placed on two dynamical motion platforms (CIRS dynamic motion‐CIRS, Hexamotion‐ScandiDos), were used to assess the dosimetric accuracy of the available Synchrony modalities: fiducial tracking with nonrespiratory motion (FNR), fiducial tracking with respiratory modeling (FR), and fiducial free (e.g., lung tumor tracking) with respiratory modeling (FFR). Motion detection accuracy of a tracking target, defined as the difference between the predicted and instructed target positions, was evaluated with the root mean square (RMS). The dose accuracy of motion compensation was evaluated by verifying the dose output constancy and by comparing measured and planned (predicted) three‐dimensional (3D) dose distributions based on gamma analysis. Results The measured CTDIw for a single radiograph with a 120 kVp and 1.6 mAs protocol was 0.084 mGy, implying a low imaging dose of 8.4 mGy for a typical Synchrony motion tracking fraction with 100 radiographs. The dosimetric effect of the jaw swing or MLC leaf shift was minimal on depth dose (<0.5%) and was <2% on both beam profile width and output for typical motions. The motion detection accuracies, that is, RMS, were 0.84, 1.13, and 0.48 mm for FNR, FR, and FFR, respectively, well within the 1.5 mm recommended tolerance. Dose constancy with Synchrony was found to be within 2%. The gamma passing rates of 3D dose measurements for a variety of Synchrony plans were well within the acceptable level. Conclusions The motion tracking and compensation using kV radiography, MLC shifting, and jaw swing during helical tomotherapy delivery was tested to be mechanically and dosimetrically accurate for clinical use.
Collapse
Affiliation(s)
- Guang-Pei Chen
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plan Rd, Milwaukee, WI, 53226, USA
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plan Rd, Milwaukee, WI, 53226, USA
| | - Timothy D Keiper
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plan Rd, Milwaukee, WI, 53226, USA
| | - Sara Lim
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plan Rd, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plan Rd, Milwaukee, WI, 53226, USA
| |
Collapse
|
7
|
Ziegler M, Brandt T, Lettmaier S, Fietkau R, Bert C. Method for a motion model based automated 4D dose calculation. Phys Med Biol 2019; 64:225002. [PMID: 31618719 DOI: 10.1088/1361-6560/ab4e51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Vero system can treat intra-fractionally moving tumors with gimbaled dynamic tumor tracking (DTT) by rotating the treatment beam so that it follows the motion of the tumor. However, the changes in the beam geometry and the constant breathing motion of the patient influence the dose applied to the patient. This study aims to perform a full 4D dose reconstruction for thirteen patients treated with DTT at the Vero system at the Universitätsklinikum Erlangen and investigates the temporal resolution required to perform an accurate 4D dose reconstruction. For all patients, a 4DCT was used to train a 4D motion model, which is able to calculate pseudo-CT images for arbitrary breathing phases. A new CT image was calculated for every 100 ms of treatment and a dose calculation was performed according to the current beam geometry (i.e. the rotation of the treatment beam at this moment in time) by rotating according to the momentary beam rotation, which is extracted from log-files. The resulting dose distributions were accumulated on the planning CT and characteristic parameters were extracted and compared. [Formula: see text]-evaluations of dose accumulations with different spatial-temporal resolutions were performed to determine the minimal required resolution. In total 173 700 dose calculations were performed. The accumulated 4D dose distributions show a reduced mean GTV dose of 0.77% compared to the static treatment plan. For some patients larger deviations were observed, especially in the presence of a poor 4DCT quality. The [Formula: see text]-evaluation showed that a temporal resolution of 500 ms is sufficient for an accurate dose reconstruction. If the tumor motion is regarded as well, a spatial-temporal sampling of 1400 ms and 2 mm yields accurate results, which reduces the workload by 84%.
Collapse
Affiliation(s)
- Marc Ziegler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
8
|
Javadi S, Eckstein J, Ulizio V, Palm R, Reddy K, Pearson D. Evaluation of the use of abdominal compression of the lung in stereotactic radiation therapy. Med Dosim 2019; 44:365-369. [PMID: 30852064 DOI: 10.1016/j.meddos.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The goal of this retrospective study was to determine the benefit in using abdominal compression to reduce tumor motion for patients treated with lung stereotactic body radiotherapy. Forty-four lung lesions (n = 44) from 37 patients (N = 37) treated at the University of Toledo's Dana Cancer Center were assessed by determining the overall tumor displacement along with possible surrogates such as change in tidal volume and diaphragm displacement, with and without abdominal compression. Measurements of lung capacity were acquired from the 4DCT at maximum and minimum respiration in order to determine the tidal volume, with and without abdominal compression. Tumor centroid and diaphragm apex motion was then assessed in 3 dimensions from phase 0 to phase 50. This was measured in centimeters using the ruler method on MIM software, both with and without the compression belt. Change in overall tumor movement was 0.61 cm ± 0.09 cm with compression, and 0.60 cm ± 0.09 cm without the compression belt. Delta tumor motion was reduced in 5 cases, increased (made worse) in 6 cases, and did not clinically impact the remaining 33 cases. Average tidal volume with abdominal compression was 379.7 mL or 12.0% ± 0.724% of total lung volume while average tidal volume without abdominal compression was 337.7 mL or 10.5% ± 0.649% of total lung volume. Change in diaphragm position throughout the breathing cycle was 1.21 cm ± 0.10 cm with compression, and 1.28 ± 0.13 cm without the compression belt. These findings indicate that abdominal compression may not be an effective method in the reduction of respiratory motion, and can even negatively impact tumor motion by increasing its displacement. Compression decreased tumor motion in 5 out of the 44 cases studied. The 5 cases that benefitted tended to be lesions close to the diaphragm but these 5 corresponded to less than half of the inferior lesions, suggesting that even inferior lung lesions may not be prime candidates for abdominal compression.
Collapse
Affiliation(s)
- Saba Javadi
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Jacob Eckstein
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Vincent Ulizio
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA.
| | - Russell Palm
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Krishna Reddy
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - David Pearson
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Cilla S, Ianiro A, Craus M, Viola P, Deodato F, Macchia G, Buwenge M, Morganti AG, Valentini V, Piermattei A. Epid-based in vivo dose verification for lung stereotactic treatments delivered with multiple breath-hold segmented volumetric modulated arc therapy. J Appl Clin Med Phys 2019; 20:37-44. [PMID: 30790439 PMCID: PMC6414179 DOI: 10.1002/acm2.12538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
We evaluated an EPID-based in-vivo dosimetry (IVD) method for the dose verification and the treatment reproducibility of lung SBRT-VMAT treatments in clinical routine. Ten patients with lung metastases treated with Elekta VMAT technique were enrolled. All patients were irradiated in five consecutive fractions, with total doses of 50 Gy. Set-up was carried out with the Elekta stereotactic body frame. Eight patients were simulated and treated using the Active Breath Control (ABC) system, a spirometer enabling patients to maintain a breath-hold at a predetermined lung volume. Two patients were simulated and treated in free-breathing using an abdominal compressor. IVD was performed using the SOFTDISO software. IVD tests were evaluated by means of (a) ratio R between daily in-vivo isocenter dose and planned dose and (b) γ-analysis between EPID integral portal images in terms of percentage of points with γ-value smaller than one (γ% ) and mean γ-values (γmean ) using a 3%(global)/3 mm criteria. Alert criteria of ±5% for R ratio, γ% < 90%, and γmean > 0.67 were chosen. 50 transit EPID images were acquired. For the patients treated with ABC spirometer, the results reported a high level of accuracy in dose delivery with 100% of tests within ±5%. The γ-analysis showed a mean value of γmean equal to 0.21 (range: 0.04-0.56) and a mean γ% equal to 96.9 (range: 78-100). Relevant discrepancies were observed only for the two patients treated without ABC, mainly due to a blurring dose effect due to residual respiratory motion. Our method provided a fast and accurate procedure in clinical routine for verifying delivered dose as well as for detecting errors.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Anna Ianiro
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Maurizio Craus
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Pietro Viola
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| | - Alessio G Morganti
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Angelo Piermattei
- Medical Physics Unit, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Abel S, Hasan S, Horne ZD, Colonias A, Wegner RE. Stereotactic body radiation therapy in early-stage NSCLC: historical review, contemporary evidence and future implications. Lung Cancer Manag 2019; 8:LMT09. [PMID: 31044018 PMCID: PMC6488937 DOI: 10.2217/lmt-2018-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Clinical use of stereotactic body radiation therapy (SBRT) has increased dramatically over the last 2 decades and is the current standard-of-care in cases of inoperable early stage non-small-cell lung cancer. While surgical resection remains the standard-of-care for operable patients, several ongoing clinical trials are investigating the role of SBRT in these operative candidates as well. Taking into consideration the expanding role and utility of SBRT, this paper will: review the historical basis of SBRT; examine landmark trials establishing the framework for the current body of evidence; discuss areas of active and future research; and identify epidemiological trends that are likely to further increase the use of SBRT.
Collapse
Affiliation(s)
- Stephen Abel
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Pittsburgh, PA, 15212, USA
| | - Shaakir Hasan
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Pittsburgh, PA, 15212, USA
| | - Zachary D Horne
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Pittsburgh, PA, 15212, USA
| | - Athanasios Colonias
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Pittsburgh, PA, 15212, USA
| | - Rodney E Wegner
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Pittsburgh, PA, 15212, USA
| |
Collapse
|
11
|
Radiation Therapy in Non-small-Cell Lung Cancer. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_34-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Ziegler M, Brandt T, Lettmaier S, Fietkau R, Bert C. Performance of gimbal-based dynamic tumor tracking for treating liver carcinoma. Radiat Oncol 2018; 13:242. [PMID: 30518398 PMCID: PMC6280466 DOI: 10.1186/s13014-018-1180-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Since the introduction of tumor tracking in radiotherapy, it is possible to ensure a precise irradiation of moving targets. To follow the tumor movement, most systems rely on the detection of implanted markers and correlation models between the internal and external patient movement. This study reports the clinical workflow and first results of the dynamic tumor tracking (DTT) performance for patients with liver carcinoma at the Vero SBRT system of the University Hospital Erlangen regarding the detection of the internal marker and the changes of the determined correlation models. METHODS So far 13 liver patients were treated with DTT. For each patient, two fiducial markers (FM), which are monitored with X-rays during treatment, were implanted in the vicinity of the tumor. All patients received a fraction dose of 4-6 Gy with 8 to 12 fractions. Treatment and patient data is evaluated by processing the acquired log-files of the DTT treatment. Based on this, the marker detection and the changes of the correlation model between the internal and external movement is investigated. RESULTS The median treatment time was 19:42 min. During treatment a median of 173 X-ray stereoscopic images were acquired. The marker detection was successful in 64.6% of the images. The FM detection is independent of the relative angle between the marker and the imager, but shows a dependency on the average intensity surrounding the FM position within the kV images. The number of correlation models needed during treatment increases in the presence of baseline shifts. The comparison of the correlation models shows large differences in the internal-external correlation between the different models acquired for one patient. CONCLUSION Thirteen liver patients were treated with DTT at the Vero SBRT system and the marker detection was analyzed. Furthermore, the importance of regularly monitoring the internal target motion could be shown, since the correlation between the internal and external motion changes considerably over the course of the treatment.
Collapse
Affiliation(s)
- Marc Ziegler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Tobias Brandt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| |
Collapse
|
13
|
Greco C, Catalano G, Di Grazia A, Orecchia R. Radiotherapy of Liver Malignancies. From Whole Liver Irradiation to Stereotactic Hypofractionated Radiotherapy. TUMORI JOURNAL 2018; 90:73-9. [PMID: 15143976 DOI: 10.1177/030089160409000116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background Until recently radiotherapy of hepatic malignancies has played a limited role due to the well-known limited radiotolerance of the liver. The aim of this paper is to review the available data on the risk of radiation-induced liver disease (RILD) and to define the modern role of radiotherapy in the management of patients with metastatic or primary liver malignancies. Methods The advent of three-dimensional conformal treatment planning with dose-volume histogram analysis has made the study of partial liver irradiation possible. Limited portions of the liver may withstand high doses of radiation with minimal risk of RILD. Patients with solitary unresectable liver tumors may be treated with high-dose radiotherapy with curative intent. Recently, the feasibility of stereotactically guided treatment techniques with a single fraction or few treatment sessions has been explored in numerous institutions. Results The radiation tolerance of the whole liver found by several investigations is in the order of approximately 30 Gy, which seriously restricts its clinical application. The role of whole liver irradiation therefore appears of limited benefit in the palliation of patients with multiple liver metastases. The use of three-dimensional conformal techniques has made partial liver irradiation possible to doses in the 70–80 Gy range with conventional fractionation. At least two published series have reported improved local control and survival rates with dose escalation with three-dimensional conformal radiotherapy in patients with unresectable liver metastases. Similar outcomes have been recently reported with single dose (or hypofractionated) stereotactic radiotherapy both in metastatic and primary hepatic malignancies with minimal morbidity. Accurate target delineation and treatment reproducibility are the key to the success of this novel treatment approach, and specific treatment planning techniques and patient setup procedures must be developed to implement it. Conclusions Stereotactic high-dose radiotherapy is technically feasible for the treatment of inoperable liver malignancies, with the potential of high local control and low morbidity. Definitive evidence on the clinical advantages of this technique over other more established treatments can only be gathered from well-designed clinical studies.
Collapse
Affiliation(s)
- Carlo Greco
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy.
| | | | | | | |
Collapse
|
14
|
Güngör G, Demir M, Aydın G, Yapıcı B, Atalar B, Özyar E. Improvement of conformal arc plans by using deformable margin delineation method for stereotactic lung radiotherapy. J Appl Clin Med Phys 2018; 19:184-193. [PMID: 29218841 PMCID: PMC5768002 DOI: 10.1002/acm2.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) is an established treatment technique in the management of medically inoperable early stage non-small cell lung cancer (NSCLC). Different techniques such as volumetric modulated arc (VMAT) and three-dimensional conformal arc (DCA) can be used in SBRT. Previously, it has been shown that VMAT is superior to DCA technique in terms of plan evaluation parameters. However, DCA technique has several advantages such as ease of use and considerable shortening of the treatment time. DCA technique usually results in worse conformity which is not possible to ameliorate by inverse optimization. In this study, we aimed to analyze whether a simple method - deformable margin delineation (DMD) - improves the quality of the DCA technique, reaching similar results to VMAT in terms of plan evaluation parameters. METHODS Twenty stage I-II (T1-2, N0, M0) NSCLC patients were included in this retrospective dosimetric study. Noncoplanar VMAT and conventional DCA plans were generated using 6 MV and 10 MV with flattening filter free (FFF) photon energies. The DCA plan with 6FFF was calculated and 95% of the PTV was covered by the prescription isodose line. Hot dose regions (receiving dose over 100% of prescription dose) outside PTV and cold dose regions (receiving dose under 100% of prescription dose) inside PTV were identified. A new PTV (PTV-DMD) was delineated by deforming PTV margin with respect to hot and cold spot regions obtained from conventional DCA plans. Dynamic multileaf collimators (MLC) were set to PTV-DMD beam eye view (BEV) positions and the new DCA plans (DCA-DMD) with 6FFF were generated. Three-dimensional (3D) dose calculations were computed for PTV-DMD volume. However, the prescription isodose was specified and normalized to cover 95% volume of original PTV. Several conformity indices and lung doses were compared for different treatment techniques. RESULTS DCA-DMD method significantly achieved a superior conformity index (CI), conformity number (CIPaddick ), gradient index (R50% ), isodose at 2 cm (D2 cm ) and external index (CΔ) with respect to VMAT and conventional DCA plans (P < 0.05 for all comparisons). CI ranged between 1.00-1.07 (Mean: 1.02); 1.00-1.18 (Mean: 1.06); 1.01-1.23 (Mean 1.08); 1.03-1.29 (Mean: 1.15); 1.04-1.29 (Mean: 1.18) for DCA-DMD-6FFF, VMAT-6FFF, VMAT-10FFF DCA-6FFF and DCA-10FFF respectively. DCA-DMD-6FFF technique resulted significantly better CI compared to others (P = 0.002; < 0.001; < 0.001; < 0.001). R50% ranged between 3.22-4.74 (Mean: 3.99); 3.24-5.92 (Mean: 4.15) for DCA-DMD-6FFF, VMAT-6FFF, respectively. DCA-DMD-6FFF technique resulted lower intermediate dose spillage compared to VMAT-6FFF, though the difference was statistically insignificant (P = 0.32). D2 cm ranged between 35.7% and 67.0% (Mean: 53.2%); 42.1%-79.2% (Mean: 57.8%) for DCA-DMD-6FFF, VMAT-6FFF respectively. DCA-DMD-6FFF have significantly better and sharp falloff gradient 2 cm away from PTV compared to VMAT-6FFF (P = 0.009). CΔ ranged between 0.052 and 0.140 (Mean: 0.085); 0,056-0,311 (Mean: 0.120) for DCA-DMD, VMAT-6FFF, respectively. DCA-DMD-6FFF have significantly improved CΔ (P = 0.002). VMAT- V20 Gy , V2.5 Gy and mean lung dose (MLD) indices are calculated to be 4.03%, 23.83%, 3.42 Gy and 4.19%, 27.88%,3.72 Gy, for DCA-DMD-6FFF and DCA techniques, respectively. DCA-DMD-6FFF achieved superior lung sparing compared to DCA technique. DCA-DMD-6FFF method reduced MUs 44% and 33% with respect to VMAT-6FFF and 10FFF, respectively, without sacrificing dose conformity (P < 0.001; P < 0.001). CONCLUSIONS Our results demonstrated that DCA plan evaluation parameters can be ameliorated by using the DMD method. This new method improves DCA plan quality and reaches similar results with VMAT in terms of dosimetric parameters. We believe that DCA-DMD is a simple and effective technique for SBRT and can be preferred due to shorter treatment and planning time.
Collapse
Affiliation(s)
- Görkem Güngör
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| | - Melek Demir
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| | - Gökhan Aydın
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| | - Bülent Yapıcı
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| | - Banu Atalar
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| | - Enis Özyar
- Department of Radiation OncologyAcıbadem University School of MedicineIstanbulTurkey
| |
Collapse
|
15
|
Chairmadurai A, Goel HC, Jain SK, Kumar P. Radiobiological analysis of stereotactic body radiation therapy for an evidence-based planning target volume of the lung using multiphase CT images obtained with a pneumatic abdominal compression apparatus: a case study. Radiol Phys Technol 2017; 10:525-534. [PMID: 29128934 DOI: 10.1007/s12194-017-0431-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 11/30/2022]
Abstract
This study evaluated the efficiency of stereotactic body radiation therapy of lung (SBRT-Lung) in generating a treatment volume using conventional multiple-phase three-dimensional computed tomography (3D-CT) of a patient immobilized with pneumatic abdominal compression. The institutional protocol for SBRT-Lung using the RapidArc technique relied on a planning target volume (PTV) delineated using 3D-CT and accounted for linear and angular displacement of the tumor during respiratory movements. The efficiency of the institutional protocol was compared with that of a conventional method for PTV delineation based on radiobiological estimates, such as tumor control probability (TCP) and normal tissue complication probability (NTCP), evaluated using dose-volume parameters. Pneumatic abdominal compression improved the TCP by 15%. This novel protocol improved the TCP by 0.5% but reduced the NTCP for lung pneumonitis (0.2%) and rib fracture (1.0%). Beyond the observed variations in the patient's treatment setup, the institutional protocol yielded a significantly consistent TCP (p < 0.005). The successful clinical outcome of this case study corroborates predictions based on radiobiological evaluation and deserves validation through an increased number of patients.
Collapse
Affiliation(s)
- Arun Chairmadurai
- Department of Radiation Oncology, Jaypee Hospital, Sector-128, Noida, UP, 201304, India.
| | - Harish Chandra Goel
- Amity Centre for Radiation Biology, Amity University, Noida, UP, 201304, India
| | - Sandeep Kumar Jain
- Department of Radiation Oncology, Jaypee Hospital, Sector-128, Noida, UP, 201304, India
| | - Pawan Kumar
- Department of Radiation Oncology, Jaypee Hospital, Sector-128, Noida, UP, 201304, India
| |
Collapse
|
16
|
Lee W, Chan H, Chan P, Fiorillo T, Fiveland E, Foo T, Mills D, Patel A, Sabatini J, Shoudy D, Smith S, Bednarz B. A Magnetic Resonance Compatible E4D Ultrasound Probe for Motion Management of Radiation Therapy. IEEE NETWORK 2017; 2017:10.1109/ULTSYM.2017.8092223. [PMID: 31452579 PMCID: PMC6709705 DOI: 10.1109/ultsym.2017.8092223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a magnetic resonance compatible real-time, three-dimensional imaging ultrasound probe for motion management of radiation therapy for liver cancer. The probe contains an 18,000-element, 46.8 mm × 21.5 mm matrix array constructed from three tiled transducer modules with integrated beamforming ASICs. The center frequency and -6 dB fractional bandwidth of the probe was 3.6 MHz and 85 percent respectively. Ferromagnetic materials in the acoustic stack, flex interconnect and electronics boards were greatly minimized for magnetic resonance compatibility. The probe and cable were shielded to minimize the impact of radiofrequency noise on both the ultrasound and magnetic resonance images. The probe's low-profile, side-viewing design allows it to be strapped to a patient so that images may be acquired hands-free. We present simultaneously acquired ultrasound and 3 Tesla magnetic resonance images with minimal artifacts in both images.
Collapse
Affiliation(s)
- Warren Lee
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Heather Chan
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Pong Chan
- General Electric Global Research Center, Niskayuna, NY, USA
| | | | - Eric Fiveland
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Thomas Foo
- General Electric Global Research Center, Niskayuna, NY, USA
| | - David Mills
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Aqsa Patel
- General Electric Global Research Center, Niskayuna, NY, USA
| | - James Sabatini
- General Electric Global Research Center, Niskayuna, NY, USA
| | - David Shoudy
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Scott Smith
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Bryan Bednarz
- Departments of Medical Physics and Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Ueda Y, Teshima T, Cárdenes H, Das IJ. Evaluation of initial setup errors of two immobilization devices for lung stereotactic body radiation therapy (SBRT). J Appl Clin Med Phys 2017; 18:62-68. [PMID: 28503898 PMCID: PMC5874811 DOI: 10.1002/acm2.12093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2017] [Accepted: 03/21/2017] [Indexed: 11/11/2022] Open
Abstract
The aim of this study was to investigate the accuracy and efficacy of two commonly used commercial immobilization systems for stereotactic body radiation therapy (SBRT) in lung cancer. This retrospective study assessed the efficacy and setup accuracy of two immobilization systems: the Elekta Body Frame (EBF) and the Civco Body Pro‐Lok (CBP) in 80 patients evenly divided for each system. A cone beam CT (CBCT) was used before each treatment fraction for setup correction in both devices. Analyzed shifts were applied for setup correction and CBCT was repeated. If a large shift (>5 mm) occurred in any direction, an additional CBCT was employed for verification after localization. The efficacy of patient setup was analyzed for 105 sessions (48 with the EBF, 57 with the CBP). Result indicates that the CBCT was repeated at the 1st treatment session in 22.5% and 47.5% of the EBF and CBP cases, respectively. The systematic errors {left–right (LR), anterior–posterior (AP), cranio‐caudal (CC), and 3D vector shift: (LR2 + AP2 + CC2)1/2 (mm)}, were {0.5 ± 3.7, 2.3 ± 2.5, 0.7 ± 3.5, 7.1 ± 3.1} mm and {0.4 ± 3.6, 0.7 ± 4.0, 0.0 ± 5.5, 9.2 ± 4.2} mm, and the random setup errors were {5.1, 3.0, 3.5, 3.9} mm and {4.6, 4.8, 5.4, 5.3} mm for the EBF and the CBP, respectively. The 3D vector shift was significantly larger for the CBP (P < 0.01). The setup time was slightly longer for the EBF (EBF: 15.1 min, CBP: 13.7 min), but the difference was not statistically significant. It is concluded that adequate accuracy in SBRT can be achieved with either system if image guidance is used. However, patient comfort could dictate the use of CBP system with slightly reduced accuracy.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Radiation Oncology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Higinia Cárdenes
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.,The Arnold Center for Radiation Oncology, New York Presbyterian Queens Weill Cornell Medicine, New York, NY, USA
| | - Indra J Das
- Department of Radiation Oncology, New York university Langone Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Michel R, Françoise I, Laure P, Anouchka M, Guillaume P, Sylvain K. Dose to organ at risk and dose prescription in liver SBRT. Rep Pract Oncol Radiother 2017; 22:96-102. [PMID: 28490979 DOI: 10.1016/j.rpor.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is delivered in a curative intent to many primary and secondary tumors. Concerning liver metastasis, SBRT can be safely delivered using one to five fractions. An excellent local control is obtained with doses from 20 to 60 Gy. For primary hepatic tumors, results are also good, but the risk of hepatic toxicity related to liver pre-existent pathology must be taken into account. Radiation induced liver disease (RILD) is not frequent in its classical presentation, but modifications of liver enzymes are often observed. Other toxicities of SBRT on the duodenum, small bowel and biliary tract are also described. With respect to contraindications and dose limitations on surrounding structures, SBRT is well tolerated and takes place among curative treatment of liver tumors, as surgery, radiofrequency and embolization.
Collapse
Affiliation(s)
- Rives Michel
- Institut Claudius Regaud, 1 avenue Irène Joliot-Curie, 31059 Toulouse Cedex, France
| | - Izar Françoise
- Institut Claudius Regaud, 1 avenue Irène Joliot-Curie, 31059 Toulouse Cedex, France
| | - Parent Laure
- Institut Claudius Regaud, 1 avenue Irène Joliot-Curie, 31059 Toulouse Cedex, France
| | - Modesto Anouchka
- Institut Claudius Regaud, 1 avenue Irène Joliot-Curie, 31059 Toulouse Cedex, France
| | - Portier Guillaume
- Department of Digestive Surgery, Purpan University Hospital, Toulouse, France
| | - Kirzin Sylvain
- Department of Digestive Surgery, Purpan University Hospital, Toulouse, France
| |
Collapse
|
19
|
Murray P, Franks K, Hanna GG. A systematic review of outcomes following stereotactic ablative radiotherapy in the treatment of early-stage primary lung cancer. Br J Radiol 2017; 90:20160732. [PMID: 27885858 PMCID: PMC5601509 DOI: 10.1259/bjr.20160732] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) describes a radiotherapy (RT) technique where high doses of radiation are precisely delivered to an extracranial target within the body, using either a single fraction of RT or using multiple small numbers of fractions. SABR has now become the standard of care treatment for patients with early-stage non-small-cell lung cancer (NSCLC) for whom surgery is not appropriate. This systematic review considers the evidence supporting the use of SABR in early-stage NSCLC, reported toxicity rates, the use of SABR in centrally located NSCLC, the use of SABR as salvage therapy following surgery or RT, and future potential drug combinations with SABR.
Collapse
Affiliation(s)
- Patrick Murray
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kevin Franks
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gerard G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Folkert MR, Timmerman RD. Stereotactic ablative body radiosurgery (SABR) or Stereotactic body radiation therapy (SBRT). Adv Drug Deliv Rev 2017; 109:3-14. [PMID: 27932046 DOI: 10.1016/j.addr.2016.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
While conventional treatment relies on protracted courses of therapy using relatively small dose-per-fraction sizes of 1.8-2Gy, there is substantial evidence gathered over decades that this may not be the optimal approach for all targetable disease. Stereotactic ablative body radiosurgery (SABR) or stereotactic body radiation therapy (SBRT) is a technique which uses precise targeting to deliver high doses of radiation capable of ablating tumors directly. In this review, we will discuss the justification for and techniques used to deliver ablative doses to improve treatment outcomes, interactions with biological and immunologic therapy, and special procedures to spare normal tissue, which have facilitated the expanding role for these techniques in the management of a wide range of malignant histologies and disease states.
Collapse
|
21
|
Hubie C, Shaw M, Bydder S, Lane J, Waters G, McNabb M, Kearvell R, Concannon A, Bharat C, Appleyard R. A randomised comparison of three different immobilisation devices for thoracic and abdominal cancers. J Med Radiat Sci 2016; 64:90-96. [PMID: 27998039 PMCID: PMC5454323 DOI: 10.1002/jmrs.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 11/21/2022] Open
Abstract
Introduction Patient immobilisation is critically important for both highly conformal conventionally fractionated radiotherapy and for stereotactic body radiotherapy. Different immobilisation devices are available to maintain patient position for radiotherapy but the most suitable one remains unknown. Methods Forty‐five patients were randomly allocated to one of three immobilisation devices; the Q fix arm shuttle, BodyFIX without wrap or BodyFIX with wrap. Patients were imaged before and after treatment to ascertain intra‐fraction and inter‐fraction motion. Bony anatomy was used for matching to determine the positional accuracy of each device. Treatments were timed using a standard method. Patient comfort and staff satisfaction questionnaires were also issued to determine comfort, ease of use and preferences for each device. Results The BodyFIX without wrap was the more accurate device; however, the differences between the devices were not statistically significant. The BodyFIX with wrap was found to take significantly longer to set up and set down compared to the arm shuttle and the BodyFIX without wrap (all P < 0.001). Patients (37%) marginally preferred the BodyFIX with wrap. Most (81%) staff preferred the BodyFIX without wrap. Conclusion Immobilisation using the BodyFIX without wrap was deemed to be suitable for clinical use. It was a clinically accurate device, the more efficient in terms of set up and set down time, the most preferred by staff and was accepted by patients.
Collapse
Affiliation(s)
- Catherine Hubie
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Maddison Shaw
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sean Bydder
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jonny Lane
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Gemma Waters
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Megan McNabb
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Rachel Kearvell
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alicia Concannon
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Chrianna Bharat
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Centre for Applied Statistics, University Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Rob Appleyard
- Faculty of Health Science, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
22
|
Ricardi U, Badellino S, Filippi AR. What do radiation oncologists require for future advancements in lung SBRT? Phys Med 2016; 44:150-156. [PMID: 27914779 DOI: 10.1016/j.ejmp.2016.11.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) is a well established therapeutic option for patients affected with peripheral early stage non-small cell lung cancer (NSCLC), given the positive clinical evidence accumulated so far on its efficacy and safety. SBRT is regarded as the best choice for inoperable patients, and could also be offered as an alternative to surgery to selected operable patients. More recently, its use for lung metastases progressively increased, and SBRT is now regarded as a low toxic and highly effective local therapy for lung oligometastases from different primary tumors, especially colorectal cancer. Improved planning and delivery techniques have facilitated over the years its use on large and/or centrally located primary tumors, and multiple nodules. Given the successful applications and the current wide dissemination of this technique, clinicians are now faced with an increasingly complex and multi-variable decision process. Some clinically relevant factors are still uncertain, and strategies are needed to reduce the risk of both local and distant failures. Secondly, aspects related to target delineation, dose prescription, image guidance and treatment planning still need to be fully addressed; this may hamper, at least for now, the standardization of SBRT procedures through different Institutions making any kind of direct outcomes comparison difficult. We here aim to provide a perspective on the current role of lung SBRT and its critical aspects, highlighting the potential future developments.
Collapse
|
23
|
Li F, Li J, Ma Z, Zhang Y, Xing J, Qi H, Shang D. Comparison of internal target volumes defined on 3-dimensional, 4-dimensonal, and cone-beam CT images of non-small-cell lung cancer. Onco Targets Ther 2016; 9:6945-6951. [PMID: 27895491 PMCID: PMC5119621 DOI: 10.2147/ott.s111198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to compare the positional and volumetric differences of internal target volumes defined on three-dimensional computed tomography (3DCT), four-dimensional CT (4DCT), and cone-beam CT (CBCT) images of non-small-cell lung cancer (NSCLC). Materials and methods Thirty-one patients with NSCLC sequentially underwent 3DCT and 4DCT simulation scans of the thorax during free breathing. The first CBCT was performed and registered to the planning CT using the bony anatomy registration during radiotherapy. The gross tumor volumes were contoured on the basis of 3DCT, maximum intensity projection (MIP) of 4DCT, and CBCT. CTV3D (clinical target volume), internal target volumes, ITVMIP and ITVCBCT, were defined with a 7 mm margin accounting for microscopic disease. ITV10 mm and ITV5 mm were defined on the basis of CTV3D: ITV10 mm with a 5 mm margin in left–right (LR), anterior–posterior (AP) directions and 10 mm in cranial–caudal (CC) direction; ITV5 mm with an isotropic internal margin (IM) of 5 mm. The differences in the position, size, Dice’s similarity coefficient (DSC) and inclusion relation of different volumes were evaluated. Results The median size ratios of ITV10 mm, ITV5 mm, and ITVMIP to ITVCBCT were 2.33, 1.88, and 1.03, respectively, for tumors in the upper lobe and 2.13, 1.76, and 1.1, respectively, for tumors in the middle-lower lobe. The median DSCs of ITV10 mm, ITV5 mm, ITVMIP, and ITVCBCT were 0.6, 0.66, and 0.83 for all patients. The median percentages of ITVCBCT not included in ITV10 mm, ITV5 mm, and ITVMIP were 0.1%, 1.63%, and 15.21%, respectively, while the median percentages of ITV10 mm, ITV5 mm, and ITVMIP not included in ITVCBCT were 57.08%, 48.89%, and 20.04%, respectively. Conclusion The use of the individual ITV derived from 4DCT merely based on bony registration in radiotherapy may result in a target miss. The ITVs derived from 3DCT with isotropic margins have a good coverage of the ITV from CBCT, but the use of those would result in a high proportion of normal tissue being irradiated unnecessarily.
Collapse
Affiliation(s)
| | | | | | | | - Jun Xing
- Department of Radiation Oncology
| | | | - Dongping Shang
- Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Imaged-guided liver stereotactic body radiotherapy using VMAT and real-time adaptive tumor gating. Concerns about technique and preliminary clinical results. Rep Pract Oncol Radiother 2016; 22:141-149. [PMID: 28490985 DOI: 10.1016/j.rpor.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Motion management is a major challenge in abdominal SBRT. We present our study of SBRT for liver tumors using intrafraction motion review (IMR) allowing simultaneous KV information and MV delivery to synchronize the beam during gated RapidArc treatment. MATERIALS AND METHODS Between May 2012 and March 2015, 41 patients were treated by liver SBRT using gated RapidArc technique in a Varian Novalis Truebeam STx linear accelerator. PTV was created by expanding 5 mm from the ITV. Dose prescription ranged from 40 to 50 Gy in 5-10 fractions. The prescribed dose and fractionation were chosen depending on hepatic function and dosimetric results. Thirty-four patients with a minimal follow-up of six months were analyzed for local control and toxicity. Accuracy for tumor repositioning was evaluated for the first ten patients. RESULTS With a median follow-up of 13 months, the treatment was well tolerated and no patient presented RILD, perforation or gastrointestinal bleeding. Acute toxicity was found in 3 patients with G1 abdominal pain, 2 with G1 nausea, 10 with G1 asthenia and 1 with G2 asthenia. 6 patients presented asymptomatic transitory perturbation of liver enzymes. In-field local control was 90.3% with 7 complete responses, 14 partial responses and 7 stabilisations. 3 patients evolved "in field". 12 patients had an intrahepatic progression "out of field". Mean intrafraction deviation of fiducials in the craneo-caudal direction was 0.91 mm (0-6 mm). CONCLUSION The clinical tolerance and oncological outcomes were favorable when using image-guided liver SBRT with real-time adaptive tumor gating.
Collapse
|
25
|
Fuss M, Salter BJ, Rassiah P, Cheek D, Cavanaugh SX, Herman TS. Repositioning Accuracy of a Commercially Available Double-vacuum Whole Body Immobilization System for Stereotactic Body Radiation Therapy. Technol Cancer Res Treat 2016; 3:59-67. [PMID: 14750894 DOI: 10.1177/153303460400300107] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We evaluated the repositioning accuracy of a commercially available stereotactic whole body immobilization system (BodyFIX, Medical Intelligence, Schwabmuenchen, Germany) in 36 patients treated by hypofractionated stereotactic body radiation therapy. CT data were acquired for positional control of patient and tumor before each fraction of the treatment course. Those control CT datasets were compared with the original treatment planning CT simulation and analyzed with respect to positional misalignment of bony patient anatomy, and the respective position of the treated small lung or liver lesions. We assessed the stereotactic coordinates of distinct bony anatomical landmarks in the original CT and each control dataset. In addition, the target isocenter was recorded in the planning CT simulation dataset. An iterative optimization algorithm was implemented, utilizing a root mean square scoring function to determine the best-fit orientation of subsequent sets of anatomical landmark measurements relative to the original treatment planning CT data set. This allowed for the calculation of the x, y and z-components of translation of the patient's body and the target's center-of-mass for each control CT study, as well as rotation about the principal room axes in the respective CT data sets. In addition to absolute patient/target translation, the total magnitude vector of patient and target misalignment was calculated. A clinical assessment determined whether or not the assigned planning target volume safety margins would have provided the desired target coverage. To this end, each control CT study was co-registered with the original treatment planning study using immobilization system related fiducial markers, and the computed isodose calculation was superimposed. In 109 control setup CT scans available for comparison with their respective treatment planning CT simulation study (2–5 per patient, median 3), anatomical landmark analysis revealed a mean bony landmark translation of −0.4 ± 3.9 (mean ± SD), −0.1 ± 1.6 and 0.3 ± 3.6 mm in x, y and z-directions, respectively. Bony landmark setup deviations along one or more principal axis larger than 5 mm were observed in 32 control CT studies (29.4%). Body rotations about the x-, y-and z-axis were 0.9 ± 0.7, 0.8 ± 0.7 and 1.8 ± 1.6 degrees, respectively. Assuming a rigid body relationship of target and bony anatomy, the mean computed absolute target translation was 2.9 ± 3.3, 2.3 ± 2.5 and 3.2 ± 2.7 mm in x, y and z-directions, respectively. The median and mean magnitude vector of target isocenter displacement was computed to be 4.9 mm, and 5.7 ± 3.7 mm. Clinical assessment of PTV/target volume coverage revealed 72 (66.1%), 23 (21.1%), and 14 (12.8%), of excellent (100% isodose coverage), good (>90% isodose coverage), and poor GTV/isodose alignment quality (less than 90% isodose coverage to some aspect of the GTV), respectively. Loss of target volume dose coverage was correlated with translations >5 mm along one or more axes (p<0.0001), rotations >3° about the z-axis (p=0.0007) and body mass index >30 (p<0.0001). The analyzed BodyFIX whole body immobilization system performed favorably compared with other stereotactic body immobilization systems for which peer-reviewed repositioning data exist. While the measured variability in patient and target setup provided clinically acceptable setup accuracy in the vast majority of cases, larger setup deviations were occasional observed. Such deviations constitute a potential for partial target underdosing warranting, in our opinion, a pre-delivery positional assessment procedure (e.g., pre-treatment control CT scan).
Collapse
Affiliation(s)
- Martin Fuss
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hinson WH, Kearns WT, Ellis TL, Sprinkle D, Cullen T, Smith PG, Stieber VW. Reducing Set-up Uncertainty in the Elekta Stereotactic Body Frame Using Stealthstation Software. Technol Cancer Res Treat 2016; 6:181-6. [PMID: 17535026 DOI: 10.1177/153303460700600305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Elekta Stereotactic Body Frame (SBF) is a device which allows extracranial targets to be localized and irradiated in a stereotactic coordinate system. Errors of positioning of the body relative to the frame are indirectly estimated by image fusion of multiple CT scans. A novel repositioning methodology, based on neurosurgical Stealth technology, is presented whereby accurate patient repositioning is directly confirmed before treatment delivery. Repositioning was performed on four extracranial stereotactic radiosurgery patients and a radiotherapy simulation phantom. The setup error was quantitatively measured by fiducial localization. A confirmatory CT scan was performed and the resulting image set registered to the initial scan to quantify shifts in the GTV isocenter. Alignment confirmation using Stealth took between 5 and 10 minutes. For the phantom studies, a reproducibly of 0.6 mm accuracy of phantom-to-SBF alignment was measured. The results on four actual patients showed setup errors of 1.5 mm or less. Using the Stealth Station process, rapid confirmation of alignment on the treatment table is possible.
Collapse
Affiliation(s)
- William H Hinson
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zohrabian VM, Husain ZA, Laurans MS, Chiang VL, Mahajan A, Johnson MH. Practice Building: Achieving Growth Through Computed Tomographic Myelography-Based Stereotactic Body Radiation Therapy for Spinal Metastases. Curr Probl Diagn Radiol 2016; 45:324-9. [PMID: 26920633 DOI: 10.1067/j.cpradiol.2016.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/26/2016] [Indexed: 11/22/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is as an effective method to treat spinal metastases. Imaging is a critical component in the workup of patients who undergo stereotactic radiation treatment. Computed tomographic myelography may be more accurate than magnetic resonance imaging in the delineation of neural elements during SBRT. The task we faced was to offer a standardized method to rapidly and safely obtain high-quality computed tomographic myelography as part of a robust spine SBRT program. In detailing our experience, we support the greater, active participation of radiologists in the multidisciplinary care of patients with spinal metastases, while encouraging other radiologists to foster similar collaborations at their own institutions.
Collapse
Affiliation(s)
- Vahe M Zohrabian
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT.
| | - Zain A Husain
- Department of Therapeutic Radiology/Radiation Oncology, Yale School of Medicine, New Haven, CT
| | | | - Veronica L Chiang
- Department of Therapeutic Radiology/Radiation Oncology, Yale School of Medicine, New Haven, CT; Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Amit Mahajan
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT
| | - Michele H Johnson
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT; Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| |
Collapse
|
28
|
Ricardi U, Badellino S, Filippi AR. Stereotactic body radiotherapy for early stage lung cancer: History and updated role. Lung Cancer 2015; 90:388-96. [DOI: 10.1016/j.lungcan.2015.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
|
29
|
Lo SS, Slotman BJ, Lock M, Nagata Y, Guckenberger M, Siva S, Foote M, Tan D, Teh BS, Mayr NA, Chang EL, Timmerman RD, Sahgal A. The development of stereotactic body radiotherapy in the past decade: a global perspective. Future Oncol 2015; 11:2721-2733. [PMID: 26338676 DOI: 10.2217/fon.15.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the past 10 years, there has been an exponential increase in the incorporation of stereotactic body radiotherapy, also known as stereotactic ablative radiotherapy, into the armamentarium against various types of cancer in different settings worldwide. In this article in the 10th year anniversary issue of Future Oncology, representatives from the USA, Canada, Japan, Germany, The Netherlands, Australia and Singapore will provide individual perspectives of the development of stereotactic body radiotherapy in their respective countries.
Collapse
Affiliation(s)
- Simon S Lo
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael Lock
- Department of Radiation Oncology, London Regional Cancer Program, University of Western Ontario, London, ON, Canada
| | - Yasushi Nagata
- Department of Radiation Oncology, Hiroshima University, Hiroshima, Japan
| | | | - Shankar Siva
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, School of Medicine, University of Queensland, Queensland, Australia
| | - Daniel Tan
- Asian American Radiation Oncology, Singapore
| | - Bin S Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, TX, USA
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine & Norris Cancer Center at the University of Southern California, Los Angeles, CA, USA
| | - Robert D Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Stereotactic Body Radiation Therapy for Liver Cancer: A Review of the Technology. J Med Imaging Radiat Sci 2015; 46:343-350. [PMID: 31052142 DOI: 10.1016/j.jmir.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/25/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy has been adopted in the treatment of liver cancer because of its highly conformal dose distribution when compared with other conventional approaches, and many studies have been published to report the positive clinical outcome associated with this technique. To achieve the precision needed to maintain or to improve the therapeutic ratio, various strategies are applied in different components in the stereotactic body radiation therapy process. Immobilization devices are used in minimizing geometric uncertainty induced by treatment positioning and internal organ motion. Along with a better definition of target by the integration of multimodality imaging, planning target volume margin to compensate for the uncertainty can be reduced to minimize inclusion of normal tissue in the treatment volume. In addition, sparing of normal tissue from irradiation is improved by the use of high precision treatment delivery technologies such as intensity-modulated radiotherapy or volumetric modulated arc therapy. Target localization before treatment delivery with image guidance enables reproduction of the patient's geometry for delivering the planned dose. The application of these advanced technologies contributes to the evolution of the role of radiation therapy in the treatment of liver cancer, making it an important radical or palliative treatment modality.
Collapse
|
31
|
Ricardi U, Badellino S, Filippi AR. Stereotactic radiotherapy for early stage non-small cell lung cancer. Radiat Oncol J 2015; 33:57-65. [PMID: 26157674 PMCID: PMC4493429 DOI: 10.3857/roj.2015.33.2.57] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) represents a consolidated treatment option for patients with medically inoperable early stage non-small cell lung cancer (NSCLC). The clinical evidence accumulated in the past decade supports its use as an alternative to surgery with comparable survival outcomes. Due to its limited toxicity, SBRT is also applicable to elderly patients with very poor baseline pulmonary function or other severe comorbidities. Recent comparative studies in operable patients raised the issue of the possible use of SBRT also for this subgroup, with quite promising results that still should be fully confirmed by prospective trials with long-term follow-up. Aim of this review is to summarize and discuss the major studies conducted over the years on SBRT and to provide data on the efficacy and toxicity of this radiotherapy technique for stage I NSCLC. Technical aspects and quality of life related issues are also discussed, with the goal to provide information on the current role and limitations of SBRT in clinical practice.
Collapse
Affiliation(s)
- Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Torino, Torino, Italy
| | - Serena Badellino
- Department of Oncology, Radiation Oncology, University of Torino, Torino, Italy
| | | |
Collapse
|
32
|
Roesch J, Andratschke N, Guckenberger M. SBRT in operable early stage lung cancer patients. Transl Lung Cancer Res 2015; 3:212-24. [PMID: 25806303 DOI: 10.3978/j.issn.2218-6751.2014.08.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Since decades the gold standard for treatment of early stage non-small cell lung cancer (NSCLC) is surgical lobectomy plus mediastinal lymph node dissection. Patients in worse health status are treated with sublobar resection or radiation treatment. With development of stereotactic-body-radiotherapy (SBRT), outcome of patients treated with radiation was substantially improved. Comparison of SBRT and surgical techniques is difficult due to the lack of randomized trials. However, all available evidence in form of case control studies of population based studies show equivalence between sublobar resection and SBRT indicating that SBRT-when performed by a trained and experienced team-should be offered to all high-risk surgical patients. For patients not willing to take the risk of lobectomy and therefore refusing surgery, SBRT is an excellent treatment option.
Collapse
Affiliation(s)
- Johannes Roesch
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | | |
Collapse
|
33
|
Peulen H, Belderbos J, Guckenberger M, Hope A, Grills I, van Herk M, Sonke JJ. Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. Radiother Oncol 2015; 114:361-6. [DOI: 10.1016/j.radonc.2015.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 11/29/2022]
|
34
|
|
35
|
Tanguturi SK, Wo JY, Zhu AX, Dawson LA, Hong TS. Radiation therapy for liver tumors: ready for inclusion in guidelines? Oncologist 2014; 19:868-79. [PMID: 25001265 DOI: 10.1634/theoncologist.2014-0097] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite the historically limited role of radiotherapy in the management of primary hepatic malignancies, modern advances in treatment design and delivery have renewed enthusiasm for radiation as a potentially curative treatment modality. Surgical resection and/or liver transplantation are traditionally regarded as the most effective forms of therapy, although the majority of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma present with locally advanced or unresectable disease on the basis of local vascular invasion or inadequate baseline hepatobiliary function. In this context, many efforts have focused on nonoperative treatment approaches including novel systemic therapies, transarterial chemoembolization, ethanol ablation, radiofrequency ablation, and stereotactic body radiation therapy (SBRT). This review aims to summarize modern advances in radiotherapy, particularly SBRT, in the treatment of primary hepatic malignancies.
Collapse
Affiliation(s)
- Shyam K Tanguturi
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Y Wo
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew X Zhu
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Dawson
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Theodore S Hong
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Chi A, Nguyen NP, Komaki R. The potential role of respiratory motion management and image guidance in the reduction of severe toxicities following stereotactic ablative radiation therapy for patients with centrally located early stage non-small cell lung cancer or lung metastases. Front Oncol 2014; 4:151. [PMID: 25009800 PMCID: PMC4070060 DOI: 10.3389/fonc.2014.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/30/2014] [Indexed: 12/25/2022] Open
Abstract
Image guidance allows delivery of very high doses of radiation over a few fractions, known as stereotactic ablative radiotherapy (SABR). This treatment is associated with excellent outcome for early stage non-small cell lung cancer and metastases to the lungs. In the delivery of SABR, central location constantly poses a challenge due to the difficulty of adequately sparing critical thoracic structures that are immediately adjacent to the tumor if an ablative dose of radiation is to be delivered to the tumor target. As of current, various respiratory motion management and image guidance strategies can be used to ensure accurate tumor target localization prior and/or during daily treatment, which allows for maximal and safe reduction of set up margins. The incorporation of both may lead to the most optimal normal tissue sparing and the most accurate SABR delivery. Here, the clinical outcome, treatment related toxicities, and the pertinent respiratory motion management/image guidance strategies reported in the current literature on SABR for central lung tumors are reviewed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Mary Babb Randolph Cancer Center of West Virginia University , Morgantown, WV , USA
| | | | - Ritsuko Komaki
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
37
|
Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis 2014; 6:303-18. [PMID: 24688775 PMCID: PMC3968554 DOI: 10.3978/j.issn.2072-1439.2013.11.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/07/2013] [Indexed: 12/25/2022]
Abstract
In the United States, more than half of all new invasive cancers diagnosed are non-small cell lung cancer, with a significant number of these cases presenting at locally advanced stages, resulting in about one-third of all cancer deaths. While the advent of stereotactic ablative radiation therapy (SABR, also known as stereotactic body radiotherapy, or SBRT) for early-staged patients has improved local tumor control to >90%, survival results for locally advanced stage lung cancer remain grim. Significant challenges exist in lung cancer radiation therapy including tumor motion, accurate dose calculation in low density media, limiting dose to nearby organs at risk, and changing anatomy over the treatment course. However, many recent technological advancements have been introduced that can meet these challenges, including four-dimensional computed tomography (4DCT) and volumetric cone-beam computed tomography (CBCT) to enable more accurate target definition and precise tumor localization during radiation, respectively. In addition, advances in dose calculation algorithms have allowed for more accurate dosimetry in heterogeneous media, and intensity modulated and arc delivery techniques can help spare organs at risk. New delivery approaches, such as tumor tracking and gating, offer additional potential for further reducing target margins. Image-guided adaptive radiation therapy (IGART) introduces the potential for individualized plan adaptation based on imaging feedback, including bulky residual disease, tumor progression, and physiological changes that occur during the treatment course. This review provides an overview of the current state of the art technology for lung cancer volume definition, treatment planning, localization, and treatment plan adaptation.
Collapse
|
38
|
Oh YK, Baek JG, Kim OB, Kim JH. Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys 2014; 15:4418. [PMID: 24710431 PMCID: PMC5875470 DOI: 10.1120/jacmp.v15i2.4418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 11/07/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was assess the patient setup errors for various tumor sites based on clinical data from a sufficient number of treatments with volumetric-modulated arc therapy (VMAT) using daily pretreatment CBCT imaging guidance. In addition, we calculated and compared the planning target volume (PTV) margins for all disease sites based on an analysis of specific systematic and random errors in our institution. All patients underwent pretreatment kV-CBCT imaging. The various tumor sites were divided into four categories; 21 brain (438 fractions), 35 head-and-neck tumors (H&N, 933 fractions), 19 thorax and abdomen tumors (T&A, 313 fractions), and 17 prostate cancer tumors (546 fractions). Overall distributions of setup corrections in all directions, frequencies of 3D vector lengths, institution-specific setup error, and PTV margins were analyzed. The longitudinal distribution for the T&A site represented an asymmetric offset in the negative direction. Rotational distributions were comparable for all treatment sites, and the prostate site had the narrowest distribution of ≤ ± 2°. The cumulative frequencies of 3D vector length of ≥ 7 mm were rare for brain lesions and H&N, but more common for T&A and prostate lesions at 25.6% and 12.1%, respectively. The overall mean error for all treatment sites were within ± 1 mm and ± 0.1°, with the exception of the T&A site, which had overall mean error of 2 mm in the negative longitudinal direction. The largest magnitude of systematic error and random error for the brain lesions and H&N was 1.4 mm in the translational directions, and 3.3 mm for T&A and prostate lesions. The PTV margins required in this analysis are ≤ 4 mm for the brain lesions and H&N in all translational directions, but ranged from 4 to 10 mm for T&A and prostate lesions. Analysis of each institution's specific setup errors using daily CBCT is essential for determining PTV margins and reducing setup uncertainties, because setup errors vary according to each immobilization system and patient.
Collapse
|
39
|
Greene TC, Rong XJ. Evaluation of techniques for slice sensitivity profile measurement and analysis. J Appl Clin Med Phys 2014; 15:4042. [PMID: 24710429 PMCID: PMC5875475 DOI: 10.1120/jacmp.v15i2.4042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/10/2013] [Accepted: 11/22/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to compare the resulting full width at half maximum of slice sensitivity profiles (SSP) generated by several commercially available point response phantoms, and determine an appropriate imaging technique and analysis method. Four CT phantoms containing point response objects designed to produce a delta impulse signal used in this study: a Fluke CT-SSP phantom, a Gammex 464, a CatPhan 600, and a Kagaku Micro Disc phantom. Each phantom was imaged using 120 kVp, 325 mAs, head scan field of view, 32 × 0.625 mm helical scan with a 20 mm beam width and a pitch of 0.969. The acquired images were then reconstructed into all available slice thicknesses (0.625 mm - 5.0 mm). A computer program was developed to analyze the images of each dataset for generating a SSP from which the full width at half maximum (FWHM) was determined. Two methods for generating SSPs were evaluated and compared by choosing the mean vs. maximum value in the ROI, along with two methods for evaluating the FWHM of the SSP, linear interpolation and Gaussian curve fitting. FWHMs were compared with the manufacturer's specifications using percent error and z-test with a significance value of p < 0.05. The FWHMs from each phantom were not significantly different (p ≥ 0.089) with an average error of 3.5%. The FWHMs from SSPs generated from the mean value were statistically different (p ≤ 3.99 × 10¹³). The FWHMs from the different FWHM methods were not statistically different (p ≤ 0.499). Evaluation of the SSP is dependent on the ROI value used. The maximum value from the ROI should be used to generate the SSP whenever possible. SSP measurement is independent of the phantoms used in this study.
Collapse
|
40
|
Peulen H, Belderbos J, Rossi M, Sonke JJ. Mid-ventilation based PTV margins in Stereotactic Body Radiotherapy (SBRT): A clinical evaluation. Radiother Oncol 2014; 110:511-6. [DOI: 10.1016/j.radonc.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
|
41
|
Lo SS, Fakiris AJ, Papiez L, Abdulrahman R, McGarry RC, Henderson MA, Forquer JA, Hoopes D, Timmerman RD. Stereotactic body radiation therapy for early-stage non-small-cell lung cancer. Expert Rev Anticancer Ther 2014; 8:87-98. [DOI: 10.1586/14737140.8.1.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Factors influencing intrafractional target shifts in lung stereotactic body radiation therapy. Pract Radiat Oncol 2014; 4:e45-51. [DOI: 10.1016/j.prro.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 12/25/2022]
|
43
|
Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O. Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 2014; 190:26-33. [PMID: 24052011 PMCID: PMC3889283 DOI: 10.1007/s00066-013-0450-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 02/08/2023]
Abstract
This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft für Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy.
Collapse
Affiliation(s)
- M Guckenberger
- Department of Radiation Oncology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
44
|
Foster R, Meyer J, Iyengar P, Pistenmaa D, Timmerman R, Choy H, Solberg T. Localization Accuracy and Immobilization Effectiveness of a Stereotactic Body Frame for a Variety of Treatment Sites. Int J Radiat Oncol Biol Phys 2013; 87:911-6. [DOI: 10.1016/j.ijrobp.2013.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
45
|
Hiraki M, Nishimura J, Ohtsuka M, Shiomi H, Uemura M, Haraguchi N, Hata T, Hayashi T, Takemasa I, Mizushima T, Isohashi F, Yoshioka Y, Ogawa K, Doki Y, Mori M, Yamamoto H. Impact of stereotactic body radiotherapy on colorectal cancer with distant metastases. Oncol Rep 2013; 31:795-9. [PMID: 24284831 DOI: 10.3892/or.2013.2871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/11/2013] [Indexed: 11/06/2022] Open
Abstract
Stereotactic radiotherapy is a minimally invasive technique for delivering highly focused ionizing radiation with extreme precision. This technique was initially developed in neurosurgical practice and applied to extracranial lesions in the 1990s, and was termed stereotactic body radiotherapy (SBRT). Studies have reported that the resection of distant metastases from colorectal cancer (CRC) contributes to relatively long-term survival. However, the resection of pulmonary and liver metastases is not possible for various reasons. SBRT offers a therapeutic alternative to unresectable metastatic lesions. The present study describes three cases of distant metastasis from CRC that exhibited a complete response (CR) to SBRT. Case 1 is a 70-year-old man with recurrent liver metastases after surgery for rectal cancer with liver metastasis (S3: diameter 1.8 cm and volume 3.0 ml; S6: diameter 1.3 cm and volume 1.2 ml). Cases 2 and 3 were 65-year-old and 70-year-old men, respectively. Both patients had pulmonary metastasis after surgery for rectal and cecum cancer (Case 2: diameter 1.2 cm and volume 0.9 ml; Case 3: diameter 0.8 cm and volume 0.27 ml). All cases were moderately differentiated adenocarcinomas. No serious adverse side-effects were observed during the therapy. CR was obtained in all patients on the basis of computed tomography 15-33 months after radiotherapy. Our experience supports that SBRT is a safe and alternative technique for resection in patients with distant metastasis from CRC who have small metastatic tumor volume.
Collapse
Affiliation(s)
- Masayuki Hiraki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahisa Ohtsuka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroya Shiomi
- Department of Radiation Oncology, Saito Yukoukai Hospital, Osaka 567-0085, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Hayashi
- Department of Surgical Oncology, Saito Yukoukai Hospital, Osaka 567-0085, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Marsolat F, Tromson D, Tranchant N, Pomorski M, Le Roy M, Donois M, Moignau F, Ostrowsky A, De Carlan L, Bassinet C, Huet C, Derreumaux S, Chea M, Cristina K, Boisserie G, Bergonzo P. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors. Phys Med Biol 2013; 58:7647-60. [DOI: 10.1088/0031-9155/58/21/7647] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Giuliani ME, Bezjak A. Alternatives to surgery in early stage disease-stereotactic body radiotherapy. Transl Lung Cancer Res 2013; 2:332-9. [PMID: 25806252 PMCID: PMC4367723 DOI: 10.3978/j.issn.2218-6751.2013.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 10/13/2013] [Indexed: 11/14/2022]
Abstract
The management of early stage non-small cell lung carcinoma (NSCLC) has been revolutionized by the introduction of stereotactic body radiotherapy (SBRT). SBRT is now the standard of care for medically inoperable patients with early stage NSCLC. However, the role of SBRT in medically operable patients remains controversial. This article will review the indications, the technical considerations, image guidance principles, potential toxicities and special circumstances in lung SBRT.
Collapse
Affiliation(s)
- Meredith Elana Giuliani
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Bezjak
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys Med 2013; 29:333-40. [DOI: 10.1016/j.ejmp.2012.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/08/2012] [Accepted: 04/24/2012] [Indexed: 12/25/2022] Open
|
49
|
Westover KD, Timmerman R. Developments in stereotactic ablative radiotherapy for the treatment of early-stage lung cancer. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Stereotactic ablative radiotherapy (SABR), also known as stereotactic body radiation therapy, has emerged as an effective treatment for inoperable early-stage non-small-cell lung cancer. SABR differs from conventional radiotherapy by virtue of its tight spatial tolerances and use of oligofractionated radiation. The modern technique is characterized by management of tumor motion, image guidance before each fraction and specialized radiation delivery techniques. The result is a highly conformal target dose with a sharp gradient that spares normal tissues with great accuracy. This enables delivery of very potent (ablative) doses, causing more rapid and durable responses than traditional radiation therapy treatment regimens can achieve. The established techniques, new developments and ongoing questions related to SABR for early-stage non-small-cell lung cancer are reviewed herein.
Collapse
Affiliation(s)
- Kenneth D Westover
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9183, USA.
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9183, USA
| |
Collapse
|
50
|
Lang S, Shrestha B, Graydon S, Cavelaars F, Linsenmeier C, Hrbacek J, Klöck S, Studer G, Riesterer O. Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiother Oncol 2013; 106:255-9. [DOI: 10.1016/j.radonc.2012.12.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/15/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022]
|