1
|
Zhou B, Zulpya M, Wang S, Wang Z, Sun J, Cui Y, Sun L, Xu L, Liu H, Dong B. Carbon Monoxide-Enhanced antibacterial Therapy: Inhibiting bacterial Self-Perception mechanisms. J Colloid Interface Sci 2025; 694:137724. [PMID: 40311315 DOI: 10.1016/j.jcis.2025.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
The expression of heat shock proteins (HSPs) plays a pivotal role in enhancing bacterial adaptability and repair mechanisms, posing a challenge for effective antibacterial strategies. To address this, we designed multifunctional Au@mSiO2-MnCO/IR780 nanoparticles (NPs) that target key bacterial signaling pathways to suppress HSP expression. Specifically, the system leverages the controlled release of carbon monoxide (CO) to inhibit bacterial perception mechanisms, including the two-component system (TCS), thereby effectively downregulating HSP expression. This inhibition disrupts bacterial adaptability and repair capacity, maintaining the bacteria in a vulnerable state. In this design, Au nanorods serve as highly efficient photothermal agents, while, IR780 generates reactive oxygen species (ROS) and emits fluorescence under near-infrared (NIR) light irradiation. The generated ROS facilitates the release of CO from MnCO, which directly inhibits bacterial TCS and sigma factor system pathway, significantly reducing the expression of bacterial HSPs. Further, Mn2+ catalyzes the decomposition of hydrogen peroxide (H2O2) to produce oxygen (O2), alleviating the oxygen-deficient environment at the abscess site and enhancing PDT efficacy. This innovative approach with TCS inhibition highlights the critical role of CO-mediated signaling pathway disruption in suppressing HSP expression, representing a significant advancement in the field of antibacterial therapy.
Collapse
Affiliation(s)
- Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Mahmut Zulpya
- College of Basic Medicine Science, Jilin University, Changchun 130021, China
| | - Shimeng Wang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Zhifang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jiao Sun
- College of Basic Medicine Science, Jilin University, Changchun 130021, China.
| | - Yaqi Cui
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Liheng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Haipeng Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025; 16:e0022725. [PMID: 40162747 PMCID: PMC12077118 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Miwa T, Taguchi H. Revival of the Escherichia coli heat shock response after two decades with a small Hsp in a critical but distinct act. Biol Chem 2025; 406:29-33. [PMID: 39760265 DOI: 10.1515/hsz-2024-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The heat stress response is an essential defense mechanism in all organisms. Heat shock proteins (Hsps) are produced in response to thermal stress, with their expression levels regulated by heat shock transcription factors. In Escherichia coli, the key transcription factor σ32 positively regulates Hsp expression. Studies from over two decades ago revealed that σ32 abundance is negatively controlled under normal conditions, mainly through degradation mechanisms involving DnaK, GroEL, and FtsH. Beyond this established mechanism, recent findings indicate that a small heat shock protein IbpA also plays a role in the translational regulation of σ32, adding a new layer to the established model. This review highlights the role of a new actor, IbpA, which strongly suppresses σ32 expression under non-stress conditions and markedly increases it during heat shock.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo (Formerly Tokyo Institute of Technology), S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo (Formerly Tokyo Institute of Technology), S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
4
|
Khanal A, Han SR, Lee JH, Oh TJ. Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Front Microbiol 2025; 15:1505699. [PMID: 39925882 PMCID: PMC11804256 DOI: 10.3389/fmicb.2024.1505699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025] Open
Abstract
Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation.
Collapse
Affiliation(s)
- Anamika Khanal
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
5
|
Tawiah PO, Gaessler LF, Anderson GM, Oladokun EP, Dahl JU. A Novel Silver-Ruthenium-Based Antimicrobial Kills Gram-Negative Bacteria Through Oxidative Stress-Induced Macromolecular Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631245. [PMID: 39803548 PMCID: PMC11722212 DOI: 10.1101/2025.01.03.631245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal Escherichia coli (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed. These include silver nanoparticles, which have been used as antimicrobial surface-coatings on catheters to eliminate biofilm-forming uropathogens and reduce the risk of nosocomial infections. AGXX® is a promising silver coating that presumably kills bacteria through the generation of reactive oxygen species (ROS) but is more potent than silver. However, neither is AGXX®'s mode of action fully understood, nor have its effects on Gram-negative bacteria or bacterial response and defense mechanisms towards AGXX® been studied in detail. Here, we report that the bactericidal effects of AGXX® are primarily based on ROS formation, as supplementation of the media with a ROS scavenger completely abolished AGXX®-induced killing. We further show that AGXX® impairs the integrity of the bacterial cell envelope and causes substantial protein aggregation and DNA damage already at sublethal concentrations. ExPEC strains appear to be more resistant to the proteotoxic effects of AGXX® compared to non-pathogenic E. coli, indicating improved defense capabilities of the uropathogen. Global transcriptomic studies of AGXX®-stressed ExPEC revealed a strong oxidative stress response, perturbations in metal homeostasis, as well as the activation of heat shock and DNA damage responses. Finally, we present evidence that ExPEC counter AGXX® damage through the production of the chaperone polyphosphate.
Collapse
Affiliation(s)
- Patrick Ofori Tawiah
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Luca Finn Gaessler
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Greg M. Anderson
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | | | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| |
Collapse
|
6
|
Hurtado-Bautista E, Islas-Robles A, Moreno-Hagelsieb G, Olmedo-Alvarez G. Thermal Plasticity and Evolutionary Constraints in Bacillus: Implications for Climate Change Adaptation. BIOLOGY 2024; 13:1088. [PMID: 39765755 PMCID: PMC11673879 DOI: 10.3390/biology13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild Bacillus strains from two lineages (Bacillus cereus and Bacillus subtilis) to examine their thermal adaptation strategies. We exposed the bacteria to gradually increasing temperatures to assess their thermal plasticity, focusing on the genetic mechanisms underlying adaptation. While B. subtilis lineages improved growth at highly critical temperatures, only one increased its thermal niche to 4 °C above their natural range. This finding is concerning given climate change projections. B. cereus strains exhibited higher mutation rates but were not able to grow at increasing temperatures, while B. subtilis required fewer genetic changes to increase heat tolerance, indicating distinct adaptive strategies. We observed convergent evolution in five evolved lines, with mutations in genes involved in c-di-AMP synthesis, which is crucial for potassium transport, implicating this chemical messenger for the first time in heat tolerance. These insights highlight the vulnerability of bacteria to climate change and underscore the importance of genetic background in shaping thermal adaptation.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | | | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| |
Collapse
|
7
|
Shibai A, Furusawa C. Development of specialized devices for microbial experimental evolution. Dev Growth Differ 2024; 66:372-380. [PMID: 39187274 PMCID: PMC11482599 DOI: 10.1111/dgd.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Experimental evolution of microbial cells provides valuable information on evolutionary dynamics, such as mutations that contribute to fitness gain under given selection pressures. Although experimental evolution is a promising tool in evolutionary biology and bioengineering, long-term culture experiments under multiple environmental conditions often impose an excessive workload on researchers. Therefore, the development of automated systems significantly contributes to the advancement of experimental evolutionary research. This review presents several specialized devices designed for experimental evolution studies, such as an automated system for high-throughput culture experiments, a culture device that generate a temperature gradient, and an automated ultraviolet (UV) irradiation culture device. The ongoing development of such specialized devices is poised to continually expand new frontiers in experimental evolution research.
Collapse
Affiliation(s)
| | - Chikara Furusawa
- Center for Biosystems Dynamics ResearchRIKENSuitaJapan
- Universal Biology InstituteThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Kędzierska B, Stodolna A, Bryszkowska K, Dylewski M, Potrykus K. A simple and unified protocol to purify all seven Escherichia coli RNA polymerase sigma factors. J Appl Genet 2024; 65:615-625. [PMID: 38709457 PMCID: PMC11310293 DOI: 10.1007/s13353-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.
Collapse
Affiliation(s)
- Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Stodolna
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Bryszkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Maciej Dylewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
9
|
Jung M, Park Y, Ahn YJ. Plant Heat Shock Proteins Are More Effective in Enhancing Recombinant Alcohol Dehydrogenase Activity than Bacterial Ones In Vitro. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3878. [PMID: 39737206 PMCID: PMC11682524 DOI: 10.30498/ijb.2024.442517.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 01/01/2025]
Abstract
Background Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When Escherichia coli (E. coli) is used as a cell factory, E. coli Hsps are the frequently used co-expression partners. Objectives We examined if there are differences in the molecular chaperone activities of plant and bacterial Hsps on recombinant protein activity. We compared the effects of the Hsps from carrot (Daucus carota) and E. coli on enhancing the recombinant alcohol dehydrogenase (ADH) activity and solubility under normal and heat conditions in vitro. Materials and Methods His-tagged carrot Hsps (DcHsp17.7 and DcHsp70), E. coli Hsps (IbpA, IbpB, and DnaK), and ADH from a thermophile Geobacillus stearothermophilus were individually cloned in a pET11a or a pET26b vector, introduced into E. coli BL21(DE3), and expressed by isopropyl β-D-1-thiogalactopyranoside treatment (0.5 mM, 16 °C , 20 h). The recombinant proteins were purified using Ni-NTA affinity chromatography and resolved in SDS-PAGE (17%). The recombinant ADH was treated with the individual Hsps or in combination, and the enzyme activity was examined by measuring the NADH product levels at O.D.340. Results The recombinant ADH was expressed at high levels in E. coli and very thermotolerant when the purified enzyme reacted (up to 70 °C). All five Hsps enhanced the ADH activity under normal and heat conditions in vitro, compared to the control. DcHsp17.7 and DcHsp70 were the most effective for improving the enzyme activity by up to 13.0- and 11.6-fold, respectively, followed by IbpA (8.4-fold), DnaK (6.5-fold), and IbpB (3.4-fold), at 37 °C . Combined incubation of DcHsp17.7-DcHsp70 and DcHsp17.7-DnaK further enhanced the ADH activity by 13.8 and 14.2-fold, respectively. DcHsp70 effectively enhanced ADH's solubility at 37 °C in vitro. Conclusion Our results suggest that plant Hsps can enhance recombinant protein activity, such as ADH, more effectively than their bacterial counterparts. Identifying effective molecular chaperones in the bacterial and eukaryotic domains will help enhance the production of recombinant proteins in E. coli.
Collapse
Affiliation(s)
| | | | - Yeh-Jin Ahn
- Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea
| |
Collapse
|
10
|
Mohsen JJ, Mohsen MG, Jiang K, Landajuela A, Quinto L, Isaacs FJ, Karatekin E, Slavoff SA. Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601336. [PMID: 38979229 PMCID: PMC11230408 DOI: 10.1101/2024.06.29.601336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Over the past 15 years, hundreds of previously undiscovered bacterial small open reading frame (sORF)-encoded polypeptides (SEPs) of fewer than fifty amino acids have been identified, and biological functions have been ascribed to an increasing number of SEPs from intergenic regions and small RNAs. However, despite numbering in the dozens in Escherichia coli, and hundreds to thousands in humans, same-strand nested sORFs that overlap protein coding genes in alternative reading frames remain understudied. In order to provide insight into this enigmatic class of unannotated genes, we characterized GndA, a 36-amino acid, heat shock-regulated SEP encoded within the +2 reading frame of the gnd gene in E. coli K-12 MG1655. We show that GndA pulls down components of respiratory complex I (RCI) and is required for proper localization of a RCI subunit during heat shock. At high temperature GndA deletion (ΔGndA) cells exhibit perturbations in cell growth, NADH+/NAD ratio, and expression of a number of genes including several associated with oxidative stress. These findings suggest that GndA may function in maintenance of homeostasis during heat shock. Characterization of GndA therefore supports the nascent but growing consensus that functional, overlapping genes occur in genomes from viruses to humans.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Michael G. Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Laura Quinto
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
- Wu Tsai Institute, Yale University, New Haven, CT 06511
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
11
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
12
|
Bullivant A, Lozano-Huntelman N, Tabibian K, Leung V, Armstrong D, Dudley H, Savage VM, Rodríguez-Verdugo A, Yeh PJ. Evolution Under Thermal Stress Affects Escherichia coli's Resistance to Antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582334. [PMID: 38464198 PMCID: PMC10925296 DOI: 10.1101/2024.02.27.582334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Exposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria. However, little is known about how evolution under thermal stress affects antibiotic resistance. We examined 100+ heat-evolved strains of Escherichia coli that evolved under thermal stress. We asked whether evolution under thermal stress affects optimal growth temperature, if there are any correlations between evolving in high temperatures and antibiotic resistance, and if these strains' antibiotic efficacy changes depending on the local environment's temperature. We found that: (1) surprisingly, most of the heat-evolved strains displayed a decrease in optimal growth temperature and overall growth relative to the ancestor strain, (2) there were complex patterns of changes in antibiotic resistance when comparing the heat-evolved strains to the ancestor strain, and (3) there were few significant correlations among changes in antibiotic resistance, optimal growth temperature, and overall growth.
Collapse
Affiliation(s)
- Austin Bullivant
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Kevin Tabibian
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Vivien Leung
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Dylan Armstrong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Henry Dudley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | | | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
13
|
Frizzell JK, Taylor RL, Ryno LM. Constitutive Activation of RpoH and the Addition of L-arabinose Influence Antibiotic Sensitivity of PHL628 E. coli. Antibiotics (Basel) 2024; 13:143. [PMID: 38391529 PMCID: PMC10886279 DOI: 10.3390/antibiotics13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotics are used to combat the ever-present threat of infectious diseases, but bacteria are continually evolving an assortment of defenses that enable their survival against even the most potent treatments. While the demand for novel antibiotic agents is high, the discovery of a new agent is exceedingly rare. We chose to focus on understanding how different signal transduction pathways in the gram-negative bacterium Escherichia coli (E. coli) influence the sensitivity of the organism to antibiotics from three different classes: tetracycline, chloramphenicol, and levofloxacin. Using the PHL628 strain of E. coli, we exogenously overexpressed two transcription factors, FliA and RpoH.I54N (a constitutively active mutant), to determine their influence on the minimum inhibitory concentration (MIC) and minimum duration of killing (MDK) concentration for each of the studied antibiotics. We hypothesized that activating these pathways, which upregulate genes that respond to specific stressors, could mitigate bacterial response to antibiotic treatment. We also compared the exogenous overexpression of the constitutively active RpoH mutant to thermal heat shock that has feedback loops maintained. While FliA overexpression had no impact on MIC or antibiotic tolerance, RpoH.I54N overexpression reduced the MIC for tetracycline and chloramphenicol but had no independent impact on antibiotic tolerance. Thermal heat shock alone also did not affect MIC or antibiotic tolerance. L-arabinose, the small molecule used to induce expression in our system, unexpectedly independently increased the MICs for tetracycline (>2-fold) and levofloxacin (3-fold). Additionally, the combination of thermal heat shock and arabinose provided a synergistic, 5-fold increase in MIC for chloramphenicol. Arabinose increased the tolerance, as assessed by MDK99, for chloramphenicol (2-fold) and levofloxacin (4-fold). These experiments highlight the potential of the RpoH pathway to modulate antibiotic sensitivity and the emerging implication of arabinose in enhanced MIC and antibiotic tolerance.
Collapse
Affiliation(s)
- Jenna K Frizzell
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Ryan L Taylor
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| |
Collapse
|
14
|
Dorantes-Palma D, Pérez-Mora S, Azuara-Liceaga E, Pérez-Rueda E, Pérez-Ishiwara DG, Coca-González M, Medel-Flores MO, Gómez-García C. Screening and Structural Characterization of Heat Shock Response Elements (HSEs) in Entamoeba histolytica Promoters. Int J Mol Sci 2024; 25:1319. [PMID: 38279319 PMCID: PMC10815948 DOI: 10.3390/ijms25021319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Entamoeba histolytica (E. histolytica) exhibits a remarkable capacity to respond to thermal shock stress through a sophisticated genetic regulation mechanism. This process is carried out via Heat Shock Response Elements (HSEs), which are recognized by Heat Shock Transcription Factors (EhHSTFs), enabling fine and precise control of gene expression. Our study focused on screening for HSEs in the promoters of the E. histolytica genome, specifically analyzing six HSEs, including Ehpgp5, EhrabB1, EhrabB4, EhrabB5, Ehmlbp, and Ehhsp100. We discovered 2578 HSEs, with 1412 in promoters of hypothetical genes and 1166 in coding genes. We observed that a single promoter could contain anywhere from one to five HSEs. Gene ontology analysis revealed the presence of HSEs in essential genes for the amoeba, including cysteine proteinases, ribosomal genes, Myb family DNA-binding proteins, and Rab GTPases, among others. Complementarily, our molecular docking analyses indicate that these HSEs are potentially recognized by EhHSTF5, EhHSTF6, and EhHSTF7 factors in their trimeric conformation. These findings suggest that E. histolytica has the capability to regulate a wide range of critical genes via HSE-EhHSTFs, not only for thermal stress response but also for vital functions of the parasite. This is the first comprehensive study of HSEs in the genome of E. histolytica, significantly contributing to the understanding of its genetic regulation and highlighting the complexity and precision of this mechanism in the parasite's survival.
Collapse
Affiliation(s)
- David Dorantes-Palma
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Ernesto Pérez-Rueda
- Unidad Académica del Estado de Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 97302, Mexico;
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Misael Coca-González
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| |
Collapse
|
15
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Aarts R, Tabury K, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity. NPJ Microgravity 2024; 10:3. [PMID: 38200027 PMCID: PMC10781756 DOI: 10.1038/s41526-024-00345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Raf Aarts
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
16
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
17
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
18
|
Lee J, Huh J, Lee Y, Jin Y, Bai F, Ha UH. DnaJ-induced miRNA-146a negatively regulates the expression of IL-8 in macrophages. Microb Pathog 2023; 184:106357. [PMID: 37716625 DOI: 10.1016/j.micpath.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
As a member of the damage-associated molecular patterns, heat shock proteins (HSPs) are widely recognized for their role in initiating innate immune responses. These highly conserved proteins are expressed ubiquitously in both prokaryotes and eukaryotes. In this study, our aim was to investigate how DnaJ, a HSP40 homolog derived from Pseudomonas aeruginosa (P. aeruginosa), influences the regulation of IL-8 expression in macrophages. Treatment with DnaJ served as a stimulus, inducing a more robust expression of IL-8 compared to other HSP homologs, including DnaK, GroEL, and HtpG. This effect was achieved through the activation of the NF-κB signaling pathway. Interestingly, DnaJ treatment also significantly increased the expression of microRNA-146a (miR-146a), which appears to play a role in modulating the expression of innate defense genes. As a consequence, pre-treatment with DnaJ led to a reduction in the extent of IL-8 induction in response to P. aeruginosa treatment. Notably, this reduction was counteracted by transfection of a miR-146a inhibitor, highlighting the involvement of miR-146a in P. aeruginosa-mediated induction of IL-8 expression. Therefore, this study uncovers the role of DnaJ in triggering the expression of miR-146a, which, in turn, modulates the excessive expression of IL-8 induced by P. aeruginosa infection.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Jinwon Huh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
19
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
20
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
21
|
Liang J, Cameron G, Faucher SP. Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 2023; 89:e0066623. [PMID: 37668382 PMCID: PMC10537758 DOI: 10.1128/aem.00666-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
22
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Zoheir AE, Sobol MS, Meisch L, Ordoñez-Rueda D, Kaster AK, Niemeyer CM, Rabe KS. A three-colour stress biosensor reveals multimodal response in single cells and spatiotemporal dynamics of biofilms. NPJ Biofilms Microbiomes 2023; 9:57. [PMID: 37604827 PMCID: PMC10442448 DOI: 10.1038/s41522-023-00424-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The plethora of stress factors that can damage microbial cells has evolved sophisticated stress response mechanisms. While existing bioreporters can monitor individual responses, sensors for detecting multimodal stress responses in living microorganisms are still lacking. Orthogonally detectable red, green, and blue fluorescent proteins combined in a single plasmid, dubbed RGB-S reporter, enable simultaneous, independent, and real-time analysis of the transcriptional response of Escherichia coli using three promoters which report physiological stress (PosmY for RpoS), genotoxicity (PsulA for SOS), and cytotoxicity (PgrpE for RpoH). The bioreporter is compatible with standard analysis and Fluorescent Activated Cell Sorting (FACS) combined with subsequent transcriptome analysis. Various stressors, including the biotechnologically relevant 2-propanol, activate one, two, or all three stress responses, which can significantly impact non-stress-related metabolic pathways. Implemented in microfluidic cultivation with confocal fluorescence microscopy imaging, the RGB-S reporter enabled spatiotemporal analysis of live biofilms revealing stratified subpopulations of bacteria with heterogeneous stress responses.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Department of Genetics and Cytology, National Research Centre (NRC), Cairo, Egypt
| | - Morgan S Sobol
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Laura Meisch
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Diana Ordoñez-Rueda
- European Molecular Biology Laboratory (EMBL), Flow Cytometry Core Facility, Heidelberg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
24
|
Hui CY, Hu SY, Yang XQ, Guo Y. A panel of visual bacterial biosensors for the rapid detection of genotoxic and oxidative damage: A proof of concept study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503639. [PMID: 37188434 DOI: 10.1016/j.mrgentox.2023.503639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
The emergence of new compounds during the past decade requires a high-throughput screening method for toxicity assay. The stress-responsive whole-cell biosensor is a powerful tool to evaluate direct or indirect damages of biological macromolecules induced by toxic chemicals. In this proof-of-concept study, nine well-characterized stress-responsive promoters were first selected to assemble a set of blue indigoidine-based biosensors. The PuspA-based, PfabA-based, and PgrpE-based biosensors were eliminated due to their high background. A dose-dependent increase of visible blue signal was observed in PrecA-, PkatG-, and PuvrA-based biosensors, responsive to potent mutagens, including mitomycin and nalidixic acid, but not to genotoxic lead and cadmium. The PrecA, PkatG, and Ppgi gene promoters were further fused to a purple deoxyviolacein synthetic enzyme cluster. Although high basal production of deoxyviolacein is unavoidable, an enhanced visible purple signal in response to mitomycin and nalidixic acid was observed as dose-dependent, especially in PkatG-based biosensors. The study shows that a set of stress-responsive biosensors employing visible pigment as a reporter is pre-validating in detecting extensive DNA damage and intense oxidative stress. Unlike widely-used fluorescent and bioluminescent biosensors, the visual pigment-based biosensor can become a novel, low-cost, mini-equipment, and high-throughput colorimetric device for the toxicity assessment of chemicals. However, combining multiple improvements can further improve the biosensing performance in future studies.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-Yu Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
25
|
Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Res Int 2023; 167:112710. [PMID: 37087272 DOI: 10.1016/j.foodres.2023.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
As a novel non-thermal pasteurization technology, high pressure carbon dioxide (HPCD) has been used in food processing. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, we attempted to investigate the effect of various preliminary stresses including cold, heat, osmosis, acidity and oxidation on HPCD-induced VBNC formation. The results indicated that there was no effect of preliminary stresses on VBNC Staphylococcus aureus induction. However, heat, acidity and long-term (24 h) cultivation preadaptation could significantly increase the VBNC E. coli production induced by HPCD. Transcriptome analysis revealed that genes involved in ATP production were significantly decreased in these three stress-treated cells, and further ATP levels determination revealed that the ATP levels of the cell were significantly decreased after heat, acidity and long-term cultivation preadaptation, implying the decrease of ATP level caused by these stresses might be the reason for increasing VBNC production. To further study the relationship between ATP level and VBNC cell ratios after preadaptation. We artificially decreased the ATP levels, and detect their VBNC ratios after HPCD treatment. We found that with the ATP concentration decreasing after exposure to carbonyl cyanide m-chlorophenyl hydrazine (CCCP), the VBNC ratios were increased after HPCD treatment, indicating that the ATP contents were highly negatively correlated with VBNC ratios. This study proved that the preadaptation of heat, acidity and long-term cultivation could promote VBNC induction by decreasing the intracellular ATP level. In general, the obtained result gave the instruction about the storage environment for food materials, helped to further develop and optimize the HPCD processing to prevent VBNC formation and accelerate the development of HPCD technology in food industry.
Collapse
|
26
|
Fomin V, Bazhenov S, Kononchuk O, Matveeva V, Zarubina A, Spiridonov S, Manukhov I. Photorhabdus lux-operon heat shock-like regulation. Heliyon 2023; 9:e14527. [PMID: 36950606 PMCID: PMC10025913 DOI: 10.1016/j.heliyon.2023.e14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The expression was researched in the natural strain Photorhabdus temperata and in the heterologous system of Escherichia coli. P. temperata FV2201 bacterium was isolated from soil in the Moscow region (growth optimum 28 °C). We showed that its luminescence significantly increases when the temperature rises to 34 °C. The increase in luminescence is associated with an increase in the transcription of luxCDABE genes, which was confirmed by RT-PCR. The promoter of the lux-operon of the related bacterium P. luminescens ZM1 from the forests of Moldova, being cloned in the heterologous system of E. coli, is activated when the temperature rises from room temperature to 42 °C. When heat shock is caused by ethanol addition, transcription of lux-operon increases only in the natural strain of P. temperata, but not in the heterologous system of E. coli cells. In addition, the activation of the lux-operon of P. luminescens persists in E. coli strains deficient in both the rpoH and rpoE genes. These results indicate the presence of sigma 32 and sigma 24 independent heat-shock-like mechanism of regulation of the lux-operon of P. luminescens in the heterologous E. coli system.
Collapse
Affiliation(s)
- V.V. Fomin
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - S.V. Bazhenov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - O.V. Kononchuk
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - V.O. Matveeva
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - A.P. Zarubina
- Biological Faculty, Lomonosov Moscow State University, Vorob’evy Gory, Moscow, 119992, Russian Federation
| | - S.E. Spiridonov
- Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect, 33, Moscow, 119071, Russian Federation
| | - I.V. Manukhov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Corresponding author.
| |
Collapse
|
27
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
28
|
Kim H, Moon S, Ham S, Lee K, Römling U, Lee C. Cytoplasmic molecular chaperones in Pseudomonas species. J Microbiol 2022; 60:1049-1060. [PMID: 36318358 DOI: 10.1007/s12275-022-2425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pseudomonas is widespread in various environmental and host niches. To promote rejuvenation, cellular protein homeostasis must be finely tuned in response to diverse stresses, such as extremely high and low temperatures, oxidative stress, and desiccation, which can result in protein homeostasis imbalance. Molecular chaperones function as key components that aid protein folding and prevent protein denaturation. Pseudomonas, an ecologically important bacterial genus, includes human and plant pathogens as well as growth-promoting symbionts and species useful for bioremediation. In this review, we focus on protein quality control systems, particularly molecular chaperones, in ecologically diverse species of Pseudomonas, including the opportunistic human pathogen Pseudomonas aeruginosa, the plant pathogen Pseudomonas syringae, the soil species Pseudomonas putida, and the psychrophilic Pseudomonas antarctica.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Kihyun Lee
- CJ Bioscience, Seoul, 04527, Republic of Korea
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
29
|
Delavault A, Zoheir AE, Muller D, Hollenbach R, Rabe KS, Ochsenreither K, Rudat J, Syldatk C. Enhanced Bioactivity of Tailor-Made Glycolipid Enriched Manuka Honey. Int J Mol Sci 2022; 23:12031. [PMID: 36233331 PMCID: PMC9570014 DOI: 10.3390/ijms231912031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glycolipids can be synthetized in deep eutectic solvents (DESs) as they possess low water content allowing a reversed lipase activity and thus enables ester formation. Based on this principle, honey can also serve as a media for glycolipid synthesis. Indeed, this supersaturated sugar solution is comparable in terms of physicochemical properties to the sugar-based DESs. Honey-based products being commercially available for therapeutic applications, it appears interesting to enhance its bioactivity. In the current work, we investigate if enriching medical grade honey with in situ enzymatically-synthetized glycolipids can improve the antimicrobial property of the mixture. The tested mixtures are composed of Manuka honey that is enriched with octanoate, decanoate, laurate, and myristate sugar esters, respectively dubbed GOH, GDH, GLH, and GMH. To characterize the bioactivity of those mixtures, first a qualitative screening using an agar well diffusion assay has been performed with methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Candida bombicola, Escherichia coli, and Pseudomonas putida which confirmed considerably enhanced susceptibility of these micro-organisms to the different glycolipid enriched honey mixtures. Then, a designed biosensor E. coli strain that displays a stress reporter system consisting of three stress-specific inducible, red, green, and blue fluorescent proteins which respectively translate to physiological stress, genotoxicity, and cytotoxicity was used. Bioactivity was, therefore, characterized, and a six-fold enhancement of the physiological stress that was caused by GOH compared to regular Manuka honey at a 1.6% (v/v) concentration was observed. An antibacterial agar well diffusion assay with E. coli was performed as well and demonstrated an improved inhibitory potential with GOH upon 20% (v/v) concentration.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ahmed E. Zoheir
- Department of Genetics and Cytology, National Research Center (NRC), Cairo 12622, Egypt
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Delphine Muller
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rebecca Hollenbach
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Kersten S. Rabe
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Jens Rudat
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
30
|
Heating Rate during Shell Egg Thermal Treatment Elicits Stress Responses and Alters Virulence of Salmonella enterica Serovar Enteritidis; Implications for Shell Egg Pasteurization. Appl Environ Microbiol 2022; 88:e0114022. [PMID: 36197091 PMCID: PMC9599327 DOI: 10.1128/aem.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermal pasteurization of shell eggs, at various time-temperature combinations, has been proposed previously and implemented industrially. This study was conducted to determine if shell egg heating rate, which varies with different pasteurization implementations, alters the Salmonella enterica serovar Enteritidis response to different stresses or expression of virulence. Shell eggs, containing Salmonella Enteritidis in yolk, were subjected to a low (2.4°C/min) or a high (3.5°C/min) heating rate during treatments that mimicked the pasteurization temperature come-up stage. The low heating rate protected Salmonella from the following processes: (i) lethal heat at the holding stage, (ii) loss of viability during 8-h cooling after heating, and (iii) sequential antimicrobial ozone treatment. Transcriptional analysis using Salmonella reporter strains revealed that the heat stress response gene grpE was transcribed at 3-fold-higher levels (P = 0.0009) at the low than at the high heating rate. Slow heating also significantly increased the transcription of the Salmonella virulence-related genes sopB (P = 0.0012) and sseA (P = 0.0006) in comparison to fast heating. Salmonella virulence was determined experimentally as 50% lethal dose (LD50) values in an in vivo model. The slow heat treatment mildly increased Salmonella Enteritidis virulence in mice (LD50 of 3.3 log CFU), compared to that in nontreated yolk (LD50 of 3.9 log CFU). However, when ozone application followed the slow heat treatment, Salmonella virulence decreased (LD50 of 4.2 log CFU) compared to that for heat-treated or nontreated yolk. In conclusion, heating shell eggs at a low rate can trigger hazardous responses that may compromise the safety of the final pasteurized products but following the thermal treatment with ozone application may help alleviate these concerns. IMPORTANCE Pasteurization of shell eggs is an important technology designed to protect consumers against Salmonella Enteritidis that contaminates this commodity. A low heating rate is preferred over a high rate during shell egg thermal pasteurization due to product quality concern. However, it is not known whether raising the temperature at different rates, during pasteurizing, would potentially affect product safety determinants. The current study demonstrated that slow heating during the pasteurization come-up stage increased the following risks: (i) resistance of Salmonella to pasteurization holding stage or to subsequent ozone treatment, (ii) recovery of Salmonella during the cooling that followed pasteurization, and (iii) Salmonella's ability to cause disease (i.e., virulence). Our findings inform food processors about potential safety risks to consumers resulting from improper use of processing parameters during shell egg pasteurization. Additionally, treating shell eggs with ozone after heat treatment could alleviate these hazards and protect consumers from natural Salmonella Enteritidis contaminants in shell eggs.
Collapse
|
31
|
Zhang Y, Wang C, Wang C, Yun L, Song L, Idrees M, Liu H, Zhang Q, Yang J, Zheng X, Zhang Z, Gao J. OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms231810830. [PMID: 36142741 PMCID: PMC9501395 DOI: 10.3390/ijms231810830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liu Yun
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Muhammad Idrees
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
| | - Huiying Liu
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| | - Jie Gao
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| |
Collapse
|
32
|
Redox-Mediated Inactivation of the Transcriptional Repressor RcrR is Responsible for Uropathogenic Escherichia coli's Increased Resistance to Reactive Chlorine Species. mBio 2022; 13:e0192622. [PMID: 36073817 PMCID: PMC9600549 DOI: 10.1128/mbio.01926-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC’s HOCl resistance.
Collapse
|
33
|
Schink SJ, Gough Z, Biselli E, Huiman MG, Chang YF, Basan M, Gerland U. MetA is a "thermal fuse" that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Rep 2022; 40:111290. [PMID: 36044860 PMCID: PMC10477958 DOI: 10.1016/j.celrep.2022.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptive stress resistance in microbes is mostly attributed to the expression of stress response genes, including heat-shock proteins. Here, we report a response of E. coli to heat stress caused by degradation of an enzyme in the methionine biosynthesis pathway (MetA). While MetA degradation can inhibit growth, which by itself is detrimental for fitness, we show that it directly benefits survival at temperatures exceeding 50°C, increasing survival chances by more than 1,000-fold. Using both experiments and mathematical modeling, we show quantitatively how protein expression, degradation rates, and environmental stressors cause long-term growth inhibition in otherwise habitable conditions. Because growth inhibition can be abolished with simple mutations, namely point mutations of MetA and protease knockouts, we interpret the breakdown of methionine synthesis as a system that has evolved to halt growth at high temperatures, analogous to "thermal fuses" in engineering that shut off electricity to prevent overheating.
Collapse
Affiliation(s)
- Severin J Schink
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| | - Zara Gough
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Elena Biselli
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Mariel Garcia Huiman
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Yu-Fang Chang
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Markus Basan
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
34
|
Dash S, Palma CSD, Baptista ISC, Almeida BLB, Bahrudeen MNM, Chauhan V, Jagadeesan R, Ribeiro AS. Alteration of DNA supercoiling serves as a trigger of short-term cold shock repressed genes of E. coli. Nucleic Acids Res 2022; 50:8512-8528. [PMID: 35920318 PMCID: PMC9410904 DOI: 10.1093/nar/gkac643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cold shock adaptability is a key survival skill of gut bacteria of warm-blooded animals. Escherichia coli cold shock responses are controlled by a complex multi-gene, timely-ordered transcriptional program. We investigated its underlying mechanisms. Having identified short-term, cold shock repressed genes, we show that their responsiveness is unrelated to their transcription factors or global regulators, while their single-cell protein numbers' variability increases after cold shock. We hypothesized that some cold shock repressed genes could be triggered by high propensity for transcription locking due to changes in DNA supercoiling (likely due to DNA relaxation caused by an overall reduction in negative supercoiling). Concomitantly, we found that nearly half of cold shock repressed genes are also highly responsive to gyrase inhibition (albeit most genes responsive to gyrase inhibition are not cold shock responsive). Further, their response strengths to cold shock and gyrase inhibition correlate. Meanwhile, under cold shock, nucleoid density increases, and gyrases and nucleoid become more colocalized. Moreover, the cellular energy decreases, which may hinder positive supercoils resolution. Overall, we conclude that sensitivity to diminished negative supercoiling is a core feature of E. coli's short-term, cold shock transcriptional program, and could be used to regulate the temperature sensitivity of synthetic circuits.
Collapse
Affiliation(s)
- Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Rahul Jagadeesan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.,Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon 2829-516, Monte de Caparica, Portugal
| |
Collapse
|
35
|
Li H, Zhao Y, Zhang J, Li W, You Q, Zeng X, Xu H. Silver nanoparticles reduce the tolerance of Cronobacter sakazakii to environmental stress by inhibiting expression of related genes. J Dairy Sci 2022; 105:6469-6482. [PMID: 35840406 DOI: 10.3168/jds.2022-21833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Cronobacter sakazakii is a food-borne pathogen that is resistant to a variety of environmental stress conditions. It can survive in harsh environments. We studied the effects of silver nanoparticles (AgNP) on the environmental tolerance and biofilm formation of C. sakazakii. First, we determined the minimum inhibitory concentration (MIC) of AgNP to C. sakazakii and determined the growth curve of C. sakazakii treated with different concentrations of AgNP by using the plate counting method. After determining the sub-inhibition concentrations (SIC) of AgNP on C. sakazakii, we studied the effects of AgNP on the resistance of C. sakazakii to heat, desiccation, osmotic pressure, and acid. The antibiofilm activity of AgNP was also studied. Finally, real-time quantitative PCR was used to analyze the transcription levels of 16 genes related to the environmental tolerance of C. sakazakii. The SIC of AgNP significantly reduced the survival rate of C. sakazakii under various environmental stress conditions. The results showed that AgNP at 0.625 and 1.25 μg/mL significantly inhibited the formation of C. sakazakii biofilms. The expression levels of most genes were significantly downregulated in C. sakazakii cells treated with 0.625 and 1.25 μg/mL AgNP. Therefore, AgNP may reduce the environmental tolerance of C. sakazakii by inhibiting the expression of genes related to stress tolerance. Moreover, AgNP inhibited the production of ATP in C. sakazakii cells and the formation of C. sakazakii biofilms. Our research provides a theoretical basis for the application of AgNP in food packaging, bactericidal coatings, and other fields.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yi Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jingjing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wen Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Qixiu You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
36
|
Christensen S, Rämisch S, André I. DnaK response to expression of protein mutants is dependent on translation rate and stability. Commun Biol 2022; 5:597. [PMID: 35710941 PMCID: PMC9203555 DOI: 10.1038/s42003-022-03542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chaperones play a central part in the quality control system in cells by clearing misfolded and aggregated proteins. The chaperone DnaK acts as a sensor for molecular stress by recognising short hydrophobic stretches of misfolded proteins. As the level of unfolded protein is a function of protein stability, we hypothesised that the level of DnaK response upon overexpression of recombinant proteins would be correlated to stability. Using a set of mutants of the λ-repressor with varying thermal stabilities and a fluorescent reporter system, the effect of stability on DnaK response and protein abundance was investigated. Our results demonstrate that the initial DnaK response is largely dependent on protein synthesis rate but as the recombinantly expressed protein accumulates and homeostasis is approached the response correlates strongly with stability. Furthermore, we observe a large degree of cell-cell variation in protein abundance and DnaK response in more stable proteins.
Collapse
Affiliation(s)
- Signe Christensen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | | | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
37
|
Tawde M, Bior A, Feiss M, Teng F, Freimuth P. A polypeptide model for toxic aberrant proteins induced by aminoglycoside antibiotics. PLoS One 2022; 17:e0258794. [PMID: 35486612 PMCID: PMC9053816 DOI: 10.1371/journal.pone.0258794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Aminoglycoside antibiotics interfere with the selection of cognate tRNAs during translation, resulting in the synthesis of aberrant proteins that are the ultimate cause of cell death. However, the toxic potential of aberrant proteins and how they avoid degradation by the cell’s protein quality control (QC) machinery are not understood. Here we report that levels of the heat shock (HS) transcription factor σ32 increased sharply following exposure of Escherichia coli to the aminoglycoside kanamycin (Kan), suggesting that at least some of the aberrant proteins synthesized in these cells were recognized as substrates by DnaK, a molecular chaperone that regulates the HS response, the major protein QC pathway in bacteria. To further investigate aberrant protein toxic potential and interaction with cell QC factors, we studied an acutely toxic 48-residue polypeptide (ARF48) that is encoded by an alternate reading frame in a plant cDNA. As occurred in cells exposed to Kan, σ32 levels were strongly elevated following ARF48 expression, suggesting that ARF48 was recognized as a substrate by DnaK. Paradoxically, an internal 10-residue region that was tightly bound by DnaK in vitro also was required for the ARF48 toxic effect. Despite the increased levels of σ32, levels of several HS proteins were unchanged following ARF48 expression, suggesting that the HS response had been aborted. Nucleoids were condensed and cell permeability increased rapidly following ARF48 expression, together suggesting that ARF48 disrupts DNA-membrane interactions that could be required for efficient gene expression. Our results are consistent with earlier studies showing that aberrant proteins induced by aminoglycoside antibiotics disrupt cell membrane integrity. Insights into the mechanism for this effect could be gained by further study of the ARF48 model system.
Collapse
Affiliation(s)
- Mangala Tawde
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, New York, United States of America
| | - Abdelaziz Bior
- Department of Natural and Applied Sciences, Cheyney University of Pennsylvania, Cheyney, Pennsylvania, United States of America
| | - Michael Feiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Feiyue Teng
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Paul Freimuth
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
He CY, Yang JH, Ye YB, Zhao HL, Liu MZ, Yang QL, Liu BS, He S, Chen ZL. Proteomic and Antibody Profiles Reveal Antigenic Composition and Signatures of Bacterial Ghost Vaccine of Brucella abortus A19. Front Immunol 2022; 13:874871. [PMID: 35529865 PMCID: PMC9074784 DOI: 10.3389/fimmu.2022.874871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is an important zoonotic disease that causes great economic losses. Vaccine immunisation is the main strategy for the prevention and control of brucellosis. Although live attenuated vaccines play important roles in the prevention of this disease, they also have several limitations, such as residual virulence and difficulty in the differentiation of immunisation and infection. We developed and evaluated a new bacterial ghost vaccine of Brucella abortus A19 by a new double inactivation method. The results showed that the bacterial ghost vaccine of Brucella represents a more safe and efficient vaccine for brucellosis. We further characterised the antigenic components and signatures of the vaccine candidate A19BG. Here, we utilised a mass spectrometry-based label-free relative quantitative proteomics approach to investigate the global proteomics changes in A19BGs compared to its parental A19. The proteomic analysis identified 2014 proteins, 1116 of which were differentially expressed compared with those in A19. The common immunological proteins of OMPs (Bcsp31, Omp25, Omp10, Omp19, Omp28, and Omp2a), HSPs (DnaK, GroS, and GroL), and SodC were enriched in the proteome of A19BG. By protein micro array-based antibody profiling, significant differences were observed between A19BG and A19 immune response, and a number of signature immunogenic proteins were identified. Two of these proteins, the BMEII0032 and BMEI0892 proteins were significantly different (P < 0.01) in distinguishing between A19 and A19BG immune sera and were identified as differential diagnostic antigens for the A19BG vaccine candidate. In conclusion, using comparative proteomics and antibody profiling, protein components and signature antigens were identified for the ghost vaccine candidate A19BG, which are valuable for further developing the vaccine and its monitoring assays.
Collapse
Affiliation(s)
- Chuan-Yu He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Jiang-Hua Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yin-Bo Ye
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Hai-Long Zhao
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Meng-Zhi Liu
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Qi-Lin Yang
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Sun He
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Key Laboratory of Tropical Diseases Control, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Dynamic gene expression and growth underlie cell-to-cell heterogeneity in Escherichia coli stress response. Proc Natl Acad Sci U S A 2022; 119:e2115032119. [PMID: 35344432 PMCID: PMC9168488 DOI: 10.1073/pnas.2115032119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Individual bacteria that share identical genomes and growth environments can display substantial cell-to-cell differences in expression of stress-response genes and single-cell growth rates. This phenotypic heterogeneity can impact the survival of single cells facing sudden stress. However, the windows of time that cells spend in vulnerable or tolerant states are often unknown. We quantify the temporal expression of a suite of stress-response reporters, while simultaneously monitoring growth. We observe pulsatile expression across genes with a range of stress-response functions, finding that single-cell growth rates are often anticorrelated with reporter levels. These dynamic phenotypic differences have a concrete link to function, in which individual cells undergoing a pulse of elevated expression and slow growth are predisposed to survive antibiotic exposure. Cell-to-cell heterogeneity in gene expression and growth can have critical functional consequences, such as determining whether individual bacteria survive or die following stress. Although phenotypic variability is well documented, the dynamics that underlie it are often unknown. This information is important because dramatically different outcomes can arise from gradual versus rapid changes in expression and growth. Using single-cell time-lapse microscopy, we measured the temporal expression of a suite of stress-response reporters in Escherichia coli, while simultaneously monitoring growth rate. In conditions without stress, we found several examples of pulsatile expression. Single-cell growth rates were often anticorrelated with reporter levels, with changes in growth preceding changes in expression. These dynamics have functional consequences, which we demonstrate by measuring survival after challenging cells with the antibiotic ciprofloxacin. Our results suggest that fluctuations in both gene expression and growth dynamics in stress-response networks have direct consequences on survival.
Collapse
|
40
|
Roth M, Jaquet V, Lemeille S, Bonetti EJ, Cambet Y, François P, Krause KH. Transcriptomic Analysis of E. coli after Exposure to a Sublethal Concentration of Hydrogen Peroxide Revealed a Coordinated Up-Regulation of the Cysteine Biosynthesis Pathway. Antioxidants (Basel) 2022; 11:antiox11040655. [PMID: 35453340 PMCID: PMC9026346 DOI: 10.3390/antiox11040655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a key defense component of host-microbe interaction. However, H2O2 concentrations generated by immune cells or epithelia are usually insufficient for bacterial killing and rather modulate bacterial responses. Here, we investigated the impact of sublethal H2O2 concentration on gene expression of E. coli BW25113 after 10 and 60 min of exposure. RNA-seq analysis revealed that approximately 12% of bacterial genes were strongly dysregulated 10 min following exposure to 2.5 mM H2O2. H2O2 exposure led to the activation of a specific antioxidant response and a general stress response. The latter was characterized by a transient down-regulation of genes involved in general metabolism, such as nucleic acid biosynthesis and translation, with a striking and coordinated down-regulation of genes involved in ribosome formation, and a sustained up-regulation of the SOS response. We confirmed the rapid transient and specific response mediated by the transcription factor OxyR leading to up-regulation of antioxidant systems, including the catalase-encoding gene (katG), that rapidly degrade extracellular H2O2 and promote bacterial survival. We documented a strong and transient up-regulation of genes involved in sulfur metabolism and cysteine biosynthesis, which are under the control of the transcription factor CysB. This strong specific transcriptional response to H2O2 exposure had no apparent impact on bacterial survival, but possibly replenishes the stores of oxidized cysteine and glutathione. In summary, our results demonstrate that different stress response mechanisms are activated by H2O2 exposure and highlight the cysteine synthesis as an antioxidant response in E. coli.
Collapse
Affiliation(s)
- Myriam Roth
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- Correspondence: ; Tel.: +41-223-794-257
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| | - Eve-Julie Bonetti
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Yves Cambet
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| |
Collapse
|
41
|
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms 2022; 10:microorganisms10040699. [PMID: 35456749 PMCID: PMC9032294 DOI: 10.3390/microorganisms10040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.
Collapse
|
42
|
Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state. Commun Biol 2022; 5:257. [PMID: 35322207 PMCID: PMC8943139 DOI: 10.1038/s42003-022-03213-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
AAA+ proteases regulate numerous physiological and cellular processes through tightly regulated proteolytic cleavage of protein substrates driven by ATP hydrolysis. FtsH is the only known family of membrane-anchored AAA+ proteases essential for membrane protein quality control. Although a spiral staircase rotation mechanism for substrate translocation across the FtsH pore has been proposed, the detailed conformational changes among various states have not been clear due to absence of FtsH structures in these states. We report here the cryo-EM structure for Thermotoga maritima FtsH (TmFtsH) in a fully ADP-bound symmetric state. Comparisons of the ADP-state structure with its apo-state and a substrate-engaged yeast YME1 structure show conformational changes in the ATPase domains, rather than the protease domains. A reconstruction of the full-length TmFtsH provides structural insights for the dynamic transmembrane and the periplasmic domains. Our structural analyses expand the understanding of conformational switches between different nucleotide states in ATP hydrolysis by FtsH.
Collapse
|
43
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
44
|
Cheng C, Liu F, Jin H, Xu X, Xu J, Deng S, Xia J, Han Y, Lei L, Zhang X, Song H. The DegU Orphan Response Regulator Contributes to Heat Stress Resistance in Listeria monocytogenes. Front Cell Infect Microbiol 2021; 11:761335. [PMID: 34966695 PMCID: PMC8711649 DOI: 10.3389/fcimb.2021.761335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is more heat-resistant than most other non-spore-forming foodborne pathogens, posing a severe threat to food safety and human health, particularly during chilled food processing. The DegU orphan response regulator is known to control heat resistance in L. monocytogenes; however, the underlying regulatory mechanism is poorly understood. Here, we show that DegU contributes to L. monocytogenes exponential growth under mild heat-shock stress. We further demonstrate that DegU directly senses heat stress through autoregulation and upregulates the hrcA-grpE-dnaK-dnaJ operon, leading to increased production of heat-shock proteins. We also show that DegU can directly regulate the expression of the hrcA-grpE-dnaK-dnaJ operon. In conclusion, our results shed light on the regulatory mechanisms underlying how DegU directly activates the hrcA-grpE-dnaK-dnaJ operon, thereby regulating heat resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Feng Liu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Haobo Jin
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiangfei Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jiali Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Simin Deng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jing Xia
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Yue Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Lei Lei
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xian Zhang
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
45
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
46
|
Restoring Global Gene Regulation through Experimental Evolution Uncovers a NAP (Nucleoid-Associated Protein)-Like Behavior of Crp/Cap. mBio 2021; 12:e0202821. [PMID: 34700380 PMCID: PMC8546631 DOI: 10.1128/mbio.02028-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do hierarchical gene regulation networks evolve in bacteria? Nucleoid-associated proteins (NAPs) influence the overall structure of bacterial genomes, sigma factors and global transcription factors (TFs) control thousands of genes, and many operons are regulated by highly specific TFs that in turn are controlled allosterically by cellular metabolites. These regulatory hierarchies have been shaped by millions of years of evolution to optimize fitness in response to changing environmental conditions, but it is unclear how NAPs and TFs relate and have evolved together. Cyclic AMP (cAMP) receptor protein (Crp) is the paradigmatic global TF in Escherichia coli, and here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP.
Collapse
|
47
|
McIntosh M, Köchling T, Latz A, Kretz J, Heinen S, Konzer A, Klug G. A major checkpoint for protein expression in Rhodobacter sphaeroides during heat stress response occurs at the level of translation. Environ Microbiol 2021; 23:6483-6502. [PMID: 34668288 DOI: 10.1111/1462-2920.15818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Temperature above the physiological optimum is a stress condition frequently faced by bacteria in their natural environments. Here, we were interested in the correlation between levels of RNA and protein under heat stress. Changes in RNA and protein levels were documented in cultures of Rhodobacter sphaeroides using RNA sequencing, quantitative mass spectrometry, western blot analysis, in vivo [35 S] methionine-labelling and plasmid-borne reporter fusions. Changes in the transcriptome were extensive. Strikingly, the proteome remained unchanged except for very few proteins. Examples include a heat shock protein, a DUF1127 protein of unknown function and sigma factor proteins from leaderless transcripts. Insight from this study indicates that R. sphaeroides responds to heat stress by producing a broad range of transcripts while simultaneously preventing translation from nearly all of them, and that this selective production of protein depends on the untranslated region of the transcript. We conclude that measurements of transcript abundance are insufficient to understand gene regulation. Rather, translation can be an important checkpoint for protein expression under certain environmental conditions. Furthermore, during heat shock, regulation at the level of transcription might represent preparation for survival in an unpredictable environment while regulation at translation ensures production of only a few proteins.
Collapse
Affiliation(s)
- Matthew McIntosh
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Thorsten Köchling
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anna Latz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Sandra Heinen
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gabriele Klug
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| |
Collapse
|
48
|
Zhang D, Zhu Z, Li Y, Li X, Guan Z, Zheng J. Comparative Genomics of Exiguobacterium Reveals What Makes a Cosmopolitan Bacterium. mSystems 2021; 6:e0038321. [PMID: 34282940 PMCID: PMC8407118 DOI: 10.1128/msystems.00383-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Although the strategies used by bacteria to adapt to specific environmental conditions are widely reported, fewer studies have addressed how microbes with a cosmopolitan distribution can survive in diverse ecosystems. Exiguobacterium is a versatile genus whose members are commonly found in various habitats. To better understand the mechanisms underlying the universality of Exiguobacterium, we collected 105 strains from diverse environments and performed large-scale metabolic and adaptive ability tests. We found that most Exiguobacterium members have the capacity to survive under wide ranges of temperature, salinity, and pH. According to phylogenetic and average nucleotide identity analyses, we identified 27 putative species and classified two genetic groups: groups I and II. Comparative genomic analysis revealed that the Exiguobacterium members utilize a variety of complex polysaccharides and proteins to support survival in diverse environments and also employ a number of chaperonins and transporters for this purpose. We observed that the group I species can be found in more diverse terrestrial environments and have a larger genome size than the group II species. Our analyses revealed that the expansion of transporter families drove genomic expansion in group I strains, and we identified 25 transporter families, many of which are involved in the transport of important substrates and resistance to environmental stresses and are enriched in group I strains. This study provides important insights into both the overall general genetic basis for the cosmopolitan distribution of a bacterial genus and the evolutionary and adaptive strategies of Exiguobacterium. IMPORTANCE The wide distribution characteristics of Exiguobacterium make it a valuable model for studying the adaptive strategies of bacteria that can survive in multiple habitats. In this study, we reveal that members of the Exiguobacterium genus have a cosmopolitan distribution and share an extensive adaptability that enables them to survive in various environments. The capacities shared by Exiguobacterium members, such as their diverse means of polysaccharide utilization and environmental-stress resistance, provide an important basis for their cosmopolitan distribution. Furthermore, the selective expansion of transporter families has been a main driving force for genomic evolution in Exiguobacterium. Our findings improve our understanding of the adaptive and evolutionary mechanisms of cosmopolitan bacteria and the vital genomic traits that can facilitate niche adaptation.
Collapse
Affiliation(s)
- Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ziyu Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Steenhuis M, Corona F, ten Hagen-Jongman CM, Vollmer W, Lambin D, Selhorst P, Klaassen H, Versele M, Chaltin P, Luirink J. Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infect Dis 2021; 7:2250-2263. [PMID: 34125508 PMCID: PMC8369490 DOI: 10.1021/acsinfecdis.0c00728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 12/11/2022]
Abstract
The development of new antibiotics is particularly problematic in Gram-negative bacteria due to the presence of the outer membrane (OM), which serves as a permeability barrier. Recently, the β-barrel assembly machine (BAM), located in the OM and responsible for β-barrel type OM protein (OMP) assembly, has been validated as a novel target for antibiotics. Here, we identified potential BAM complex inhibitors using a screening approach that reports on cell envelope σE and Rcs stress in Escherichia coli. Screening a library consisting of 316 953 compounds yielded five compounds that induced σE and Rcs stress responses, while not inducing the intracellular heat-shock response. Two of the five compounds (compounds 2 and 14) showed the characteristics of known BAM complex inhibitors: synergy with OMP biogenesis mutants, decrease in the abundance of various OMPs, and loss of OM integrity. Importantly, compound 2 also inhibited BAM-dependent OMP folding in an in vitro refolding assay using purified BAM complex reconstituted in proteoliposomes.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Federico Corona
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Corinne M. ten Hagen-Jongman
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Dominique Lambin
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Philippe Selhorst
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Hugo Klaassen
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Matthias Versele
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Patrick Chaltin
- Center
for Drug Design and Development (CD3), KU
Leuven R&D, Waaistraat 6, B-3000 Leuven, Belgium
| | - Joen Luirink
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
50
|
He S, Fong K, Wang S, Shi X. Meat juice contributes to the stability of ethanol adaptation in Salmonella enterica serovar Enteritidis. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Stability assessment of observed tolerance phenotypes is integral in understanding stress adaptation in food-borne pathogens. Therefore, the current work was carried out to determine whether ethanol adaptation induced by exposure to 5 per cent ethanol for 60 min is a stable phenomenon in Salmonella enterica serovar Enteritidis. The capacity of Salmonella Enteritidis (S. Enteritidis) to maintain the acquired ethanol adaptation in the absence of sublethal ethanol stress was investigated at 37 °C, 25 °C or 4 °C in Luria–Bertani broth and two types of meat juice. It was found that ethanol adaptation was completely reversed within 40 min at 37 °C or within 60 min at 25 °C, but was stable at 4 °C for at least 48 h in the broth assay. Ethanol adaptation was retained in chicken juice during 60-min incubation at 25 °C or 48-h incubation at 4 °C. Moreover, exposure to pork juice stored at either 25 °C or 4 °C significantly (P<0.05) increased the ethanol tolerance of ethanol-adapted cells. Collectively, these findings suggest that ethanol adaptation stability in S. Enteritidis under cold conditions and in meat juices should be taken into account when conducting a comprehensive risk analysis during food processing.
Collapse
Affiliation(s)
| | - Karen Fong
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|