1
|
Gibert C, Tirard-Collet P, Miossec C, Dupont D, Persat F, Wallon M, Ader F, Devouassoux G, Ducastelle S, Labussière-Wallet H, Paulus S, Guichon C, Lukaszewicz AC, Richard JC, Wallet F, Alanio A, Rabodonirina M, Menotti J. Reverse-transcriptase real-time PCR in the diagnostic strategy for invasive infections caused by Aspergillus fumigatus. J Clin Microbiol 2024; 62:e0079124. [PMID: 39445834 PMCID: PMC11559004 DOI: 10.1128/jcm.00791-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
The aim was to develop an RT-qPCR targeting Aspergillus fumigatus and compare its performance to that of Aspergillus fumigatus qPCR for the diagnosis of invasive aspergillosis (IA). Samples from patients of the Lyon University hospitals for whom a suspicion of IA led to the realization of an Aspergillus fumigatus qPCR molecular diagnostic test over a 2-year period were included. The patients were classified according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC-MSGERC) criteria for suspected IA; RT-qPCR and qPCR assays were performed on all included samples. The sensitivities and specificities of RT-qPCR and qPCR were calculated and compared using the results of the EORTC-MSGERC classification as reference. The cycle threshold (Ct) results were compared according to IA classification and sample type. Among the 193 samples analyzed, 91 were classified as IA excluded, 46 as possible IA, 53 as probable IA, and 3 as proven IA. For all sample types, RT-qPCR was significantly more sensitive than qPCR for all IA classifications with an additional 17/102 samples detected (P-value < 0.01). For plasma samples, sensitivity was significantly higher and specificity significantly lower using RT-qPCR for all IA classifications (P-value < 0.001). The mean Ct obtained with RT-qPCR were significantly lower than those obtained with qPCR for all IA classifications and all sample types (P-value < 0.001 and P-value < 0.0001, respectively). RT-qPCR presents a higher sensitivity than qPCR for the diagnosis of IA due to Aspergillus fumigatus, particularly in samples with an intrinsically low fungal load.IMPORTANCEAspergillus fumigatus belongs to the critical priority group of the World Health Organization fungal priority pathogens list. Invasive aspergillosis (IA) is a life-threatening infection with poor prognosis and challenging diagnosis. PCR has been integrated into the 2020 European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions for IA diagnosis. However, due to frequent low fungal burdens, its sensitivity needs to be improved. This work presents an innovative method for detecting total nucleic acids, corresponding to both ribosomal RNA and DNA, that enables IA diagnosis with greater sensitivity than conventional techniques, especially in non-invasive samples such as blood, enhancing the monitoring of this infection in high-risk patients.
Collapse
Affiliation(s)
- Charles Gibert
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Pauline Tirard-Collet
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Charline Miossec
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
| | - Damien Dupont
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Persat
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Martine Wallon
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Ader
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Hospices Civils de Lyon, Services de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Lyon, France
| | - Gilles Devouassoux
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Hospices Civils de Lyon, Service de Pneumologie, Hôpital de la Croix-Rousse, Lyon, France
| | - Sophie Ducastelle
- Hospices Civils de Lyon, Service d’Hématologie Clinique, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Hélène Labussière-Wallet
- Hospices Civils de Lyon, Service d’Hématologie Clinique, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Sylvie Paulus
- Hospices Civils de Lyon, Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Bron, France
| | - Céline Guichon
- Hospices Civils de Lyon, Service d'Anesthésie-Réanimation, Hôpital de la Croix-Rousse, Lyon, France
| | - Anne-Claire Lukaszewicz
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Hospices Civils de Lyon, Service d'Anesthésie-Réanimation, Hôpital Edouard Herriot, Lyon, France
| | - Jean-Christophe Richard
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Hospices Civils de Lyon, Service de Médecine intensive, Hôpital de la Croix-Rousse, Lyon, France
| | - Florent Wallet
- Hospices Civils de Lyon, Service d'Anesthésie-Réanimation-Médecine intensive, Hôpital Lyon Sud, Lyon, France
| | - Alexandre Alanio
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Parasitologie-Mycologie, Hôpital St-Louis, Paris, France
- Institut Pasteur, Université Paris-Cité, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de Recherche Mycologie Translationnelle, Département de Mycologie, Paris, France
| | - Meja Rabodonirina
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jean Menotti
- Hospices Civils de Lyon, Laboratoire de Parasitologie et Mycologie Médicale, Institut des Agents Infectieux, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
2
|
Buslyk TV, Rosalovsky VP, Salyha YT. PCR-Based Detection and Quantification of Mycotoxin-Producing Fungi. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Morphological and Molecular Characterization of Toxigenic Aspergillus flavus from Groundnut Kernels in Kenya. Int J Microbiol 2020; 2020:8854718. [PMID: 32963542 PMCID: PMC7492892 DOI: 10.1155/2020/8854718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis of Aspergillus flavus on important agricultural products is a key concern on human health due to the synthesis and secretion of the hazardous secondary metabolite, aflatoxin. This study identified and further characterized aflatoxigenic A. flavus from groundnuts sampled from sundry shops in Kenya using integrated morphological and molecular approaches. The groundnuts were plated on potato dextrose agar for isolation and morphological observation of A. flavus based on macroscopic and microscopic features. Molecular characterization was done through amplification and comparison of the partial sequence of the ITS1-5.8S-ITS2 region. The expression analysis of aflR, aflS, aflD, aflP, and aflQ genes in the aflatoxin biosynthesis pathways was conducted to confirm the positive identification of A. flavus. The gene expression also aided to delineate toxigenic isolates of A. flavus from atoxigenic ones. Morphologically, 18 isolates suspected to be A. flavus were identified. Out of these, 14 isolates successfully amplified the 500 bp ITS region of A. flavus or Aspergillus oryzae, while 4 isolates were not amplified. All the remaining 14 isolates expressed at least one of the aflatoxigenic genes but only 5 had all the genes expressed. Partial sequencing revealed that isolates 5, 11, 12, 13, and 15 had 99.2%, 97.6%, 98.4%, 97.5%, and 100% homology, respectively, to the A. flavus isolate LUOHE, ITS-5.8S-ITS2, obtained from the NCBI database. The five isolates were accurate identification of atoxigenic A. flavus. Precise identification of toxigenic strains of A. flavus will be useful in establishing control strategies of the fungus in food products.
Collapse
|
4
|
Rao KR, Vipin AV, Venkateswaran G. Molecular profile of non-aflatoxigenic phenotype in native strains of Aspergillus flavus. Arch Microbiol 2020; 202:1143-1155. [PMID: 32062689 DOI: 10.1007/s00203-020-01822-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 11/26/2022]
Abstract
Aflatoxins are the most common mycotoxin contaminant reported in food and feed. Aflatoxin B1, the most toxic among different aflatoxins, is known to cause hepatocellular carcinoma in animals. Aspergillus flavus and A. parasiticus are the main producers of aflatoxins and are widely distributed in tropical countries. Even though several robust strategies have been in use to control aflatoxin contamination, the control at the pre-harvest level is primitive and incompetent. Therefore, the aim of the study was to isolate and identify the non-aflatoxigenic A. flavus and to delineate the molecular mechanism for the loss of aflatoxin production by the non-aflatoxigenic isolates. Eighteen non-aflatoxigenic strains were isolated from various biological sources using cultural and analytical methods. Among the 18 isolates, 8 isolates produced sclerotia and 17 isolates had type I deletion in norB-cypA region. The isolates were confirmed as A. flavus using gene-specific PCR and sequencing of the ITS region. Later, aflatoxin gene-specific PCR revealed that the defect in one or more genes has led to non-aflatoxigenic phenotype. The strain R9 had maximum defect, and genes avnA and verB had the highest frequency of defect among the non-aflatoxigenic strains. Further, qRT-PCR confirmed that the non-aflatoxigenic strains had high frequency of defect or downregulation in the late pathway genes compared to early pathway genes. Thus, these non-aflatoxigenic strains can be the potential candidates for an effective and proficient strategy for the control of pre-harvest aflatoxin contamination.
Collapse
Affiliation(s)
- K Raksha Rao
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India
| | - A V Vipin
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India
| | - G Venkateswaran
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India.
| |
Collapse
|
5
|
Dooso Oloo R, Okoth S, Wachira P, Mutiga S, Ochieng P, Kago L, Nganga F, Domelevo Entfellner JB, Ghimire S. Genetic Profiling of Aspergillus Isolates with Varying Aflatoxin Production Potential from Different Maize-Growing Regions of Kenya. Toxins (Basel) 2019; 11:toxins11080467. [PMID: 31404960 PMCID: PMC6723045 DOI: 10.3390/toxins11080467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023] Open
Abstract
Highly toxigenic strains of Aspergillus flavus have been reported to frequently contaminate maize, causing fatal aflatoxin poisoning in Kenya. To gain insights into the environmental and genetic factors that influence toxigenicity, fungi (n = 218) that were culturally identified as A. flavus were isolated from maize grains samples (n = 120) from three regions of Kenya. The fungi were further characterized to confirm their identities using a PCR-sequence analysis of the internal transcribed spacer (ITS) region of rDNA which also revealed all of them to be A. flavus. A subset of 72 isolates representing ITS sequence-based phylogeny cluster and the agroecological origin of maize samples was constituted for subsequent analysis. The analysis of partial calmodulin gene sequences showed that the subset consisted of A. flavus (87%) and Aspergillus minisclerotigenes (13%). No obvious association was detected between the presence of seven aflatoxin biosynthesis genes and fungal species or region. However, the presence of the aflD and aflS genes showed some association with aflatoxin production. The assessment of toxigenicity showed higher aflatoxin production potential in A. minisclerotigenes isolates. Given that A. minisclerotigenes were mainly observed in maize samples from Eastern Kenya, a known aflatoxin hotspot, we speculate that production of copious aflatoxin is an adaptative trait of this recently discovered species in the region.
Collapse
Affiliation(s)
- Richard Dooso Oloo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Peter Wachira
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Samuel Mutiga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Phillis Ochieng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Leah Kago
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Fredrick Nganga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sita Ghimire
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya.
| |
Collapse
|
6
|
Bansal S, Mangal M, Tushir S, Oberoi HS, Gupta RK. A rapid and reliable method for the specific detection of aflatoxigenic fungi in groundnut and rice samples. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sangita Bansal
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Manisha Mangal
- ICAR‐Indian Agriculture Research Institute New Delhi India
| | - Surya Tushir
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | | | - Ram K. Gupta
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| |
Collapse
|
7
|
Casquete R, Benito MJ, Aranda E, Martín A, Ruiz-Moyano S, de Guía Córdoba M. Gene expression of Aspergillus flavus strains on a cheese model system to control aflatoxin production. J Dairy Sci 2019; 102:7765-7772. [PMID: 31301828 DOI: 10.3168/jds.2019-16722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
The expression of genes associated with aflatoxin biosynthesis by different Aspergillus flavus strains growing on a cheese model system has not been studied. To control aflatoxin biosynthesis, it would be useful to understand the changes in gene expression during cheesemaking and relate those changes to toxin production. The objective of this study was to evaluate the effects of pH, water activity, and temperature on the expression of 2 regulatory genes (aflR and aflS) and 1 structural gene (aflP) involved in aflatoxin biosynthesis, using 3 aflatoxigenic A. flavus strains growing on a cheese-based medium and reverse-transcription real-time PCR. The gene expression patterns were influenced by A. flavus strain and environmental conditions. The structural gene aflP and the regulatory genes aflR and aflS showed similar expression patterns in each A. flavus strain, but we also observed inter-strain differences. We observed the highest expression levels at 6 and 9 d of incubation by A. flavus strains CQ8 and CQ103, and saw a decrease in the days following. Strain CQ7 showed the lowest expression of these genes. We observed the highest expression levels of these genes at pH 5.5, water activity 0.95, and 20 to 25°C; strain CQ103 showed a different pattern for the aflS gene, with maximum expression at pH 6.0 on d 6 of incubation. For the 3 strains, we found a strong correlation between the relative expression of the aflR and aflS genes and the concentration of aflatoxins under conditions that simulated cheese ripening. Control strategies to avoid aflatoxin contamination during cheesemaking could use the detection of regulatory gene expression.
Collapse
Affiliation(s)
- Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain.
| | - Emilio Aranda
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
8
|
Okoth S, De Boevre M, Vidal A, Diana Di Mavungu J, Landschoot S, Kyallo M, Njuguna J, Harvey J, De Saeger S. Genetic and Toxigenic Variability within Aspergillus flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Front Microbiol 2018; 9:57. [PMID: 29434580 PMCID: PMC5790802 DOI: 10.3389/fmicb.2018.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial β-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.
Collapse
Affiliation(s)
- Sheila Okoth
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martina Kyallo
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Jagger Harvey
- Feed the Future Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. Int J Food Microbiol 2017; 266:241-250. [PMID: 29272724 DOI: 10.1016/j.ijfoodmicro.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
Aflatoxins can be produced by 21 species within sections Flavi (16 species), Ochraceorosei (2), and Nidulantes (3) of the fungal genus Aspergillus. They pose risks to human and animal health due to high toxicity and carcinogenicity. Detecting aflatoxin producers can help to assess toxicological risks associated with contaminated commodities. Species specific molecular assays (PCR and LAMP) are available for detection of major producers, but fail to detect species of minor importance. To enable rapid and sensitive detection of several aflatoxin producing species in a single analysis, a nor1 gene-specific LAMP assay was developed. Specificity testing showed that among 128 fungal species from 28 genera, 15 aflatoxigenic species in section Flavi were detected, including synonyms of A. flavus and A. parasiticus. No cross reactions were found with other tested species. The detection limit of the assay was 9.03pg of A. parasiticus genomic DNA per reaction. Visual detection of positive LAMP reactions under daylight conditions was facilitated using neutral red to allow unambiguous distinction between positive and negative assay results. Application of the assay to the detection of A. parasiticus conidia revealed a detection limit of 211 conidia per reaction after minimal sample preparation. The usefulness of the assay was demonstrated in the analysis of aflatoxinogenic species in samples of rice, nuts, raisins, dried figs, as well as powdered spices. Comparison of LAMP results with presence/absence of aflatoxins and aflatoxin producing fungi in 50 rice samples showed good correlation between these parameters. Our study suggests that the developed LAMP assay is a rapid, sensitive and user-friendly tool for surveillance and quality control in our food industry.
Collapse
|
10
|
|
11
|
Ren S, Yue Y, Li Y, Guo X, Wang S. Functional analyses of the versicolorin B synthase gene in Aspergillus flavus. Microbiologyopen 2017; 6. [PMID: 28612469 PMCID: PMC5552937 DOI: 10.1002/mbo3.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Aflatoxin is a toxic, carcinogenic mycotoxin primarily produced by Aspergillus parasiticus and Aspergillus flavus. Previous studies have predicted the existence of more than 20 genes in the gene cluster involved in aflatoxin biosynthesis. Among these genes, aflK encodes versicolorin B synthase, which converts versiconal to versicolorin B. Past research has investigated aflK in A. parasiticus, but few studies have characterized aflK in the animal, plant, and human pathogen A. flavus. To understand the potential role of aflK in A. flavus, its function was investigated here for the first time using gene replacement and gene complementation strategies. The aflK deletion-mutant ΔaflK exhibited a significant decrease in sclerotial production and aflatoxin biosynthesis compared with wild-type and the complementation strain ΔaflK::aflK. ΔaflK did not affect the ability of A. flavus to infect seeds, but downregulated aflatoxin production after seed infection. This is the first report of a relationship between aflK and sclerotial production in A. flavus, and our findings indicate that aflK regulates aflatoxin formation.
Collapse
Affiliation(s)
- Silin Ren
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodong Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Evaluating Aflatoxin Gene Expression in Aspergillus Section Flavi. Methods Mol Biol 2016. [PMID: 27924542 DOI: 10.1007/978-1-4939-6707-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The determination of aflatoxin production ability and differentiation of aflatoxigenic strains can be assessed by monitoring the expression of one or several key genes using reverse transcription polymerase chain reaction (RT-PCR). We herein describe the methods for RNA induction, extraction, and quality determination, and the RT-PCR conditions used to evaluate the ability of a given Aspergillus strain to produce aflatoxins.
Collapse
|
13
|
Baquião AC, Lopes EL, Corrêa B. Molecular and mycotoxigenic biodiversity of Aspergillus flavus isolated from Brazil nuts. Food Res Int 2016; 89:266-271. [PMID: 28460913 DOI: 10.1016/j.foodres.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 01/20/2023]
Abstract
The objective of this study was to carry out a transcription analysis of eight genes belonging to the aflatoxin (AF) and cyclopiazonic acid (CPA) biosynthesis pathway, and to detect aflatoxin B1 (AFB1) and CPA production in Aspergillus flavus strains isolated from Brazil nuts. Additionally, these genes were correlated with the different mycotoxigenic profiles of the same strains. Four previously identified A. flavus strains (ICB-01, ICB-151, ICB-161, and ICB-165) were grown on Brazil nut agar at 25°C for 10days. Mycotoxins were separated by high-performance liquid chromatography. Transcriptional analysis was performed by real-time RT-PCR using specific primers designed based on the conserved regions of two regulatory genes (aflR and aflS), three structural genes of the AFB1 biosynthesis pathway (aflH, aflJ and aflP), and three structural genes of the CPA biosynthesis pathway (maoA, dmaT and pks-nrps). The expression of most genes in the A. flavus isolates varied according to the mycotoxin profile of each strain. The most expressed genes in the aflatoxigenic strain ICB-151 were aflJ (77.11%) and aflH (32.75%), while the CPA-producing strain ICB-161 mainly expressed dmaT (100%), maoA (63.72%), aflS (43.52%), and aflR (42.63%). The ICB-01 isolate was a producer of AFB1 and CPA and the most expressed genes were aflS (47.79%), dmaT (42.77%), aflP (39.5%), and aflR (38.02%). ICB-198 did not produce any mycotoxin and exhibited lower expression of almost all genes analyzed. Furthermore, the ratio of aflS/aflR expression was correlated with the biosynthesis of AF and CPA in A. flavus strains producing exclusively AF or CPA or producing both AF and CPA. The ratio of aflS/aflR expression therefore seems to be related to the production of mycotoxins in Brazil nuts. Our results provide important data for the development of innovative and more cost-effective strategies to reduce and prevent AFB and CPA contamination in Brazil nuts.
Collapse
Affiliation(s)
- Arianne Costa Baquião
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, CEP 05508-000 São Paulo, Brazil.
| | - Evandro Luiz Lopes
- Escola Paulista de Política, Economia e Negócios, Universidade Federal de São Paulo, Brazil
| | - Benedito Corrêa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, CEP 05508-000 São Paulo, Brazil
| |
Collapse
|
14
|
De Clercq N, Vlaemynck G, Van Pamel E, Van Weyenberg S, Herman L, Devlieghere F, De Meulenaer B, Van Coillie E. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere. Int J Food Microbiol 2016; 220:50-7. [PMID: 26788884 DOI: 10.1016/j.ijfoodmicro.2016.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022]
Abstract
Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in food.
Collapse
Affiliation(s)
- N De Clercq
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - G Vlaemynck
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E Van Pamel
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - S Van Weyenberg
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - L Herman
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - F Devlieghere
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, member of Food2Know, Coupure Links 653, 9000 Gent, Belgium
| | - B De Meulenaer
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), member of Food2Know, Coupure Links 653, 9000 Gent, Belgium
| | - E Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
15
|
Brožková I, Šmahová P, Vytřasová J, Moťková P, Pejchalová M, Šilha D. Influence of chosen microbes and some chemical substances on the production of aflatoxins. POTRAVINARSTVO 2015. [DOI: 10.5219/416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aflatoxins are produced as secondary metabolites by A. flavus, A. parasiticus, A. nomius and A. tamarii. The aflatoxin biosynthetic pathway involves several enzymatic steps and genes (apa-2, ver-1) that appear to be regulated by the aflR gene in these fungi. The aim of this work was the detection of aflatoxins by the HPLC method and the ascertainment of factors influencing their production. A. parasiticus CCM F-108, A. parasiticus CCF 141, A. parasiticus CCF 3137 and two isolates A. flavus were used. These toxigenic isolates were recovered from spice (strain 1) and wraps (strain 2). The gene for the production of aflatoxin B1 for each species of fungi was detected using an optimized PCR method. Rhodotorula spp.*, Lactococcus lactis subsp. lactis CCM 1881, Flavobacterium spp. and fungal strain Pythium oligandrum* were tested for inhibition of aflatoxins production and fungal growth. Having used the HPLC detection, various preservatives (propionic acid, citric acid, potassium sorbate) were tested from the viewpoint of their influence on the growth of aflatoxigenic fungi followed by the production of aflatoxins. The growth of A. flavus and A. parasiticus and aflatoxin production in Potato Dextrose Agar supplemented with propionic acid (1000-2000-3000 mg/kg), citric acid (2000-3000-4000 mg/kg) and potassium sorbate (500-800-1000 mg/kg) was tested by Agar Dilution Method. After 72 h of incubation was evaluated growth of fungi, all samples were frozen for later extraction and aflatoxins quantification by HPLC. Effect of peptone and sucrose additions were studied in yeast extract (2%) supplemented with peptone (5-10-15%) or sucrose (15%). Growth inhibition of Aspergillus by Pythium oligandrum was tested on wood surface. As shown, the highest inhibition effect on the aflatoxins production was obtained when propionic acid was applied in concentrations since 1000 mg/kg. A total inhibition of the fungi growth and aflatoxins production was observed in all samples containing peptone in the concentration range tested. Significant limitation of the growth and production of aflatoxins was also observed in the presence of other microorganisms such like Pythium oligandrum and Rhodotorula spp.
Collapse
|
16
|
Mahmoud MA. Detection of Aspergillus flavus in stored peanuts using real-time PCR and the expression of aflatoxin genes in toxigenic and atoxigenic A. flavus isolates. Foodborne Pathog Dis 2015; 12:289-96. [PMID: 25621617 DOI: 10.1089/fpd.2014.1854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aspergillus flavus is the main species from section Flavi responsible for aflatoxin accumulation in stored peanuts. Rapid methods to detect A. flavus could help to prevent aflatoxins from entering the food chain. A real-time polymerase chain reaction (RTi-PCR) assay was standardized for rapid, specific, and sensitive detection of A. flavus in stored peanuts. A. flavus was detected in 53.6% and 50% of peanut samples by RTi-PCR and A. flavus and Aspergillus parasiticus agar culture, respectively, with 95% agreement between them. Twenty-two A. flavus isolates were screened using high-performance liquid chromatography for their capacity to produce aflatoxin AFB1 (B1). B1 was produced by >72% of the isolates. Sixteen isolates produced B1 at concentrations ranging from 1.64 to 109.18 μg/mL. Four aflatoxin biosynthetic pathway genes (aflD, aflM, aflP, and aflQ) were evaluated using PCR and reverse-transcription PCR in 22 A. flavus isolates from peanut kernels with the aim of rapidly and accurately differentiating toxigenic and atoxigenic isolates. The PCR amplification of genes did not correlate with aflatoxin production capability. The expression of aflD and aflQ was a good marker for differentiating toxigenic from atoxigenic isolates.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Plant Pathology Research Institute, Agricultural Research Center , Giza, Egypt
| |
Collapse
|
17
|
Cai M, Zhang Y, Hu W, Shen W, Yu Z, Zhou W, Jiang T, Zhou X, Zhang Y. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A. Microb Cell Fact 2014; 13:73. [PMID: 24886193 PMCID: PMC4039328 DOI: 10.1186/1475-2859-13-73] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. RESULTS Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. CONCLUSIONS A new strategy for shaping fungal morphology by modifying polarized growth genes was applied in submerged fermentation in bioreactor. This work provides useful information of shaping fungal morphology for submerged fermentation by genetically modification, which could be valuable for morphology improvement of industrial filamentous fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|
18
|
Yahyaraeyat R, Khosravi AR, Shahbazzadeh D, Khalaj V. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus. Braz J Microbiol 2013; 44:643-9. [PMID: 24294264 PMCID: PMC3833170 DOI: 10.1590/s1517-83822013000200045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
Abstract
This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.
Collapse
Affiliation(s)
- R Yahyaraeyat
- Mycology Research Centre, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
19
|
Lozano-Ojalvo D, Rodríguez A, Bernáldez V, Córdoba JJ, Rodríguez M. Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. Int J Food Microbiol 2013; 166:263-9. [DOI: 10.1016/j.ijfoodmicro.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022]
|
20
|
Moubasher H, Taleb AA, Senousy HH. Molecular differentiation between aflatoxinogenic and non-aflatoxinogenic strains of Aspergillus flavus and Aspergillus parasiticus. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Moretti A, Susca A, Mulé G, Logrieco AF, Proctor RH. Molecular biodiversity of mycotoxigenic fungi that threaten food safety. Int J Food Microbiol 2013; 167:57-66. [PMID: 23859402 DOI: 10.1016/j.ijfoodmicro.2013.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023]
Abstract
Fungal biodiversity is one of the most important contributors to the occurrence and severity of mycotoxin contamination of crop plants. Phenotypic and metabolic plasticity has enabled mycotoxigenic fungi to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. New mycotoxin-commodity combinations provide evidence for the ability of fungi to adapt to changing conditions and the emergence of genotypes that confer enhanced aggressiveness toward plants and/or altered mycotoxin production profiles. Perhaps the most important contributor to qualitative differences in mycotoxin production among fungi is variation in mycotoxin biosynthetic genes. Molecular genetic and biochemical analyses of toxigenic fungi have elucidated specific differences in biosynthetic genes that are responsible for intra- and inter-specific differences in mycotoxin production. For Aspergillus and Fusarium, the mycotoxigenic genera of greatest concern, variation in biosynthetic genes responsible for production of individual families of mycotoxins appears to be the result of evolutionary adaptation. Examples of such variation have been reported for: a) aflatoxin biosynthetic genes in Aspergillus flavus and Aspergillus parasiticus; b) trichothecene biosynthetic genes within and among Fusarium species; and c) fumonisin biosynthetic genes in Aspergillus and Fusarium species. Understanding the variation in these biosynthetic genes and the basis for variation in mycotoxin production is important for accurate assessment of the risks that fungi pose to food safety and for prevention of mycotoxin contamination of crops in the field and in storage.
Collapse
Affiliation(s)
- A Moretti
- Institute of Sciences of Food Production, CNR, Bari, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abbas A, Coghlan A, O'Callaghan J, García-Estrada C, Martín JF, Dobson ADW. Functional characterization of the polyketide synthase gene required for ochratoxin A biosynthesis in Penicillium verrucosum. Int J Food Microbiol 2012; 161:172-81. [PMID: 23334095 DOI: 10.1016/j.ijfoodmicro.2012.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The ochratoxin A (OTA) polyketide synthase otapks gene has been cloned from Penicillium verrucosum. A P. verrucosum mutant in which the otapksPV gene has been interrupted cannot synthesize ochratoxin A. The protein is most similar to the citrinin polyketide synthase CtnpksMa from Monascus anka (83% identity at the amino acid level). Different nutritional conditions influence OTA production in P. verrucosum, with the addition of glycerol and galactose to MCB resulting in approximately 19 and 32 fold increases in OTA production respectively. These effects are mirrored in increased levels of otapksPV gene transcription. In contrast, the addition of glucose to MCB containing galactose results in an approximate 10 fold repression in OTA production, with this repression again being mirrored in decreased levels of otapksPV gene transcription. Thus the effects of different carbon sources on OTA production in P. verucosum appear to be regulated at the level of gene transcription. Two additional open reading frames, otaE and otaT, were identified in the 5' and 3' flanking regions of otapksPV, respectively. The otaT and otaE genes are co-expressed with P. verrucosum otapksPv, indicating a possible role for these genes in OTA biosynthesis. Furthermore, otaT and otaE were identified as putative homologues of the M. anka citrinin transporter ctnC (72% amino acid identity) and M. anka citrinin oxidoreductase ctnB (83% amino acid identity); suggesting that the genes involved in OTA production in P. verrucosum may be very similar to those involved in citrinin production in M. anka.
Collapse
Affiliation(s)
- Abdelhamid Abbas
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Jamali M, Karimipour M, Shams-Ghahfarokhi M, Amani A, Razzaghi-Abyaneh M. Expression of aflatoxin genes aflO (omtB) and aflQ (ordA) differentiates levels of aflatoxin production by Aspergillus flavus strains from soils of pistachio orchards. Res Microbiol 2012; 164:293-9. [PMID: 23275075 DOI: 10.1016/j.resmic.2012.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/08/2012] [Indexed: 11/19/2022]
Abstract
The expression of four aflatoxin (AF) biosynthetic pathway genes (aflD, aflO, aflP and aflQ) was evaluated in 24 Aspergillus flavus strains isolated from soils of pistachio orchards, with the aim of rapidly and accurately differentiating toxigenic from non-toxigenic strains. The amounts of AFB1 produced by 20 aflatoxigenic strains varied from 1.25 to 321.56 ng/mg fungal dry weights in YES medium. RT-PCR results showed that transcription of the four genes was not always correlated with AF production. The expression pattern of aflO and aflQ, however, was found to be well correlated with the amounts of AFB1 produced when strains were arbitrarily classified into two types: type I, comprised of strains producing ≥30 ng/mg; and type II, low (≤30 ng/mg) and non-AF producers. The present study suggests that, under specific growth conditions, the expression pattern of aflatoxin biosynthetic pathway genes such as aflO and aflQ can be used to infer the AF-producing capability of A. flavus strains.
Collapse
Affiliation(s)
- Mojdeh Jamali
- Department of Mycology, Pasteur Institute of Iran, Tehran 13164, Iran; Department of Agricultural Biotechnology, Payam-e-Noor University Karaj Branch, Alborz, Iran
| | | | | | | | | |
Collapse
|
24
|
Okoth S, Nyongesa B, Ayugi V, Kang’ethe E, Korhonen H, Joutsjoki V. Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya. Toxins (Basel) 2012; 4:991-1007. [PMID: 23202303 PMCID: PMC3509695 DOI: 10.3390/toxins4110991] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
Two agro-ecological zones in Kenya were selected to compare the distribution in maize of Aspergillus spp. and their toxigenicity. These were Nandi County, which is the main maize growing region in the country but where no human aflatoxicoses have been reported, and Makueni County where most of the aflatoxicosis cases have occurred. Two hundred and fifty-five households were sampled in Nandi and 258 in Makueni, and Aspergillus was isolated from maize. Aspergillus flavus and A. parasiticus isolates were tested for the presence of aflD and aflQ genes. Positive strains were induced to produce aflatoxins on yeast extract sucrose and quantified using liquid chromatography-tandem mass spectrometry (LCMSMS). Aspergillus flavus was the most common contaminant, and the incidence of occurrence in Nandi and Makueni was not significantly different (82.33% and 73.26%, respectively). Toxigenic strains were more prevalent than non-toxigenic strains. All the toxigenic strains from Makueni were of the S-type while those from Nandi belonged to the l-type. Quantitative differences in aflatoxin production in vitro between isolates and between strains were detected with S strains producing relatively larger amounts of total aflatoxins, B toxins and lower values for G toxins. This was in accord with the frequent aflatoxicosis outbreaks in Makueni. However some L strains produced considerable amounts of B toxins. Given the widespread distribution of toxigenic strains in both regions, the risk of aflatoxin poisoning is high when favorable conditions for toxin production occur.
Collapse
Affiliation(s)
- Sheila Okoth
- School of Biological Sciences, University of Nairobi P. O. Box 30197–00100 Nairobi, Kenya; (B.N.); (V.A.)
| | - Beatrice Nyongesa
- School of Biological Sciences, University of Nairobi P. O. Box 30197–00100 Nairobi, Kenya; (B.N.); (V.A.)
| | - Vincent Ayugi
- School of Biological Sciences, University of Nairobi P. O. Box 30197–00100 Nairobi, Kenya; (B.N.); (V.A.)
| | - Erastus Kang’ethe
- Department of Public Health Pharmacology and Toxicology, University of Nairobi 30197-00100 Nairobi, Kenya;
| | - Hannu Korhonen
- Biotechnology and Food Research, MTT Agrifood Research, 31600 Jokioinen, Finland; (H.K.); (V.J.)
| | - Vesa Joutsjoki
- Biotechnology and Food Research, MTT Agrifood Research, 31600 Jokioinen, Finland; (H.K.); (V.J.)
| |
Collapse
|
25
|
Levin RE. PCR detection of aflatoxin producing fungi and its limitations. Int J Food Microbiol 2012; 156:1-6. [PMID: 22445201 DOI: 10.1016/j.ijfoodmicro.2012.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/08/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
Unlike bacterial toxins that are primarily peptides and are therefore encoded by a single gene, fungal toxins such as the aflatoxins are multi-ring structures and therefore require a sequence of structural genes for their biological synthesis. There is therefore no specific PCR for any one of the four biologically produced aflatoxins. Unfortunately, the structural genes presently in use for PCR detection of aflatoxin producing fungi are also involved in the synthesis of other fungal toxins such as sterigmatocystin by Aspergillus versicolor and Aspergillus nidulans and therefore lack absolute specificity for aflatoxin producing fungi (Table 1). In addition, the genomic presence of several structural genes involved in aflatoxin biosynthesis does not guarantee the production of aflatoxin by all isolates of Aspergillus flavus and Aspergillus parasiticus. The most widely used DNA target regions for discriminating Aspergillus species are those of the rDNA complex, mainly the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) and the variable regions in the 5'-end of the 28S rRNA gene. Since these sequence regions are unrelated to the structural genes involved in aflatoxin biosynthesis there successful amplification can be used for species identification but do not confirm aflatoxin production. This review therefore presents the various approaches and limitations in the use of the PCR in attempting to detect aflatoxin producing fungi.
Collapse
Affiliation(s)
- Robert E Levin
- Department of Food Science, Massachusetts Agricultural Experiment Station, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
26
|
Rodríguez A, Rodríguez M, Luque MI, Martín A, Córdoba JJ. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods. Food Microbiol 2012; 31:89-99. [PMID: 22475946 DOI: 10.1016/j.fm.2012.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/08/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products.
Collapse
Affiliation(s)
- Alicia Rodríguez
- Higiene y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad s/n., 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
27
|
Aflatoxins and ochratoxin A in stored barley grain in Spain and impact of PCR-based strategies to assess the occurrence of aflatoxigenic and ochratoxigenic Aspergillus spp. Int J Food Microbiol 2011; 149:118-26. [DOI: 10.1016/j.ijfoodmicro.2011.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/28/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
|
28
|
Passone M, Rosso L, Varela M, Ciancio A, Etcheverry M. Effects of sub-lethal food grade antioxidant doses and environmental stressors on growth, sclerotia, aflatoxins and aflD (nor-1) expression by Aspergillus parasiticus RCP08300. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the work was to examine the effects of sub-lethal doses of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) (1+1 mmol/l and 5+5 mmol/l), water activities (0.98, 0.95, 0.93, 0.89 aW) and temperatures (28, 20 °C) on growth, sclerotial characteristics, aflatoxin accumulation and aflD (=nor-1) transcript level by Aspergillus parasiticus RCP08300 on peanut based medium. Growth rate and aflatoxin production were inhibited by BHA-BHT mixture (1+1 mmol/l), regardless of environmental factor assayed. Although sclerotia number and aflD expression were stimulated by this treatment, sclerotia dry weight and volume were reduced by 62.3 and 31.2%, respectively. In contrast, when the fungus grew in presence of the higher dose of BHA-BHT mixture none or very low aflatoxin accumulation and aflD expression occurred. Similarly, A. parasiticus growth has been highly influenced by BHA-BHT (5+5 mmol/l) and interacting stress factors. Data show that sub-lethal antioxidant doses significantly reduced growth and aflatoxin accumulation by A. parasiticus but these treatments were not able to repress the expression of the early expression gene (aflD) involved in aflatoxin biosynthesis. Thus, this represents a high potential risk of stored peanuts contamination with aflatoxins.
Collapse
Affiliation(s)
- M. Passone
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA Río Cuarto, Córdoba, Argentina
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - L. Rosso
- Istituto per la Protezione delle Piante, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
- Fellow of Consiglio Nazionale delle Ricerche (CNR), Italy
| | - M. Varela
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA Río Cuarto, Córdoba, Argentina
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - A. Ciancio
- Istituto per la Protezione delle Piante, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
- Fellow of Consiglio Nazionale delle Ricerche (CNR), Italy
| | - M. Etcheverry
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA Río Cuarto, Córdoba, Argentina
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
29
|
Abdel-Hadi A, Carter D, Magan N. Discrimination between aflatoxigenic and non-aflatoxigenic Aspergillus section Flavi strains from Egyptian peanuts using molecular and analytical techniques. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A wide range of Aspergillus section Flavi strains were isolated from Egyptian peanut samples. Eighteen of these strains were compared with two type strains (Aspergillus flavus SRRC G1907 and Aspergillus parasiticus 2747) for aflatoxin production based on (a) qualitative fluorescence using a coconut cream agar medium (CAM), and (b) aflatoxin production on a conducive Yeast Extract-Sucrose (YES) medium using HPLC. These results were validated by using molecular approaches (the structural genes, aflD (nor-1), aflM (ver-1) and aflP (omt A) and the regulatory gene aflR) to discriminate between aflatoxigenic and non-aflatoxigenic strains of the Aspergillus section Flavi group in vitro and on peanut seeds. Overall, 13/18 strains producing aflatoxins B1 and B2 in the range 1.27-213.35 µg/g medium were identified. In addition, 5 non-aflatoxin producing strains were found. The expression of these four genes was assessed using PCR and RT-PCR. PCR showed that all strains contained the four aflatoxin genes examined, regardless of expression profiles. Our results also showed that aflD expression is a reliable marker to discriminate between aflatoxin and non-aflatoxin producers. Interestingly, when an aflatoxin producing strain and three non-aflatoxigenic strains were subsequently grown on peanuts at 0.95 water activity, two of the non-producers were able to initiate aflatoxin biosynthesis. This suggests that growth of strains on the natural food matrix is important for confirming aflatoxigenic production potential.
Collapse
Affiliation(s)
- A. Abdel-Hadi
- Applied Mycology Group, Cranfield University, Cranfield Health, Vincent Building, Bedford MK43 0AL, United Kingdom
| | - D. Carter
- Applied Mycology Group, Cranfield University, Cranfield Health, Vincent Building, Bedford MK43 0AL, United Kingdom
| | - N. Magan
- Applied Mycology Group, Cranfield University, Cranfield Health, Vincent Building, Bedford MK43 0AL, United Kingdom
| |
Collapse
|
30
|
Gashgari RM, Shebany YM, Gherbawy YA. Molecular Characterization of Mycobiota and Aflatoxin Contamination of Retail Wheat Flours from Jeddah Markets. Foodborne Pathog Dis 2010; 7:1047-54. [DOI: 10.1089/fpd.2009.0506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
| | - Yassmin M. Shebany
- Department of Botany, Faculty of Science, South Valley University, Qena, Egypt
| | - Youssuf A. Gherbawy
- Department of Biological Sciences, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
31
|
Sardiñas N, Vázquez C, Gil-Serna J, González-Jaén MT, Patiño B. Specific detection ofAspergillus parasiticusin wheat flour using a highly sensitive PCR assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:853-8. [DOI: 10.1080/19440041003645779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae. J Ind Microbiol Biotechnol 2010; 37:455-69. [DOI: 10.1007/s10295-010-0691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
33
|
Degola F, Berni E, Spotti E, Ferrero I, Restivo F. Facing the problem of “false positives”: Re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers. Int J Food Microbiol 2009; 129:300-5. [DOI: 10.1016/j.ijfoodmicro.2008.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/21/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
|
34
|
Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N. A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus Section Flavi isolated from Portuguese almonds. Int J Food Microbiol 2008; 129:187-93. [PMID: 19110333 DOI: 10.1016/j.ijfoodmicro.2008.11.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
Abstract
A polyphasic approach consisting of morphological, chemical and molecular characterization was applied to 31 isolates of Aspergillus Section Flavi originating from Portuguese almonds, with the aim of characterizing and identifying aflatoxigenic and non-aflatoxigenic strains. On the basis of morphological characters (mainly colony color on Czapek-Dox agar and conidia morphology), we found two distinct groups among the population under study: 18 isolates (58%) had dark-green colonies and rough conidia, and were classified as Aspergillus parasiticus; the remaining 13 isolates (42%) had yellow-green colonies and smooth to finely rough globose conidia, and were classified as Aspergillus flavus. Chemical characterization involved the screening of the isolates for aflatoxins B (AFB) and G (AFG), and also for cyclopiazonic acid (CPA), by HPLC with fluorescence and UV detection, respectively. All A. parasiticus isolates were strong AFB and AFG producers, but no CPA production was detected, showing a consistent mycotoxigenic pattern. The A. flavus isolates showed to be more diversified, with 77% being atoxigenic, whereas 15% produced CPA and low levels of AFB and 8% produced the 3 groups of mycotoxins. Aflatoxin production was also screened on Coconut Agar Medium (CAM), and the results were consistent with the HPLC analysis. Sclerotia production showed no correlation to aflatoxigenicity. Molecularly, two genes of the aflatoxin biosynthetic pathway, aflD (=nor1) and aflQ (=ord1=ordA) were tested for presence and expression (by PCR and RT-PCR, respectively). The presence of both genes did not correlate with aflatoxigenicity. aflD expression was not considered a good marker for differentiating aflatoxigenic from non-aflatoxigenic isolates, but aflQ showed a good correlation between expression and aflatoxin-production ability.
Collapse
Affiliation(s)
- Paula Rodrigues
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
35
|
González-Salgado A, González-Jaén T, Vázquez C, Patiño B. Highly sensitive PCR-based detection method specific forAspergillus flavusin wheat flour. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:758-64. [DOI: 10.1080/02652030701765715] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Degola F, Berni E, Dall'Asta C, Spotti E, Marchelli R, Ferrero I, Restivo FM. A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. J Appl Microbiol 2007; 103:409-17. [PMID: 17650201 DOI: 10.1111/j.1365-2672.2006.03256.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To develop a multiplex reverse transciption-polymerase chain reaction (RT-PCR) protocol to discriminate aflatoxin-producing from aflatoxin-nonproducing strains of Aspergillus flavus. METHODS AND RESULTS The protocol was first optimized on a set of strains obtained from laboratory collections and then validated on A. flavus strains isolated from corn grains collected in the fields of the Po Valley (Italy). Five genes of the aflatoxin gene cluster of A. flavus, two regulatory (aflR and aflS) and three structural (aflD, aflO and aflQ), were targeted with specific primers to highlight their expression in mycelia cultivated under inducing conditions for aflatoxins production. 48-h-old cultures expressed the complete set of the genes analysed here whereas 24-h-old ones did not. Genomic PCR (quadruplex PCR) was also performed in parallel using chromosomal DNA extracted from the same set of strains to correlate the integrity of the genes with their expression. CONCLUSIONS We show that a good correlation exists between gene expression of the aflatoxin genes, here analysed by multipex RT-PCR, and aflatoxin production, except for one strain that apparently transcribed all the relevant genes but did not produce aflatoxin in the medium. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first example of the application of a combination of multiplex PCR and RT-PCR approaches to screen a population of A. flavus for the presence of aflatoxigenic and nonaflatoxigenic strains. The proposed protocol will be helpful in evaluating the risk posed by A. flavus in natural environments and might also be a useful tool to monitor its presence during the processing steps of food and feed commodities.
Collapse
Affiliation(s)
- F Degola
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Dao HP, Mathieu F, Lebrihi A. Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 2005; 104:61-7. [PMID: 15975678 DOI: 10.1016/j.ijfoodmicro.2005.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/27/2004] [Accepted: 02/19/2005] [Indexed: 11/27/2022]
Abstract
Fungi contaminating foods and feeds may produce many mycotoxins including ochratoxin A (OTA). Early and rapid detection of potential OTA producing fungi is important to reduce the negative impacts of OTA. In this study, two PCR specific primer pairs, AoLC35-12L/AoLC35-12R and AoOTAL/AoOTAR, were designed from a DNA sequence of a polyketide synthase gene in Aspergillus ochraceus NRRL 3174. On 14 different fungi tested by PCR, AoLC35-12L/AoLC35-12R amplified a unique band from either OTA or citrinin producers while AoOTAL/AoOTAR amplified one PCR product only from A. ochraceus. So these primers could be used to detect both OTA and citrinin producing fungi (AoLC35-12L/AoLC35-12R) or only A. ochraceus (AoOTAL/AoOTAR) from foodstuffs using PCR method.
Collapse
Affiliation(s)
- Huy Phong Dao
- Equipe Génie des Systèmes Microbiens, Laboratoire de Génie Chimique UMR5503 (CNRS/INPT/UPS), Ecole Nationale Supérieure Agronomique de Toulouse, Institut National Polytechnique de Toulouse, 1, avenue de l'Agrobiopôle, BP107, 31326 Castanet Tolosan, France
| | | | | |
Collapse
|
38
|
Scherm B, Palomba M, Serra D, Marcello A, Migheli Q. Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription–polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. Int J Food Microbiol 2005; 98:201-10. [PMID: 15681047 DOI: 10.1016/j.ijfoodmicro.2004.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/10/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to test the suitability of the RT-PCR (reverse transcription-polymerase chain reaction) technique to differentiate aflatoxin-producing from aflatoxin-non-producing strains of Aspergillus flavus and Aspergillus parasiticus. Total RNAs of 13 strains grown under inducing yeast extract-sucrose (YES) and non-inducing yeast extract-peptone (YEP) media, respectively, were analyzed by using specific primers based on the conserved regions of nine structural genes (aflD, aflG, aflH, aflI, aflK, aflM, aflO, aflP, and aflQ) and two regulatory genes aflS and aflR of the aflatoxin B1 biosynthetic pathway. Transcription was confirmed by the expression of the beta-tubulin gene. The expression of the majority aflatoxin biosynthetic genes including aflR and aflS of all strains varied with regard to the aflatoxin-producing ability and the growth conditions. Nonetheless, we found that the expression profile of the three genes aflD, aflO, and aflP was consistently correlated with a strain's ability to produce aflatoxins or not in YES as well as the inability to produce aflatoxins in YEP. The devised RT-PCR profiling method reflects aflatoxin concentrations ranging from 0.1 to 60 microg/ml of the culture filtrates as determined by fluorescence HPLC. The results are discussed in relation to the suitability of RT-PCR as well as cDNA-based array techniques in diagnostic laboratory settings where individual isolates are being tested for potential toxin production to identify toxigenic isolates of Aspergillus species.
Collapse
Affiliation(s)
- Barbara Scherm
- Department of Plant Protection, Center for Biotechnology Development and Biodiversity Research, University of Sassari, Via De Nicola 9, I-07100 Sassari, Italy
| | | | | | | | | |
Collapse
|
39
|
O'callaghan J, Dobson ADW. Molecular Characterization of Ochratoxin A Biosynthesis and Producing Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:227-243. [PMID: 16543035 DOI: 10.1016/s0065-2164(05)58007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J O'callaghan
- Microbiology Department, University College Cork, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
40
|
Yang ZY, Shim WB, Kim JH, Park SJ, Kang SJ, Nam BS, Chung DH. Detection of aflatoxin-producing molds in Korean fermented foods and grains by multiplex PCR. J Food Prot 2004; 67:2622-6. [PMID: 15553652 DOI: 10.4315/0362-028x-67.11.2622] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An assay based on multiplex PCR was applied for the detection of potential aflatoxin-producing molds in Korean fermented foods and grains. Three genes, avfA, omtA, and ver-1, coding for key enzymes in aflatoxin biosynthesis, were used as aflatoxin-detecting target genes in multiplex PCR. DNA extracted from Aspergillus flavus, Aspergillus parasiticus, Aspergillus oryzae, Aspergillus niger, Aspergillus terreus, Penicillium expansum, and Fusarium verticillioides was used as PCR template to test specificity of the multiplex PCR assay. Positive results were achieved only with DNA that was extracted from the aflatoxigenic molds A. flavus and A. parasiticus in all three primer pairs. This result was supported by aflatoxin detection with direct competitive enzyme-linked immunosorbent assay (DC-ELISA). The PCR assay required just a few hours, enabling rapid and simultaneous detection of many samples at a low cost. A total of 22 Meju samples, 24 Doenjang samples, and 10 barley samples commercially obtained in Korea were analyzed. The DC-ELISA assay for aflatoxin detection gave negative results for all samples, whereas the PCR-based method gave positive results for 1 of 22 Meju samples and 2 of 10 barley samples. After incubation of the positive samples with malt extract agar, DC-ELISA also gave positive results for aflatoxin detection. All Doenjang samples were negative by multiplex PCR and DC-ELISA assay, suggesting that aflatoxin contamination and the presence of aflatoxin-producing molds in Doenjang are probably low.
Collapse
Affiliation(s)
- Zheng-You Yang
- Division of Applied Life Science of Graduate School, Gyeongsang National University, Chinju 660-701 Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Somashekar D, Rati ER, Chandrashekar A. PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize. Int J Food Microbiol 2004; 93:101-7. [PMID: 15135586 DOI: 10.1016/j.ijfoodmicro.2003.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 10/21/2003] [Accepted: 10/23/2003] [Indexed: 11/25/2022]
Abstract
Contamination of food and feedstuffs by Aspergillus species and their toxic metabolites is a serious problem as they have adverse effects on human and animal health. Hence, food contamination monitoring is an important activity, which gives information on the level and type of contamination. A PCR-based method of detection of Aspergillus species was developed in spiked samples of sterile maize flour. Gene-specific primers were designed to target aflR gene, and restriction fragment length polymorphism (RFLP) of the PCR product was done to differentiate Aspergillus flavus and Aspergillus parasiticus. Sterile maize flour was inoculated separately with A. flavus and A. parasiticus, each at several spore concentrations. Positive results were obtained only after 12-h incubation in enriched media, with extracts of maize inoculated with A. flavus (101 spores/g) and A. parasiticus (104 spores/g). PCR products were subjected to restriction endonuclease (HincII and PvuII) analysis to look for RFLPs. PCR-RFLP patterns obtained with these two enzymes showed enough differences to distinguish A. flavus and A. parasiticus. This approach of differentiating these two species would be simpler, less costly and quicker than conventional sequencing of PCR products.
Collapse
Affiliation(s)
- D Somashekar
- Food Microbiology Department, Central Food Technological Research Institute, Mysore-570 013, Karnataka, India
| | | | | |
Collapse
|
42
|
Mayer Z, Bagnara A, Färber P, Geisen R. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 2003; 82:143-51. [PMID: 12568754 DOI: 10.1016/s0168-1605(02)00250-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A real-time PCR system directed against the nor-1 gene of the aflatoxin biosynthetic pathway as a target sequence has been applied to detect an aflatoxinogenic A. flavus strain in plant-type foods like maize, pepper and paprika. The system is based on the TaqMan fluorescent probe technology. The copy numbers of the nor-1 gene were compared to conventional cfu data obtained from the same set of samples. In general, a good correlation between nor-1 gene copy number and the cfu data was observed; however, the nor-1 copy numbers were always higher. It was shown that the system is specific for nor-1 containing species.
Collapse
Affiliation(s)
- Zsuzsanna Mayer
- Faculty of Food Science, Szent Itsván University, Villányi út 35-43, 1118 Budapest, Hungary
| | | | | | | |
Collapse
|
43
|
Mayer Z, Färber P, Geisen R. Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. Appl Environ Microbiol 2003; 69:1154-8. [PMID: 12571042 PMCID: PMC143586 DOI: 10.1128/aem.69.2.1154-1158.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 11/01/2002] [Indexed: 11/20/2022] Open
Abstract
A real-time reverse transcription-PCR system has been used to monitor the expression of an aflatoxin biosynthetic gene of Aspergillus flavus in wheat. Therefore, total RNA was isolated from infected wheat samples, reverse transcribed and subjected to real-time PCR. In parallel all samples were analyzed by high-pressure liquid chromatography for aflatoxin B(1) production. The primer-probe system of the real-time PCR was targeted against nor-1, a gene of the aflatoxin biosynthetic pathway. By application of this method the nor-1 transcription was quantified during the course of incubation. After 4 days of incubation nor-1 mRNA could be detected for the first time. The amount of nor-1 mRNA increased rapidly, and the maximum was achieved after 6 days. Then, starting very slowly, the mRNA was degraded until day 8, and this was followed by a very fast degradation, reaching nondetectable levels at days 9 and 10. First traces of aflatoxin B(1)could be detected between the 5th and 6th day of incubation. The aflatoxin concentration reached its maximum after 9 days of incubation and remained constant for the whole period of observation. To ensure that differences in the nor-1 mRNA concentration were due to different expression levels, the expression of the constitutively expressed beta-tubulin gene (benA56) has also been monitored. The expression of benA56 remained constant during the whole incubation time. As a parameter for fungal growth, the number of nor-1 gene copies was determined during the course of incubation. The numbers of nor-1 gene copies increased at the beginning of the incubation and reached a plateau at day 5. They correlate well with the viable counts albeit at a higher level.
Collapse
Affiliation(s)
- Zsuzsanna Mayer
- Faculty of Food Science, Szent Itsván University, 1118 Budapest, Hungary
| | | | | |
Collapse
|
44
|
|
45
|
Aranda E, Rodríguez M, Benito MJ, Asensio MA, Córdoba JJ. Molecular cloning of verrucosidin-producing Penicillium polonicum genes by differential screening to obtain a DNA probe. Int J Food Microbiol 2002; 76:55-61. [PMID: 12038578 DOI: 10.1016/s0168-1605(02)00008-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A differential molecular screening procedure was developed to obtain DNA clones enriched for verrucosidin-related genes that could be used as DNA probes to detect verrucosidin-producing Penicillium polonicum. Permissive and nonpermissive conditions for verrucosidin production were selected to obtain differentiated poly (A)+ RNA for the cloning strategy. P. polonicum yielded the highest amount of verrucosidin when cultured in malt extract broth at 25 degrees C without shaking. These conditions were selected as verrucosidin permissive conditions. When shaking was applied to the verrucosidin permissive conditions, verrucosidin was not detected. Approximately 5000 transformants were obtained for the library of DNA fragments from verrucosidin-producing P. polonicum and hybridized with cDNA probes obtained from poly (A)+ RNA of permissive and nonpermissive conditions. A total of 120 clones hybridized only with the permissive cDNA probes. From these, eight representative DNA inserts selected on the basis of size and labelled with fluorescein-dUTP were assayed as DNA probes in the second differential screening by Northern hybridization. Probe SVr1 gave a strong hybridization signal selectively with poly (A)+ RNAs from high verrucosidin production. When this probe was assayed by dot blot hybridization with DNA of different moulds species, hybridization was detected only with DNA from the verrucosidin-producing strain. The strategy used in this work has proved to be useful to detect unknown genes related to mycotoxins. In addition, the DNA probe obtained should be considered for the detection of verrucosidin-producing moulds.
Collapse
Affiliation(s)
- E Aranda
- Higiene de los Alimentos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
46
|
Chen RS, Tsay JG, Huang YF, Chiou RYY. Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction. J Food Prot 2002; 65:840-4. [PMID: 12030297 DOI: 10.4315/0362-028x-65.5.840] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Aspergillus flavus group covers species of A. flavus and Aspergillus parasiticus as aflatoxin producers and Aspergillus oryzae and Aspergillus sojae as koji molds. Genetic similarity among these species is high, and aflatoxin production of a culture may be affected by cultivation conditions and substrate composition. Therefore, a polymerase chain reaction (PCR)-mediated method of detecting the aflatoxin-synthesizing genes to indicate the degree of risk a genotype has of being a phenotypic producer was demonstrated. In this study, 19 strains of the A. flavus group, including A. flavus, A. parasiticus, A. oryzae, A. sojae, and one Aspergillus niger, were subjected to PCR testing in an attempt to detect four genes, encoding for norsolorinic acid reductase (nor-1), versicolorin A dehydrogenase (ver-1), sterigmatocystin O-methyltransferase (omt-1), and a regulatory protein (apa-2), involved in aflatoxin biosynthesis. Concurrently, the strains were cultivated in yeast-malt (YM) broth for aflatoxin detection. Fifteen strains were shown to possess the four target DNA fragments. With regard to aflatoxigenicity, all seven aflatoxigenic strains possessed the four DNA fragments, and five strains bearing less than the four DNA fragments did not produce aflatoxin. When peanut kernels were artificially contaminated with A. parasiticus and A. niger for 7 days, the contaminant DNA was extractable from a piece of cotyledon (ca. 100 mg), and when subjected to multiplex PCR testing using the four pairs of primers coding for the above genes, they were successfully detected. The target DNA fragments were detected in the kernels infected with A. parasiticus, and none was detected in the sound (uninoculated) kernels or in the kernels infected with A. niger.
Collapse
Affiliation(s)
- Ruey-Shyang Chen
- Graduate Institute of Biotechnology, National Chiayi University, Taiwan
| | | | | | | |
Collapse
|
47
|
Criseo G, Bagnara A, Bisignano G. Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett Appl Microbiol 2001; 33:291-5. [PMID: 11559403 DOI: 10.1046/j.1472-765x.2001.00998.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Three conventional methods and a multiplex PCR procedure with a set of four primers (Quadruplex-PCR) were used to differentiate between aflatoxin-producing and non-producing strains of the Aspergillus flavus group. METHODS AND RESULTS By combining sets of primers for aflR, nor-1, ver-1 and omt-A genes of the aflatoxin biosynthetic pathway, Quadruplex-PCR showed that aflatoxinogenic strains gave a quadruplet pattern, indicating the presence of all the genes involved in the aflatoxin biosynthetic pathway which encode for functional products. Non-aflatoxinogenic strains gave varying results with one, two, three or four banding patterns. A banding pattern in three non-aflatoxinogenic strains resulted in non-differentiation between these and aflatoxinogenic strains. CONCLUSION AND SIGNIFICANCE AND IMPACT OF THE STUDY Because conventional methods are time-consuming, further studies are needed to develop a rapid and objective technique that permits complete differentiation between aflatoxin-producing and non-producing strains of the A. flavus group.
Collapse
Affiliation(s)
- G Criseo
- Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Salita Sperone 31-98166 S. Agata, Messina, Italy.
| | | | | |
Collapse
|